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Abstract

Carbon fiber reinforced polymers are used for improving performance and lowering opera-

tional costs of structures, particularly in the aerospace industry. However, lack of knowl-

edge of the fracture behavior of these composites may result in catastrophic disasters.

Understanding delamination initiation and propagation of carbon fiber reinforced poly-

mer laminates (CFRPs) may assist in preventing catastrophic failures of structures such

as airplanes. Precise engineering tools may lead to safer design, improved performance,

as well as lowered operational costs of structures constructed from these materials. This

study focuses on a delamination between two fiber reinforced composite plies. The upper

ply is a UD fabric with fibers oriented in the 0◦- direction and the lower ply is a plain

balanced weave with tows oriented in the +45◦/ − 45◦ - directions. The composite is

manufactured by a wet-layup process.

Twenty-seven successful mixed mode fracture toughness tests were carried out using

Brazilian disk specimens to determine the fracture toughness properties of this composite

and interface. During each test, a load P was applied at an angle ω with respect to an

artificial delamination located between the investigated plies. Seven loading angles were

used to achieve different mixed mode combinations. Based on the results, using finite ele-

ment analyses in conjunction with the three-dimensional conservative interaction energy

integral or M -integral and the displacement extrapolation method, the stress intensity

factors resulting from mechanical loads, as well as residual curing stresses were obtained

along the delamination front for each specimen. The stress intensity factors were super-

posed and used to calculate the interface initiation energy release rate and mode mixities

or phase angles. Finally, two and three-dimensional failure criteria were proposed for this

material and interface and a statistical analysis with a 10% probability of unexpected

failure in the safe zone with a confidence of 95% was performed. The failure curves and

surfaces may be used to predict catastrophic failure for this material and interface, as well

as to lead to a better understanding of interlaminar delamination.

Initiation and propagation properties were determined based on nearly mode I, nearly

mode II and mixed mode fracture toughness and fracture resistance tests. For mode I,

DCB tests, which were performed and described in Chocron and Banks-Sills (2019), were

reanalyzed. For the nearly mode II and mixed mode initiation and resistance properties,

C-ELS and MMELS fracture tests were performed, respectively, and analyzed. These
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tests were quasi-static and consisted of two stages. In the first test stage, an artificial

delamination was extended and in the second test stage, propagation from a natural

precrack was observed. The experimental and numerical results obtained from the tests

were employed to determine the fracture resistance GiR-curves for nearly mode I, nearly

mode II and for one mixed mode I/II deformation ratio. The GiR-curves were generated

by means of a local M -integral approach, as well as by means of the global experimental

compliance method (ECM) and included determination of the initiation Gic and steady-

state propagation Giss values. The GiR-curves obtained using both methods were compared

for each tested specimen. In addition, the phase angles ψ̂ and ϕ which define the mode

mixities, were calculated for each specimen and test. The R-curves found may be used

to account for the fracture resistance energy release rate required for propagation and to

assist in improving the design and safety of a structure made of this laminate with this

interface.
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from the load-line

a0PC−VIS average precrack length, measured from front and back using Imagej software

from the load-line

a0PC average precrack length, measured from front and back using the Confocal micro-

scope from the load-line

abPC precrack length, measured from the back side of the beam type specimens, from

the load-line

afPC precrack length, measured from the front side of the beam type specimens, from

the load-line

aib total artificial insert length, measured from the back side of the beam type speci-

mens

aif total artificial insert length, measured from the front side of the beam type speci-

mens

acr half BD delamination length at fracture

a eigenvector of Stroh formalism

∆a virtual delamination extension shown in Fig. 3.1

∆a0 the difference between a0f and a0b

∆aiss initial ∆a value related to the steady state energy release rate Giss

ã corrected delamination length

b eigenvector of Stroh formalism related to a

b average of all width measurements b of each beam type specimen

2a BD specimen initial central artificial delamination length

2ac BD specimen critical central delamination length before failure

b width of beam type specimen

bcal width of specimen used for compliance calibration for the MMB test

bi(i = 0, 1, .., 14) fitting parameters used to describe the curves relating K
(r)
m to the loca-

tion x3 along the specimen width

bi(i = 1, 2, 3) arbitrary complex constants related to ai
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c lever length of the MMB test apparatus

cg lever length to the center of gravity

d actuator displacement

d2, d3 unknown constant within dm, related to the oscillatory part and the regular square-

root singularity part of the solution, respectively

dh, dv horizontal and vertical diameters of the arrest hole in the BD specimen, shown in

Fig. 4.5b

di (i = 1, 2) selected displacement along the linear fit to the linear portion of the load-

displacement curve, corresponding to Pi

d arbitrary complex vector

d,d,dm(m = 1, 2) arbitrary vectors corresponding to stress singularity δm, related to os-

cillatory part of the solution

d∗,d3 arbitrary vector corresponding to stress singularity δ3, related to regular square-

root singularity part of solution

f (k)(z
(k)
α )(α = 1, 2, 3; k = 1, 2) arbitrary functions in the Stroh formalism for material k

fα(zα)(α = 1..., 6) arbitrary functions in the Stroh formalism

g distance between yarns in a woven ply used to determine material properties

gk(k = 1, 2) arbitrary complex vector of material k

2h thickness of beam-type specimen

h woven ply thickness or height, used to determine material properties, also this

parameter is the thickness or height of each ply in the BD specimen

h
(1)
0 height of the UD ply, above the delamination, in the BD specimen, shown in

Fig. 4.18

h
(1)
45 height of the woven ply, below the delamination, in the BD specimen, shown in

Fig. 4.18

2h average of all thickness measurements 2h of each beam type specimen

k = 1, 2 upper (1) or lower (2) plies along an interface

k
(k)
i (i = 1, 2, 3 k = 1, 2 normalization factors in Stroh formalism for material k

l total length of beam type specimens
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l
(N)
1 (x3) parabolic normalized virtual crack extension along the crack front within element

N in the x1-direction

l1 distance from the center of the load block to the mid-plane of the specimen

lj(p)(j = 2, 3, 4) polynomials in p of degree j

m slope of the load-displacement curve of a tested MMB specimen or the slope from

the plot of the compliance C versus the cubed delamination length a3 measured

from the MMELS test

m,n fitting parameters in the criterion in eq. (1.105)

mcal slope of the load-displacement curve related to the compliance calibration of the

MMB system

n number of experimental data points used to determine the average value to be

reduced with the statistical analysis

n slope of a plot of the cube-root of the compliance versus free length Lf

kms (s = 1, 2) elements in the asymptotic displacement and stress fields

nj(j = 1, 2) unit normal vector in the j direction to the perimeter of the body

p complex constant

p
(k)
α (α = 1, 2, 3; k = 1, 2) eigenvalues obtained by Lekhnitskii and Stroh formalisms for

material k

pα(α = 1, 2, 3) eigenvalues obtained by Lekhnitskii and Stroh formalisms

knst, kn
∗
st (s = 1, 2, 3; t = 1, 2) elements in the asymptotic displacement and stress fields

q1m components of a vector which determines the virtual displacement at the element

nodal points

q1 normalized virtual crack extension function

qα, q̃α arbitrary 3× 1 constant vector for material k

r distance from crack or delamination front; radius in a polar coordinate system

s standard deviation

t thickness of BD specimen

∆uos oscillatory singularity crack face displacement jump vector

∆us regular square-root singularity crack face displacement jump vector
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∆ui displacement ”jump” of the crack faces in the i-direction

u vector form of the displacement field

u(k)(k = 1, 2) displacement vector for material k

u
(k)
3 out-of-plane displacement component for material k

u
(k)
α (k = 1, 2) in-plane displacement component for material k

ui(i = 1, 2, 3) displacement components in the i direction

uα(α = 1, 2) displacement component in the α direction

u
(k)
s (k = 1, 2) regular square-root singular part of u(k)

u
(k)
os (k = 1, 2) oscillatory singular part of u(k)

u
(1)
i (i = 1, 2, 3) components of displacement field of the problem sought for a homogeneous

material

u
(2α)
i (i = 1, 2, 3;α = a, b, c) components of displacement field of the auxiliary solution for

a homogeneous material

u
(k)
i (i = 1, 2, 3 : k = 1, 2) displacement components in the i direction for material k

ku
(1)
i (i = 1, 2, 3; k = 1, 2) components of displacement field of the problem sought for ma-

terial k

ku
(2α)
i (i = 1, 2, 3;α = a, b, c; k = 1, 2) components of displacement field of the auxiliary

solution for material k

xi(i = 1, 2, 3) x, y, z axes in cartesian coordinate system

z complex variable

zi (i = P, γ) z-variate model P=probability and γ=confidence level

z
(k)
∗ (α = 1, .., 6; k = 1, 2) complex variable related to pα of material k

z
(k)
α (α = 1, .., 6; k = 1, 2) complex variable related to pα of material k

Greek letters - upper case

∆ϑi temperature change related to specimen i

∆I delamination length corrections for the mode I using CBT

∆II delamination length corrections for the mode II using CBT
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k∆ϑ(k = 1, 2) total temperature change in material k

k∆ϑ
(1)(k = 1, 2) total temperature change for material k of the problem sought

k∆ϑ
(2α)(α = a, b, c; k = 1, 2) total temperature change of the auxiliary solution for mate-

rial k, taken to be zero

Φ stress function vector related to the Stroh formalism

Γ transverse modulus correction parameter

Φi(i = 1, 2, 3) components of the stress function related to the Stroh formalism

Π potential energy

kΣ
(III)
3,β (θ)(k = 1, 2; β = 1, 2, 3) out-of-plane stress functions for material k, related to mode

III

kΣ
(m)
α,β (θ)(k = 1, 2;α = 1, 2; β = 1, 2;m = 1, 2) in-plane stress functions for material k, re-

lated to mode m

Greek letters - lower case

α loading angle for the Arcan specimen

αA coefficients of thermal expansion (CTEs) in the axial direction in a transversly

isotropic material

αk(k = 1, 2) coefficients of thermal expansion (CTEs) of material k

αT coefficients of thermal expansion (CTEs) in the transverse direction in a transversly

isotropic material

β angle of the yarn in the RUC shown in Fig. 4.7

β defined in eq. (2.70) and related to the oscillatory parameter ε

β(i) (i = N,P ) slope of the oblique line obtained for negative (i = N)/positive (i = P )

loading angles

β(S) slope of branch 2 or branch 3 in the ’3 branch’ or ’5 branch’ criteria’ respectively,

in the (K̂1 − K̂2)-plane

βα(α = 1, 2, 3) real constants related to imaginary part of pα

β
(k)
α (α = 1, 2, 3; k = 1, 2) real constants related to imaginary part of p

(k)
α for material k

δ order of stress singularity

δm stress singularity components
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δij Kronecker delta

γ parameter used to define K∗
m in eq. (3.10)

kαrs(r, s = 1, 2, 3 ; k = 1, 2) components of the coefficients of thermal expansion (CTE)

for materialk

kβ
∗
s (s = 1, 2) elements in the asymptotic displacement and stress fields

kβij componebnts of the tensor given in eq. (3.25) for an unisotropic material

ε oscillatory parameter (positive)

εα(α = 1, ..., 6) contracted strain components

εij components of the strain tensor

kεrs total strain components of the strain tensor related to material k

ε
(1)
ij (i, j = 1, 2, 3) strain components of the problem sought for a homogeneous material

ε
(2α)
ij (i, j = 1, 2, 3;α = a, b, c) strain components of the auxiliary solution for a homoge-

neous material

kε
(1)
ij (i, j = 1, 2, 3; k = 1, 2) strain components of the problem sought for material k

kε
(2α)
ij (i, j = 1, 2, 3;α = a, b, c; k = 1, 2) strain components of the auxiliary solution for ma-

terial k

kε
m(2α)
ij (i, j = 1, 2, 3;α = a, b, c; k = 1, 2) mechanical strain components of the auxiliary so-

lution for material k

kε
T (2α)
ij (i, j = 1, 2, 3;α = a, b, c; k = 1, 2) total strain components of the auxiliary solution

for material k

θ angle in a polar coordinate system

θ(N) rotation angle for branch 1 in the 3 branch or 5 branch criterion

θ(P ) rotation angle for branch 2 and 3 in the 3 branch criterion or branches 3 and 5 in

the 5 branch criterion

θ1 first correction factor used to calculate correction for large diplacements F used

with CBT

θ2 second correction factor used to calculate correction for large diplacements F used

with CBT

ϑi temprature measured at the begining of each BD test.
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κ Kosolov parameter in a homogeneous, linear elastic, isotropic material

κk Kosolov parameter of the upper (k = 1) or lower (k = 2) plies in the interface

λk(k = 1, 2) Lamé constant

µ shear modulus in a homogeneous, linear elastic, isotropic material

µk shear moduli of the upper (k = 1) or lower (k = 2) plies in the interface

µ average shear modulus for an interface

ν Poisson’s ratio in a homogeneous, linear elastic, isotropic material

νA Poisson’s ratio in the axial direction in a transversly isotropic material

νk Poisson’s ratio of the upper (k = 1)nor lower (k = 2) plies in the interface

νT Poisson’s ratio in the transverse direction in a transversly isotropic material

νij(i, j = 1, 2, 3) Poisson’s ratio

σ vector form of the stress field

σ normal stress

σαβ(α, β = 1, 2, 3) components of the stress tensor in polar or cartesian coordinates

σij (i, j = 1, 2, 3) components of the stress tensor in polar coordinates

σβ(β = 1, ..., 6) contracted stress components

σ
(1)
ij (i, j = 1, 2, 3) stress components of the problem sought for a homogeneous material

σ
(2α)
ij (i, j = 1, 2, 3;α = a, b, c) stress components of the auxiliary solution for a homoge-

neous material

kσ
(1)
ij (i, j = 1, 2, 3; k = 1, 2) stress components of the problem sought for material k

kσ
(2α)
ij (i, j = 1, 2, 3;α = a, b, c; k = 1, 2) stress components of the auxiliary solution for ma-

terial k

τi in-plane shear

τo out-of-plane shear

kφs (s = 1, 2, 3) elements in the asymptotic displacement and stress fields

ϕ(k)(k = 1, 2) stress function vector of material k

ϕ
(k)
os (k = 1, 2) oscillatory singular part of ϕ(k)
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ϕ
(k)
s (k = 1, 2) regular square-root singular part of ϕ(k)

χ delamination length correction parameter or one of the two Airy potential functions

ϕ out-of-plane to in-plane phase angle

ψ one of the two Airy potential functions

ψ̂ in-plane phase angle

ψ̂(i) (i = N,P ) value of the in-plane phase angle ψ̂ at the intersection of two adjacent

branches for negative (i = N)/positive (i = P ) loading angles

ψ̂(i)∗ (i = N,P ) reduced value of ψ̂(i) obtained after a statistical analysis was performed

ω BD specimen loading angle or arbitrary constant associated with torsion about the

x3-axis

ζ(k = 1, 2) a parameter which depends on the eigenvalues of material k and the polar

angle θ

Abbreviations

J J-integral results for the energy release rate obtained from Abaqus (2017)

4ENF four-point bending, end notch flexure

AC artificial crack

ADCB asymmetric double cantilever beam

ASTM American Society for Testing and Materials

B-K Benzeggagh and Kenane (1996)

BC boundary condition

BD Brazilian disk

C-ELS calibrated end loaded split

CAL calibration procedure

CBT corrected beam theory

CBTE corrected beam theory using using the effective crack length

CFRP carbon fiber reinforced polymer

CLS crack lap shear
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CT computed tomography

CV coefficient of variation

DCB double cantilever beam

DE displacement extrapolation

DIC digital image correlation

ECM experimental compliance method

ELS end loaded split

ENF end notch flexure

EPH hardener Epikure

EPR Epikote resin

ESIS European Structural Integrity Society

FE finite element

FEA finite element analysis

FEM finite element model

FRMM fixed ratio mixed mode

GFRP glass fiber reinforced polymer

GUI geometrical user interface

HFGMC High Fidelity Generalized Method of Cells

ISO International Organization for Standardization
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MCC modified compliance calibration

MD multidirectional
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MMELS mixed mode end loaded split

MMF mixed mode flexure
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NL non-linear

PC precrack

PMMA polymethyl methacrylate

PTFE polytetrafluoroethylene

PTU programable timing unit

RD relative difference
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RMSE round mean square error

RUC repetitive unit cell

SBT simple beam theory
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Chapter 1

Introduction

Throughout history, structural cracks have caused many catastrophical failures in aircraft,

space shuttles, ships, trains, etc. Some well known examples of such failures are the de

Havilland D.H.106 Comet, the Columbia space shuttle, the Liberty ships, the Versailles

train and more. Each of these disasters concluded with deaths and injuries of many people.

Investigation of each of these disasters showed that the cause was high stresses resulting

from loads lower than the loads the structure was designed to sustain. The high stresses

generally occurred at stress raisers in the structure leading to cracks and eventual failure.

Understanding crack formation may prevent many catastrophic failures in the future.

Fracture mechanics enables the definition of conditions under which a crack may prop-

agate; this may be helpful in preventing failure. The first milestone in investigating cracks

was achieved by Griffith (1920, 1924), who determined the maximum stress applied before

a crack propagates. His investigation was based on energy concepts, deriving an energy

based criterion for failure. It was not until World War II that fracture mechanics became

of significant interest and received renewed attention. The main reason for this was the

massive production of Liberty ships which suffered from hull and deck cracks. Nearly

1,500 instances of significant brittle fractures were found in the ships. About 1,200 ships

suffered from cracks during the war (about 30% of all Liberty-class ships), and 3 were lost

when the ship suddenly split in two. Investigation of cracks began by Irwin (1948) and his

group at the U.S Naval Research Laboratory (NRL) with research regarding the kinetic

energy of a crack and its propagation rate. Irwin had much influence on the progress

of fracture mechanics as a new science and a powerful engineering tool used today for

numerous problems in determining material failure (Yarema, 1996).

This thesis deals with a delamination in a composite laminate. Composite materials

are materials composed of two or more materials whose properties are different from those

of the original properties of each individual constituent. Since composites have properties

which may be tailored to a specific application, use of composite materials has grown in

recent times. The properties of a fiber reinforced composite are strongly influenced by

fiber orientation and fiber volume fraction (Mallick, 2007). Different properties such as
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flexibility, stiffness, strength, weight, fatigue life, thermal insulation and thermal conduc-

tivity, may be determined based on specified needs (Jones, 1998). As a result of their

high stiffness and low weight (Taylor, 2008), carbon fiber reinforced polymers (CFRP)

are widely used in many fields, especially in the aircraft industry. For this reason, these

composites may be helpful in improving performance and lowering operational costs of

aircraft.

A laminate composite material is formed from plies which are thin layers with a fiber

orientation required to produce the desired properties (Jones, 1998). The plies are stacked

to a determined thickness; the sequence of plies influences the thermal and mechanical

properties of the composite. Interlaminar stresses in conjunction with the low through

thickness strength caused by the fibers lying in the laminate plane without providing

reinforcement through the composite thickness, may result in delamination (Wisnom,

2012). Impact, material and structural discontinuities, as well as in-service loads may

cause the appearance of delaminations at different locations. Continued loading may lead

to structural failure.

This study focuses on a delamination between two carbon fiber reinforced polymer

(CFRP) composite plies, where each ply has a different fiber orientation and different

properties. Emphasis will be placed on determining the critical interface initiation and

resistance energy release rate properties of the specific composite, consisting of a specific

layup. In this chapter, basic concepts in fracture mechanics, as well as methods for

investigating a delamination within a laminate will be presented. In Section 1.1, the

behavior of a crack in an isotropic body and along the interface between two isotropic

materials will be presented. Methods which allow calculation of the stress intensity factors

are described in Section 1.2. These methods include displacement extrapolation (DE) and

two conservative integrals: the J -integral and the M -integral, for thermal and mechanical

loading. A review of fracture toughness testing methods will be presented in Section 1.3.

First, a discussion of the different composite types, unidirectional (UD), multi-directional

(MD) and woven fabric composites, will be made. Then different fracture toughness

testing methods for modes I and II will be explained. Finally, different mixed mode

test methods and specimens used for UD, MD and woven composites will be presented

including the mixed mode bending (MMB) specimen, the mixed mode end loaded split

(MMELS) specimen, the Arcan specimen and the Brazilian disk (BD) specimen. Research

objectives are discussed in Section 1.4.

1.1 Introduction to fracture mechanics

The term fracture mechanics refers to a specialized field of solid mechanics where quan-

titative geometrical and mechanical relations are found to describe causes for structural

failure in a body with an assumed crack. Consider a semi-infinite crack within a linear

2



Figure 1.1: Stress state in Cartesian and polar coordinate systems at the crack tip. (Whit-
taker et al. 1996).

elastic, homogenous, isotropic infinite body. The body may be subjected to any combi-

nation of three basic stresses: normal stress σ, in-plane shear stress τi and out-of-plane

shear stress τo, as illustrated in Fig 1.1. These stresses result in three basic deformation

configurations known in the literature as mode I, mode II and mode III, as illustrated

in Fig 1.2. Mode I is a normal-opening mode, mode II is the in-plane sliding mode and

mode III is the out-of-plane tearing mode. Mixed mode deformation is a combination of

any of the three modes.

The pioneer of fracture studies was A.A. Griffith (1893 –1963); his energy balance

approach was the basis for the stress intensity factor approach presented by Irwin (1957,

1958) and widely used today. The stress intensity factor K, is a calculated parameter, re-

lated to geometry and applied force of a particular problem. This parameter characterizes

the stress and displacement field in the neighborhood of a crack tip. For each deformation

mode described in Fig 1.2, a corresponding stress intensity factor (KI , KII , KIII ) exists.

The stress field near the crack tip may be described by means of an asymptotic solution

Figure 1.2: Deformation modes: (a) mode I, (b) mode II, (c) mode III.
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r

θ

Figure 1.3: Crack tip coordinates

as was determined by Williams (1957) and Irwin (1957, 1958), namely

σij =
III∑
m=I

Km√
2πr

f
(m)

ij (θ) +O(r0) , (1.1)

where m = I, II , III is the deformation mode, r and θ are the polar coordinates at the

crack tip, as illustrated in Fig 1.3, and f
(m)

ij (θ) are known functions for each mode. The

indices i and j correspond to each stress component in the stress tensor, represented in

an orthogonal coordinate system (polar or Cartesian). The stress intensity factor for each

mode, Km, uniquely governs the intensity of the stresses in the neighborhood of a crack

tip. It may be noted from eq. (1.1) that a square-root singularity appears in the first

term of the asymptotic stress solution near the crack tip. In other words, the stresses

vary as σij ≃ r−
1
2 in the vicinity of the crack tip; as r goes to zero, the stresses go to

infinity. This is not physically realizable since no material can bear infinite stresses. For a

metal, for example, near the tip of the crack, the effective stress exceeds the yield strength

σY , so that a plastic zone results. In this small region, bounded by the radius rp, the

asymptotic solution is not valid since it was developed based on linear elastic fracture

mechanics (LEFM). In order to justify the asymptotic solution in the elastic region, the

plastic region must be sufficiently small, much smaller than the crack length and other

body dimensions. The higher order terms of the asymptotic solution are negligible in

comparison to the first term of the solution in the vicinity of the crack tip. These are

necessary to describe the deformation and stresses far away from the crack tip. As r

increases, the first term goes to zero.

Explicit expressions for the stresses in the neighborhood of a crack tip in a homoge-

neous, isotropic material subjected to deformation modes I, II and III are given by


σ11

σ12

σ22

 =
KI√
2πr

cos
θ

2



1− sin
θ

2
sin

3θ

2

sin
θ

2
cos

3θ

2

1 + sin
θ

2
sin

3θ

2


, (1.2)
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σ11

σ12

σ22

 =
KII√
2πr



− sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)
sin

θ

2
cos

θ

2
cos

3θ

2


, (1.3)

 σ13

σ23

 =
KIII√
2πr


− sin

θ

2

cos
θ

2

 . (1.4)

The corresponding displacement field is

{
u1

u2

}
=
KI

2µ

√
r

2π


cos

θ

2

(
κ− 1 + 2 sin2 θ

2

)
sin

θ

2

(
κ+ 1− 2 cos2

θ

2

)
 , (1.5)

{
u1

u2

}
=
KII

2µ

√
r

2π


sin

θ

2

(
κ+ 1 + 2 cos2

θ

2

)
− cos

θ

2

(
κ− 1− 2 sin2 θ

2

)
 , (1.6)

u3 = 2
KIII

µ

√
r

2π
sin

θ

2
, (1.7)

where σij (i, j = 1, 2, 3) are stresses in the i direction applied on a surface defined with

a normal in the j-direction and ui (i = 1, 2, 3) are the displacements in the x1, x2 and

x3-directions, presented in Fig. 1.3. In eqs. (1.5) to (1.7), µ is the shear modulus and κ is

determined by

κ =


3− 4ν , plane strain

3− ν

1 + ν
, generalized plane stress

(1.8)

where ν is Poisson’s ratio.

The stress intensity factors describe the magnitude of the stresses near the crack tip

based on the geometry and loading conditions. When a single mode is applied, crack

propagation may occur once the corresponding stress intensity factor reaches a critical

value. For example, if mode I is applied, the crack will propagate once KI = KIc. This

critical value is the fracture toughness, a material property introduced in a special report

(ASTM Committee, 1960). This material property, Kmc, (m = I, II, III), allows predic-

tion of catastrophic crack propagation for a particular mode. In the case of mixed modes,

different fracture criteria exist.

Another important parameter related to the stress intensity factors (Irwin, 1957, 1958)

is the energy release rate or Griffith’s energy, denoted by G. This parameter represents
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the energy release rate or decrease of potential energy per unit crack advance per unit

thickness. It is given by

G = −dπ
da

(1.9)

where a is the crack length and π is the potential energy given in two dimensions as

π =

∫
A

WdA −
∫
ST

TiuidS . (1.10)

In eq. (1.10), A is the area of the body, ST is the perimeter of the body on which tractions

are applied, and

W =
1

2
σijεij (1.11)

is the strain energy density for a linear elastic material where σij and εij are the stress

and strain components in the direction denoted by i, j = 1, 2, respectively. In eq. (1.10),

the traction components are given as

Ti = σijnj (1.12)

where nj are the components of the unit normal vector to ST . In eq. (1.10), ui are the

displacement components in the corresponding direction. The overall energy release rate,

GT , is the sum of energy release rates for each mode, namely,

GT = GI + GII + GIII . (1.13)

In many cases, the out-of-plane energy release rate component may be neglected from

eq. (1.13) and the in-plane energy release rate becomes

GT = GI + GII . (1.14)

Using the asymptotic stress expansion and the crack closure integral, it is possible to

obtain a relation between the energy release rate and the stress intensity factors as (Irwin,

1958)

G =


1

E

(
K2
I +K2

II

)
+
K2

III

2µ
, plane strain

1

E

(
K2
I +K2

II

)
, generalized plane stress

(1.15)

where KI , KII , and KIII are the stress intensity factors in modes I, II, and III, respectively,

and E is given by

1

E
=


1− ν2

E
, plane strain

1

E
, generalized plane stress

(1.16)

where E is Young’s modulus. The relations, described in eq. (1.15), between G and Km

are correct only in the case of self-similar crack extension meaning a crack propagating in

its own plane.
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r

θ

material (1)

material (2)

Figure 1.4: An interface crack between two dissimilar materials.

In Fig. 1.4, a crack along the interface between two materials is presented. Each

material is denoted by k (k = 1, 2), where k = 1 represents the upper material and k = 2

represents the lower material. For the case of two linear, elastic, homogenous and isotropic

materials, the stress and displacement fields were derived by Williams (1959) and showed

strong oscillations near the crack tip. Their behavior was first obtained as

σ ∼ r−
1
2

 sin (εlnr)

cos (εlnr)

 , (1.17)

u ∼ r
1
2

 sin (εlnr)

cos (εlnr)

 , (1.18)

where, σ and u are the stresses and displacements, respectively, r is the distance from the

crack tip, shown in Fig. 1.4 and ε is the oscillatory parameter. This parameter is related

to the mechanical properties of both materials and given by

ε =
1

2π
ln

(
κ1µ2 + µ1

κ2µ1 + µ2

)
, (1.19)

where µk (k = 1, 2) are the shear moduli of the upper and lower materials, respectively.

The Kosolov parameter, κk, is given by

κk =


3− 4νk , plane strain

3− νk
1 + νk

, generalized plane stress
(1.20)

where νk (k = 1, 2) are the Poisson’s ratios of each material. The singular oscillations

found in the displacement field show interpenetration of the crack faces which is physically

unrealistic.

To employ the asymptotic oscillatory solution, the interpenetration zone is required to

be sufficiently small compared to the crack length and other specimen dimensions (Rice,

1988). The first term of the asymptotic solution for the in-plane stresses of an interface

crack are given by

σ
(k)
αβ =

1√
2πr

[
ℜ
(
Kriε

)
kΣ

(1)
αβ(θ, ε) + ℑ

(
Kriε

)
kΣ

(2)
αβ(θ, ε)

]
. (1.21)
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The subscripts α, β = 1, 2 denote the stress components in either polar or Cartesian

coordinates. The subscript k = 1, 2 denotes the upper and lower materials respectively,

and r and θ are the crack tip polar coordinates shown in Fig. 1.4. The symbols ℜ and ℑ
denote the real and imaginary parts of the quantity in parentheses. The known functions

of θ, kΣ
(1)
αβ , kΣ

(2)
αβ , in eq. (1.21), correspond to modes 1 and 2, respectively, they may be

found in Rice et al. (1990) and Deng (1993) for polar and Cartesian coordinate systems,

respectively. The complex stress intensity factor, K, is defined as

K = K1 + iK2 , (1.22)

where i =
√
−1, K1 and K2 are the real stress intensity factors for modes 1 and 2,

respectively. Unlike the case of a homogeneous material where KI and KII are the stress

intensity factors associated with tension and in-plane shear deformations, respectively, it

may be shown that for an interface crack in a tensile field, both K1 and K2 exist and do

not relate to one specific deformation mode. These modes are coupled.

The out-of-plane stress components are given by

σ
(k)
α3 =

KIII√
2πr

kΣ
(III)
α3 (θ) (1.23)

where KIII is the mode III stress intensity factor and the function kΣ
(III)
α3 (θ) may be found

in Deng (1993). The out-of-plane mode is decoupled from the two in-plane modes which

are inherently coupled.

The in-plane displacement components are also coupled and given by

u(k)α =

√
1

2πr

[
ℜ
(
Kriε

)
kU

(1)
α (θ) + ℑ

(
Kriε

)
kU

(2)
α (θ)

]
, (1.24)

where α = 1, 2 and the expressions kU
(1)
α (θ) and kU

(2)
α (θ) may be found in Deng (1993).

The out-of plane displacement component is decoupled and may be written as

u
(k)
3 =

√
r

2π
KIII kU

(III)
3 (θ) , (1.25)

where kU
(III)
α (θ) is also found in Deng (1993).

The stress intensity factor K has unconventional units. It may be normalized as

K̂ = KL̂iε , (1.26)

where K̂ is the normalized stress intensity factor and L̂ is an arbitrary length. A phase

angle may be defined as

ψ̂ = arctan

{
ℑ(KL̂iε)
ℜ(KL̂iε)

}
= arctan

{
σ12
σ22

}∣∣∣∣
θ=0,r=L̂

. (1.27)
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The phase angle ψ̂ represents the in-plane mode mixity; it may also be expressed as the

ratio of the in-plane shear stress to the tensile stress along the interface (θ = 0) at a

distance r = L̂ from the crack tip. A second phase angle may also be defined as

ϕ = arctan

{√
H

2µ

KIII√
K2

1 +K2
2

}
= arctan

(√
H

2µ

σ32√
σ2
22 + σ2

12

)∣∣∣∣
θ=0,r=L̂

, (1.28)

where H and µ are related to the interface and given by

1

H
=

1

2 cosh2 πε

(
1

E1

+
1

E2

)
, (1.29)

1

µ
=

1

4

(
1

µ1

+
1

µ2

)
. (1.30)

The parameters Ek are defined in eq. (1.16) and the subscripts k = 1, 2 represent the

upper and lower materials, respectively. The phase angle ϕ represents the ratio of the

out-of-plane mode to the in-plane modes. It may also be expressed as an out-of-plane

shear stress to the magnitude of the in-plane stresses along the interface (θ = 0) at a

distance r = L̂ from the crack tip. The phase angles ψ̂ and ϕ may be considered as mode

mixity parameters.

The energy release rate for an interface crack is given by (Malyshev and Saganik, 1965)

Gi =
1

H
(K2

1 +K2
2) +

1

µ
K2

III , (1.31)

where i represents the interface. By manipulating eq. (1.31), it is possible to show that

Gi may be written as

Gi =
K̂1

2

H

(
1 + tan2 ψ̂

) (
1 + tan2 ϕ

)
, (1.32)

where ψ̂ and ϕ are the phase angles and K̂1 is the real part of the normalized stress

intensity factor given in eq. (1.26).

As in the case of a crack in a homogeneous solid, once Gi reaches a critical value Gic,
the crack may propagate. This critical value, Gic, is a function of ψ̂ and ϕ and may be

used to describe a failure surface for crack propagation between two isotropic materials,

namely

Gic = G1c

(
1 + tan2 ψ̂

) (
1 + tan2 ϕ

)
, (1.33)

where G1c is defined as

G1c = avg

(
K̂2

1

H

)
. (1.34)

The value of G1c may be obtained from the average of K̂2
1/H, calculated separately for

each test. In Banks-Sills and Ashkenazi (2000), the two-dimensional curve from eq. (1.33)

was presented.
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1.2 Methods for extracting stress intensity factors

The stress intensity factors KI , KII and KIII in a linear elastic, homogeneous, isotropic

material may be numerically calculated using several methods. Two will be presented

here. Both methods make use of a finite element analysis (FEA) and of the first term of

the asymptotic solution. First, the displacement extrapolation method will be presented

in Section 1.2.1. This method was first introduced by Chan et al. (1970) for isotropic ma-

terials. It is a direct method in which the crack opening, sliding and tearing displacements

are used to calculate the stress intensity factors. The second method is the interaction en-

ergy M -integral which is an indirect method. It is based on energy considerations; it was

first derived by Chen and Sheild (1977) and implemented in Yau et al. (1980) for a linear

elastic, homogeneous, isotropic material. By means of this integral, with use of auxiliary

solutions, a sufficient number of equations to determine the stress intensity factors are

obtained. In section 1.2.2, the two-dimensional mechanical and thermal M -integrals will

be discussed and extended for three-dimensions.

1.2.1 Displacement extrapolation

In this section the displacement extrapolation method will be presented for a crack within

a linear elastic, homogenous, isotropic material. With this method, the crack opening,

sliding and tearing displacements are used to calculate the stress intensity factors.

Considering a semi-infinite crack in a body of infinite extent, the first term of the

asymptotic displacement field, given in eqs. (1.5) through (1.7), may be used to describe

the relative displacements of the crack faces in a small region near the crack front. By

substituting θ = ±π in these equations, the displacements in different directions, relative

to the crack faces become

∆u1 ≡ u1(r, θ = π)− u1(r, θ = −π) =
κ+ 1

µ

√
r

2π
KII ,

∆u2 ≡ u2(r, θ = π)− u2(r, θ = −π) =
κ+ 1

µ

√
r

2π
KI ,

∆u3 ≡ u3(r, θ = π)− u3(r, θ = −π) =
4

µ

√
r

2π
KIII

(1.35)

where u1, u2 and u3 are the displacements in the x1, x2 and x3 - directions, respectively,

and the parameters r and θ are the crack tip polar coordinates shown in Fig. 1.3. The

mechanical property µ in eqs. (1.35) is the shear modulus and κ is given in eq. (1.8). By

manipulating eqs. (1.35), an expression for the local stress intensity factors at a distance

r along the crack faces may be obtained. These local stress intensity factors are denoted
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as K
∗
I , K

∗
II and K

∗
III and are given explicitly as

K
∗
I =

µ
√
2π

κ+ 1

∆u2√
r

,

K
∗
II =

µ
√
2π

κ+ 1

∆u1√
r

,

K
∗
III =

µ
√
2π

4

∆u3√
r

.

(1.36)

Only the first term of the asymptotic displacement field is used to obtain the expres-

sions in eqs. (1.35) and (1.36). It was shown that with use of higher order terms, the

crack displacement jumps may be written as (Williams, 1957)

∆u1 = A1r
1/2 + A2r

3/2 +O(r5/2) ,

∆u2 = B1r
1/2 +B2r

3/2 +O(r5/2) ,

∆u3 = C1r
1/2 + C2r

3/2 +O(r5/2)

(1.37)

where Ai,Bi and Ci (i = 1, 2) are constants and r is the distance from the crack front. For

terms rn (n = 1, 2, ...) in the series in eqs. (1.37), the coefficients are zero on the crack

faces. By dividing eqs. (1.37) by
√
r these equations take the form

∆u1√
r

= A1 + A2r +O(r2) ,

∆u2√
r

= B1 +B2r +O(r2) ,

∆u3√
r

= C1 + C2r +O(r2) .

(1.38)

By substituting eqs. (1.38) into eqs. (1.36), local stress intensity factors may be written

as

K
∗
I =

µ
√
2π

κ+ 1

[
B1 +B2r +O(r2)

]
,

K
∗
II =

µ
√
2π

κ+ 1

[
A1 + A2r +O(r2)

]
,

K
∗
III =

µ
√
2π

4

[
C1 + C2r +O(r2)

]
.

(1.39)

A linear relation between the local stress intensity factors and r is observed in eqs. (1.39).

On the other hand, division of eqs. (1.35) by
√
r yields

∆u1√
r

=
κ+ 1

µ
√
2π
KII ,

∆u2√
r

=
κ+ 1

µ
√
2π
KI ,

∆u3√
r

=
4

µ
√
2π
KIII .

(1.40)
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It is apparent that by comparing eqs. (1.38) with eqs. (1.40) as r → 0, the stress intensity

factors KI , KII and KIII are proportional to the constants B1, A1 and C1, respectively.

As r → 0, the local stress intensity factors K
∗
m (m = I, II, III) are equal to the

stress intensity factors Km (m = I, II, III). Hence, it may be concluded that the stress

intensity factors may be calculated from the values of the local stress intensity factors for

r → 0. In other words,

KI = lim
r→0

K
∗

I ,

KII = lim
r→0

K
∗

II ,

KIII = lim
r→0

K
∗

III .

(1.41)

The displacement extrapolation method may be used to obtain the stress intensity

factors of a given problem. In such a case, the displacement field is obtained numerically

by means of a finite element analysis. The results are substituted into eqs. (1.36) to

determine the local stress intensity factors K
∗
m (m = I, II, III) versus the distance from

the crack front normalized by the delamination length r/a. Graphs of this relation are

plotted and based on eqs. (1.39) they are expected to be linear. It may be noted that

in a small region near the crack front, the asymptotic solution is not valid, as well as

far from the crack front where the linear representation of the displacement jump is not

valid. Hence, the points near the crack front, as well as points far from the crack front are

excluded from the calculations. Linear behavior of the local K
∗
m-values (m = I, II, III)

occurs for some distance along the crack faces. The most accurate value for the stress

intensity factors Km (m = I, II, III) may be chosen by fitting a line through various

groups of three points. A correlation coefficient is then calculated for each fit. The line

with the correlation coefficient closest to 1 is used to obtain the stress intensity factors

Km (m = I, II, III) from linear extrapolation of that line to r = 0.

The displacement extrapolation method has many advantages. In addition to being

a simple, straight forward approach to obtain the stress intensity factors, this method

is suitable for all fracture modes and enables evaluation of all stress intensity factors.

However, this method is not as accurate as an energy based method. Moreover, the main

flaw of this method is that there are several options for the linear extrapolation which may

produce a range of results for the stress intensity factors. In the case of an interface crack,

the displacement extrapolation method may be extended. In Section 3.1, the particular

case of a delamination along an interface between a transversely isotropic material and a

tetragonal material will be described.

1.2.2 Conservative M-integrals

The interaction energy conservative integral or M -integral is known to be an accurate

method for extracting stress intensity factors based on energy considerations (Banks-Sills,
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Figure 1.5: Integration area A for a crack in a homogeneous body.

1991). By means of this integral, with use of auxiliary solutions, a sufficient number of

equations are obtained to determine the stress intensity factors occurring under mixed

mode conditions. In this investigation, an M -integral for determination of the stress in-

tensity factors resulting from mechanical loading, as well as from residual thermal curing

stresses will be used. In Section 1.2.2.1, a short review of the two and three-dimensional

mechanicalM -integrals for homogeneous materials and for an interface between two homo-

geneous materials will be presented. The two and three-dimensional thermal M -integrals

for these materials will be described in Section 1.2.2.2.

1.2.2.1 Mechanical M-integral

The mechanical M -integral was first derived by Chen and Sheild (1977) from the con-

servative J-integral (Rice, 1968). It was then implemented in Yau et al. (1980) for a

homogeneous, isotropic material and extended by Yau and Wang (1984) for an interface

crack between two homogeneous, isotropic materials. A three-dimensional mechanical M -

integral was first presented for a homogeneous isotropic material by Nakamura and Parks

(1989) and extended for dissimilar monoclinic materials by Freed and Banks-Sills (2005).

The M -integral is a conservative integral which may be used to separate the stress

intensity factors for different modes. It was first presented as a line integral in Chen and

Sheild (1977). Since it is path independent, it may be transformed to an area integral

and given for a crack in a homogeneous isotropic body as

M (1,2α) =

∫
A

[(
σ
(1)
ij

∂u
(2α)
i

∂x1
+ σ

(2α)
ij

∂u
(1)
i

∂x1

)
−W (1,2α)δ1j

]
∂q1
∂xj

dA . (1.42)

In eq. (1.42), indicial notation is used where summation is implied over repeated indices.

The subscripts i, j = 1, 2, A is the integration area shown in Fig. 1.5, the superscript (1)

represents the numerical solution for the problem which is being solved; (2α) represents

13



Table 1.1: Stress intensity factors for the two-dimensional auxiliary solutions used for a
homogeneous crack problem.

solution KI KII

2a 1 0

2b 0 1

two auxiliary solutions, 2a and 2b. In addition, the parameter δ1j is the Kronecker delta

and the interaction strain energy density is given by

W (1,2α) = σ
(1)
ij ε

(2α)
ij = σ

(2α)
ij ε

(1)
ij . (1.43)

The function q1 is defined as

q1 =

 1 on C3

0 on C1 ,
(1.44)

and is sufficiently continuous and differentiable within A.

In order to obtain the stress intensity factors for a two-dimensional problem of a crack

in a homogeneous material, the two solutions are superposed, so that

ui = u
(1)
i + u

(2α)
i , (1.45)

σij = σ
(1)
ij + σ

(2α)
ij , (1.46)

εij = ε
(1)
ij + ε

(2α)
ij , (1.47)

KI = K
(1)
I +K

(2α)
I , (1.48)

KII = K
(1)
II +K

(2α)
II . (1.49)

The first term of the asymptotic expansion is used as the auxiliary solution with two sets of

stress intensity factors, denoted by 2a and 2b and shown in Table 1.1. For a homogeneous,

isotropic material the explicit expressions for the first term of the asymptotic expansion of

the displacement field are given in eqs. (1.5) and (1.6). The stress and strain components

σ
(2α)
ij and ϵ

(2α)
ij (i, j = 1, 2), respectively, are developed by means of a finite element

formulation through the derivatives of the shape functions.

On the other hand, it is possible to write the relation between M (1,2α) and the stress

intensity factors of a homogeneous, isotropic material as

M (1,2α) =
2

E

{
K

(1)
I K

(2α)
I +K

(1)
II K

(2α)
II

}
(1.50)

where E is defined in eq. (1.16). For the auxiliary solution 2a, found using Table 1.1,

eq. (1.50) reduces to

M (1,2a) =
2

E
K

(1)
I . (1.51)
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By equating eqs. (1.42) and (1.51), the mode I stress intensity factor is obtained as

K
(1)
I =

E

2

∫
A

[(
σ
(1)
ij

∂u
(2a)
i

∂x1
+ σ

(2a)
ij

∂u
(1)
i

∂x1

)
−W (1,2a)δ1j

]
∂q1
∂xj

dA . (1.52)

In the same manner, for auxiliary solution 2b, found using Table 1.1, eq. (1.50) reduces

to

M (1,2b) =
2

E
K

(1)
II ; (1.53)

so that,

K
(1)
II =

E

2

∫
A

[(
σ
(1)
ij

∂u
(2b)
i

∂x1
+ σ

(2b)
ij

∂u
(1)
i

∂x1

)
−W (1,2b)δ1j

]
∂q1
∂xj

dA . (1.54)

For an interface crack between two isotropic materials, several modifications may be

made. The upper and lower materials are denoted by k = 1, 2, respectively, and the

integration area A is divided into two sub-areas Ak, as shown in Fig. 1.6. As a result, the

two-dimensional M -integral from eq. (1.42) takes the form

M (1,2α) =

∫
Ak

[(
kσ

(1)
ij

∂ ku
(2α)
i

∂x1
+ kσ

(2α)
ij

∂ ku
(1)
i

∂x1

)
− kW

(1,2α)δ1j

]
∂q1
∂xj

dA . (1.55)

Moreover, instead of KI and KII for modes one and two, respectively, the in-plane stress

intensity factors are coupled and referred to as K1 and K2, as shown in eq. (1.22). As a

result, eq. (1.50) takes the form

M (1,2α) =
2

H

{
K

(1)
1 K

(2α)
1 +K

(1)
2 K

(2α)
2

}
, (1.56)

where H is defined in eq. (1.29). Moreover, the first term of the asymptotic solution

for an interface crack is different than that of a crack in a homogeneous body, and is

given in eq. (1.24) for the displacement field. In the same manner used for a crack in a

homogeneous material, the auxiliary solutions make use of the first term of the asymptotic

expansion. Two specific stress intensity factor pairs are used. These pairs are presented

in Table 1.2 where 2a and 2b represent the two cases considered, respectively.

15



Table 1.2: Stress intensity factors for the two-dimensional auxiliary solutions for an inter-
face crack problem.

solution K1 K2

2a 1 0

2b 0 1

A three-dimensionalM -integral for a straight through crack in a homogeneous material

was extended from the three-dimensional J-integral (Li et al., 1985). A review of this

method for two- and three-dimensional mixed mode problems for isotropic and anisotropic

materials was given in Banks-Sills (2010). In that paper, the three-dimensionalM -integral

used for a crack in a homogeneous isotropic material was given by

M
(1,2α)
N =

1

A1

∫
V

{
σ
(1)
ij

∂u
(2α)
i

∂x1
+ σ

(2α)
ij

∂u
(1)
i

∂x1
−W (1,2α)δ1j

}
∂q1
∂xj

dV , (1.57)

where i, j = 1, 2, 3 and

A1 =

∫ LN

0

ℓ
(N)
1 (x3)dx3 . (1.58)

In eq. (1.57), M
(1,2α)
N is the average value of M (1,2α) along the crack front for element

N . The parameter ℓ
(N)
1 (x3) in eq. (1.58), is the normalized virtual crack extension of

element N in the x1-direction. This extension is assumed to be parabolic as shown in

Fig. 1.7 for element N . Local coordinates are considered for each element N used in the

calculation. The integration on the right hand side of eq. (1.57) takes place in volume V

of finite elements which is one element thick through the specimen thickness. The cross-

section of the volumes in which integration takes place is shown in Fig. 1.8. It may be

noted that the elements adjacent to the crack front generally produce inaccurate results.

In eq. (1.57), the displacement components u
(1)
i and stress components σ

(1)
ij are obtained

crack 

front

crack 

plane

Figure 1.7: Virtual crack extension along the crack front, denoted in the finite element
mesh.
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Figure 1.8: Cross-section of integration domains which are one element thick.

from the FE solution of the problem at hand. The auxiliary solution components u
(2α)
i are

obtained from the first term of the asymptotic solution. The auxiliary stress and strain

components σ
(2α)
ij and ϵ

(2α)
ij , respectively, are determined by means of a finite element

formulation through the derivatives of the shape functions. The auxiliary solutions are

calculated using specific values for the stress intensity factors, given in Table 1.3. The

mutual strain energy density W (1,2α) is defined in eq. (1.43). The parameter q1 is defined

as

q1 =
20∑
m=1

Nm (ξ, η, ζ) q1m , (1.59)

where Nm (ξ, η, ζ) are the shape functions of a twenty noded, isoparametric element and

q1m is a component of the vector which determines the virtual displacement at the element

nodal points.

On the other hand, the value of M
(1,2α)
N is related to the stress intensity factors as

M
(1,2α)
N =

2

E

{
K

(1)
IN
K

(2α)
IN

+K
(1)
IIN

K
(2α)
IIN

}
+

1

µ
K

(1)
IIIN

K
(2α)
IIIN

, (1.60)

where the parameter E is defined in eq. (1.16) and µ is the shear modulus. For a three-

dimensional homogeneous material with the use of the auxiliary solution for each case

Table 1.3: Stress intensity factors for the three-dimensional auxiliary solutions.

solution KI KII KIII

2a 1 0 0

2b 0 1 0

2c 0 0 1 .
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Table 1.4: Stress intensity factors for the three-dimensional auxiliary solutions.

solution K1 K2 KIII

2a 1 0 0

2b 0 1 0

2c 0 0 1 .

(2a, 2b and 2c) in eqs. (1.57) and (1.60) with the aid of Table 1.3, it may be shown that

K
(1)
IN

=
E

2A1

∫
V

{
σ
(1)
ij

∂u
(2a)
i

∂x1
+ σ

(2a)
ij

∂u
(1)
i

∂x1
−W (1,2a)δ1j

}
∂q1
∂xj

dV , (1.61)

K
(1)
IIN

=
E

2A1

∫
V

{
σ
(1)
ij

∂u
(2b)
i

∂x1
+ σ

(2b)
ij

∂u
(1)
i

∂x1
−W (1,2b)δ1j

}
∂q1
∂xj

dV , (1.62)

K
(1)
IIIN

=
µ

A1

∫
V

{
σ
(1)
ij

∂u
(2c)
i

∂x1
+ σ

(2c)
ij

∂u
(1)
i

∂x1
−W (1,2c)δ1j

}
∂q1
∂xj

dV . (1.63)

The calculated stress intensity factors are an average value along the segment LN , shown

in Fig. 1.7.

For a three-dimensional interface crack, several modifications are required. First, the

in-plane stress intensity factors are coupled. Nonetheless, eq. (1.60) becomes

M
(1,2α)
N =

2

H

{
K

(1)
1N
K

(2α)
1N

+K
(1)
2N
K

(2α)
2N

}
+

2

µ
K

(1)
IIIN

K
(2α)
IIIN

(1.64)

where H and µ are defined for an interface between two isotropic materials in eqs. (1.29)

and (1.30), respectively. Moreover, for an interface crack, the first two terms of the

asymptotic solution of the displacement field are given in eqs. (1.24) and (1.25). In the

same manner used for a crack in a homogenous material, the auxiliary solutions are

obtained from these terms for three specific cases presented in Table 1.4. In addition, the

integral in eq. (1.57) is replaced with

M
(1,2α)
N =

1

A1

2∑
k=1

∫
Vk

{
kσ

(1)
ij

∂ ku
(2α)
i

∂x1
+ kσ

(2α)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2α)δ1j

}
∂q1
∂xj

dV , (1.65)

where i, j = 1, 2, 3 and k = 1, 2 represents the upper and lower materials, respectively.

The volume Vk consists of a slice of elements orthogonal to the delamination front. A

cross-section of the domains of integration are illustrated in Fig. 1.8. Using eqs. (1.64)

and (1.65), it is possible to determine the mechanical stress intensity factors K
(1)
1 , K

(1)
2

and K
(1)
III as

K
(1)
1 =

H

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2a)
i

∂x1
+ kσ

(2a)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2a)δ1j

]
∂q1
∂xj

dV ; (1.66)
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K
(1)
2 =

H

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2b)
i

∂x1
+ kσ

(2b)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2b)δ1j

]
∂q1
∂xj

dV ; (1.67)

K
(1)
III =

µ

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2c)
i

∂x1
+ kσ

(2c)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2c)δ1j

]
∂q1
∂xj

dV (1.68)

where the superscript (1) denotes the numerical solution for the problem which is being

solved. In eqs. (1.66) through (1.68), the parameters H and µ are defined for an interface

between two isotropic materials in eqs. (1.29) and (1.30), respectively.

1.2.2.2 Thermal M-integral

The conservative thermal J-integral for homogeneous isotropic materials (Wilson and Yu,

1979) was extended for interface crack problems by Banks-Sills and Dolev (2004). In that

paper, the M -integral for two-dimensional thermal-elastic bimaterial problems was also

derived. A three-dimensional thermal J-integral was first presented for a homogeneous

isotropic material by Shih et al. (1986) and extended for dissimilar anisotropic materials

by Banks-Sills et al. (2006). In the latter paper, the three-dimensional thermalM -integral

for dissimilar anisotropic materials was also derived.

With the thermalM -integral, the thermal stress intensity factors, resulting from resid-

ual curing stresses, may be calculated. The two-dimensional M -integral for a crack along

an interface between two isotropic materials may be written as (Banks-Sills and Dolev,

2004)

M (1,2α) =
2∑

k=1

∫
Ak

(
kσ

(1)
ij

∂ku
(2α)
i

∂x1
+ kσ

(2α)
ij

∂ku
(1)
i

∂x1
− kW

(1,2α)
F δ1j

)
∂q1
∂xj

dA +

2∑
k=1

kβij

∫
Ak

kε
m(2α)
ij

∂k∆ϑ
(1)

∂x1
q1dA+

2∑
k=1

kβij

∫
A0k

kε
m(2α)
ij

∂k∆ϑ
(1)

∂x1
q1dA

(1.69)

where k = 1, 2 denotes the upper and lower materials, respectively. In the case of a crack

along an interface between two isotropic materials, kβij is defined as

kβij = kβδij (1.70)

where kβ is given for plane strain as

kβ =
Ekαk
1− 2νk

. (1.71)

In eq. (1.71), Ek, νk and αk are the Young’s moduli, Poisson’s ratios, and coefficients of

thermal expansion (CTE) of the upper and lower materials, respectively. In eq. (1.69),

the integration area Ak is the area between the two rings surrounding the delamination

tip as shown in Fig. 1.9. This area is the same as that for the mechanical integral. The
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Figure 1.9: Integration areas Ak and A0k (k = 1, 2) for a crack along an interface between
two materials.

integration area A0k is the area between the inner ring and the delamination tip (see

Fig. 1.9). The parameter kW
(1,2)
F is the interaction strain energy density, given by

kW
(1,2α)
F = kσ

(1)
ij kε

m(2α)
ij = kσ

(2α)
ij kε

T (1)
ij − kβij k∆ϑ

(1)
kε
m(2α)
ij . (1.72)

In eq. (1.72), the superscript m represents the mechanical strains. The total strains

resulting from both thermal and mechanical loads are represented using the superscript

T . For an interface between two isotropic materials the stress-strain relation may be

written as

kσij = 2µk kεij + λk kεssδij − kβ k∆ϑδij (1.73)

where µk and λk (k = 1, 2) are Lamé constants and the parameter k∆ϑ is the temperature

change in material k. The temperature change for the auxiliary solution k∆ϑ
(2α) is taken

to be zero. Hence, the total temperature change k∆ϑ in each material k is equal to the

temperature change in the problem which is being solved, namely k∆ϑ
(1).

If the temperature change considered is constant everywhere, then eq. (1.69) becomes

M (1,2α) =
2∑

k=1

∫
Ak

(
kσ

(1)
ij

∂ ku
(2α)
i

∂x1
+ kσ

(2α)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2α)
F δ1j

)
∂q1
∂xj

dA . (1.74)

This integral is identical to theM -integral for applied loads, given in eq. (1.42), except for

the interaction strain energy density kWF given in eq. (1.72), as well as, the constitutive

equation presented in eq. (1.73), both used in the thermal case.

The superscript 2α, (α = a, b) denotes the auxiliary solution. This solution is calcu-

lated from the first term of the asymptotic solution for the cases presented in Table 1.2.

The desired thermal stress intensity factors K
(r)
1 and K

(r)
2 may be obtained by equating

eq. (1.56) with eq. (1.74) as

K
(r)
1 =

H

2

2∑
k=1

∫
Ak

(
kσ

(1)
ij

∂ ku
(2a)
i

∂x1
+ kσ

(2a)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2a)
F δ1j

)
∂q1
∂xj

dA ; (1.75)

K
(r)
2 =

H

2

2∑
k=1

∫
Ak

(
kσ

(1)
ij

∂ ku
(2b)
i

∂x1
+ kσ

(2b)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2b)
F δ1j

)
∂q1
∂xj

dA . (1.76)
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In eq. (1.75) and (1.76), the superscript (r) indicates the residual stresses of the sought

after solution.

In three dimensions, the thermal M -integral becomes

M
(1,2α)
N =

1

A1

2∑
k=1

∫
Vk

{[
kσ

(1)
ij

∂ ku
(2α)
i

∂x1
+ kσ

(2α)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2α)
F δ1j

]
∂q1
∂xj

+

kβij kε
m(2)
ij

∂ k∆ϑ
(1)

∂x1
q1

}
dV (1.77)

where A1 is given in eq. (1.58). If the temperature change considered is constant every-

where, then eq. (1.77) becomes

M
(1,2α)
N =

1

A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2α)
i

∂x1
+ kσ

(2α)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2α)
F δ1j

]
∂q1
∂xj

. (1.78)

On the other hand, the thermal three-dimensional M -integral may also be defined using

stress intensity factors as shown in eq. (1.64). By equating eq. (1.78) with eq. (1.64), the

thermal stress intensity factors in the three-dimensional case of a delamination along an

interface between two isotropic materials may be found as

K
(r)
1 =

H

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂k u
(2a)
i

∂x1
+ kσ

(2a)
ij

∂k u
(1)
i

∂x1
− kW

(1,2a)
F δ1j

]
∂q1
∂xj

; (1.79)

K
(r)
2 =

H

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂k u
(2b)
i

∂x1
+ kσ

(2b)
ij

∂k u
(1)
i

∂x1
− kW

(1,2b)
F δ1j

]
∂q1
∂xj

; (1.80)

K
(r)
III =

µ

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂k u
(2c)
i

∂x1
+ kσ

(2c)
ij

∂k u
(1)
i

∂x1
− kW

(1,2c)
F δ1j

]
∂q1
∂xj

(1.81)

where H and µ are defined for an interface between two isotropic materials in eqs. (1.29)

and (1.30), respectively.

The obtained mechanical and thermal stress intensity factors given in eqs. (1.66)

through (1.68) and in eqs. (3.28) through (3.30), respectively, are superposed to obtain

the total stress intensity factors, namely

KT
1 = K

(f)
1 +K

(r)
1 ; (1.82)

KT
2 = K

(f)
2 +K

(r)
2 ; (1.83)

KT
III = K

(f)
III +K

(r)
III . (1.84)

The superscript f represents the solution for the applied force. Using the total stress

intensity factors, the interface energy release rate and phase angles given in eqs. (1.31),

(1.27) and (1.28), respectively, may be calculated.
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1.3 Fracture toughness testing methods of laminate

composites

Fiber reinforced polymer composites have emerged as important structural engineering

materials because of their high stiffness to weight ratio or high strength to weight ra-

tio. However, it has been observed that composites have poor resistance to delamination.

Premature delamination may arise from various internal defects formed during manufac-

turing or as a result of in-service loading such as fatigue or impact events. These defects

may result in delamination initiation and propagation. The delamination may reduce

the strength and stiffness of the composite significantly. Fracture toughness characteriza-

tion of composites is necessary in order to determine load-bearing capacity of a structure,

which is important for design considerations.

A number of different test specimens have been developed for pure mode I, pure mode

II and mixed mode I/II testing. All standards known today are limited to unidirectional

(UD) composite, but have been used for multi-directional (MD) and woven fabric com-

posite testing, as well.

In Section 1.3.1, the structure and differences between UD, MD and woven fabric

composites will be discussed. The different fracture test methods used for pure mode I

and pure mode II will be presented in Section 1.3.2. Mixed mode tests may be carried out

on different specimen types. In Section 1.3.3, some of the most commonly used specimens

for mixed mode testing will be discussed. Each specimen group will be presented in a

different sub-section. Beam specimens will be mentioned in Section 1.3.3.1 where the

MMB and MMELS specimens will be considered. The Arcan specimen will be discussed

in Section 1.3.3.2. Finally, in Section 1.3.3.3, the BD specimen will be presented.

1.3.1 Material types: UD, MD and woven fabric composites

Different test methods exist for measurement of interlaminar fracture toughness of UD,

MD and woven composites. In a UD laminate, all fibers are oriented in the same direc-

tion resulting in high strength and stiffness in that direction and relatively low strength

and stiffness in the transverse direction. The majority of fracture toughness composite

research has focused on UD laminates. Two ASTM standards (ASTM D5528-13, 2014;

ASTM D6671M-13, 2014; ASTM D7905/D7905M-14,2014) , two ISO standards (ISO

15024:2001(E), 2011; ISO 15114:2014(E), 2014) and additional test methods (which have

not yet been standardized) may be found in the literature for determination of interlam-

inar fracture toughness for mode I, mode II and mixed mode I/II conditions. All five

existing standards are limited to UD composites, but have been used for UD, MD and

woven fabric composites.
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Figure 1.10: Several two-dimensional woven fabric structures (http://33.media.
tumblr. com/tumblr mch438Tl8m1qb86xo.gif, April, 2015).

In an MD laminate, the fibers in each lamina are in an optimized direction. Delami-

nation growth occurs between plies and in both UD and MD composites, the propagation

direction may not coincide with a fiber direction. Woven fabric composites are known to

have higher impact resistance, fatigue resistance, fracture toughness and damage tolerance

than UD laminates (Naik, 2003). These are commonly used for manufacturing compos-

ite structures. It has been shown in the literature that for woven fabrics the difference

between initiation and propagation energy release rate is larger than in UD laminates.

Moreover, the delamination is expected to be more tortuous, with a longer, less stable

crack path (Feret et al., 2013).

Woven materials are fabricated on a loom from an interlacing yarn by means of an

effective machine process with large areas of material fabricated at low cost (Dexter, 1998).

The yarn is composed of bundled or twisted fibers and resin and considered transversely

isotropic. The textile may be in the form of one of many patterns including plain, satin

or twill weaves as shown in Fig. 1.10. A woven fabric is made from interlacing a yarn over

and under an orthogonal yarn in a regular pattern, forming warp and weft. Warp indicates

the longitudinal direction and weft indicates the transverse direction. Such a woven fabric

may either have balanced or unbalanced properties. In a balanced fabric, both warp and

weft directions contain the same fiber volume fraction. In an unbalanced woven fabric,

the number of fibers per area, used for the warp and weft directions, is unequal. In the

current investigation, one of the materials used is a balanced plain weave with tows in

the warp oriented in the +45◦-direction and those in the weft in the −45◦-direction. This

plain weave is referred to in this thesis as +45◦/− 45◦.

The interlaced yarn of the woven fabric causes complicated fracture mechanisms. Frac-

ture toughness values of woven composites may be influenced by many parameters such as

deformation type, weave pattern, fabric geometry, manufacturing process, volume fraction
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Figure 1.11: Double cantilever beam DCB specimen with piano hinges (ASTM D5528-13,
2014).

of the fibers in the yarn, volume fraction of the fibers in the fabric and the delamination

propagation direction. These aspects have been of great interest to industry and research.

Fracture toughness values for mode I, mode II and mixed mode may be obtained from

tests. Currently, there are no standardized tests available for woven composites. How-

ever, modifications of the test methods known for UD composites have been used in the

literature to investigate the behavior of these materials.

1.3.2 Modes I and II fracture toughness testing

Two standards are known today for fracture toughness delamination testing under mode

I conditions, namely, the ASTM D 5528-13 (2014) and ISO 15024:2001 (2011) standards.

Both make use of the double cantilever beam (DCB) specimen shown in Fig. 1.11. Use

of the DCB specimen under displacement control, results in stable crack growth in starts

and arrests as the displacement increases. Both standards are appropriate for determining

the mode I fracture toughness GIc of CFRP and GFRP thermosets and thermoplastics.

However, they are both limited to UD fiber reinforced composites. Regardless of these

limitations, both methods have been used in numerous studies for UD composites (Kusaka

et al., 1998; Tamuzs et al., 2001; Pereira and de Morais, 2004; Szekrényes and Uj, 2004) ,

MD composites (Choi et al., 1999; De Morais et al., 2003; Gong et al., 2010; Chocron and

Banks-Sills, 2019) and woven fabric composites (Naik et al., 2002; Pereira et al., 2004;

Banks-Sills et al., 2013; Simon et al., 2017).

For determining interlaminar mode II fracture toughness GIIc, many test specimens

have been proposed in the literature. Two standardized specimens and two which have

not been standardized will be considered here. The two standard mode II test methods

are the ASTM D7905/D7905M-14 (2014) using an End Notched Flexure (ENF) specimen

shown in Fig. 1.12a and the ISO 15114:2014(E) (2014) standard using a calibrated-end
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Figure 1.12: Mode II test specimens. (a) ENF (b) SENF and (c) 4ENF (Blackman et al.,
2006).

loaded split (C-ELS) specimen shown in Fig. 1.13a. Two additional specimens discussed

in this section are the stabilized ENF (SENF) specimen and the four point bending ENF

(4ENF) specimen shown in Figs. 1.12b and 1.12c, respectively; both are variations of the

ENF specimen.

The ENF specimen (Fig. 1.12a) has the same geometry as the DCB specimen. It is

mentioned in the standard that tests may be carried out using the same specimen for

both non-precracked and precracked toughness testing or by means of different specimens

for only non-precracked toughness testing and for only precracked toughness testing. In

the former case, the recommended specimen length is ai + l ≥ 160 mm, where ai +

l is the total specimen length and ai indicates the total insert length. In the latter

case (different specimens for the precracked and non-precracked tests), the recommended

specimen length is ai + l ≥ 130 mm. In both cases, the total insert length ai shall be

approximately 50 mm and greater than 45 mm so that a0 = 30 mm, measured from the

left loading roller to the insert tip. The recommended specimen width is 19 mm ≤ b ≤
26mm; this should be measured at the three points of contact with the loading rollers and

(a) (b)

Figure 1.13: (a) Mode II calibrated-end loaded split (C-ELS) specimen (ISO standard
15114:2014(E), 2014) and (b) mixed mode end loaded split (MMELS) specimen.
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the variations of these measurements shall not exceed 0.5 mm. Specimen recommended

thickness is approximately 3.4mm ≤ 2h ≤ 4.7mm and shall be measured six times, twice at

each location the width is measured; the variations in specimen thickness shall not exceed

5% of the mean value. The three point bend loading device is utilized for this test. Use of

the ENF specimen under displacement control results in non-stable delamination growth

(ASTM D7905/D7905M-14, 2014). Many investigations related to specimen design and

test analysis methods were carried out to improve the proposed ENF test design and

procedure (Carlsson et al., 1986a; Davidson et al., 1995). Mode II fracture toughness

tests using this method have been carried out on UD composites (Carlsson et al., 1986b;

Aksoy and Carlsson, 1992; Davidson et al., 1995) and MD composites (Davidson et al.,

1995; Ozdil et al., 1998; Pereira et al., 2004).

The SENF test (Fig. 1.12b) includes a feedback control procedure based on the de-

lamination shear displacement. A Round Robin organized by the Versailles Project on

Advanced Materials and Standards (VAMAS) concluded that this test procedure was too

complex for an international standard.

The 4ENF test (Fig. 1.12c) is a modified version of the ENF specimen using four point

flexure rather than three point. This procedure appears to resolve some problems found

in the ENF test and offered three significant advantages: stable delamination propaga-

tion, a simple test fixture and a straightforward data analysis (Davies et al., 1998). Two

main disadvantages of this test procedure are higher friction between delamination faces

than was obtained in the ENF test and difficulties in measuring the delamination length

(Blackman et al., 2006). Results from different 4ENF tests carried out at different labo-

ratories were consistent and stable delamination propagation was achieved. From these

tests significantly higher GIIc values compared with results from ENF tests were obtained.

These differences were examined in more detail by considering the influence of the loading

roller diameter, specimen geometry and fixture compliance. The tested parameters were

found to have minor effect (less than 5%) and a sufficient explanation for the measured

differences was not provided from the investigation of these considered parameters (Davies

et al., 1998).

The ELS and C-ELS specimens (Fig. 1.13a) are the same. The C-ELS procedure,

presented in the ISO standard 15114:2014(E) (2014), uses the ELS test apparatus and

specifies an experimental procedure to calibrate the clamping fixture and simultaneously

determine the flexural modulus of the specimen. The ELS and C-ELS tests were used

previously and improved before the latter was standardized (Wang and Williams, 1992;

Blackman et al., 2006).

The C-ELS specimen is similar to the DCB specimen with a recommended total length

l = 190 mm or l ≥ a0 + 110 mm, where a0 is the starter delamination length, measured

from the load-line as shown in Fig. 1.13a. The starter delamination length should sat-

isfy the requirement that a0 ≥ 50 mm. This artificial delamination is then extended at
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least 2 mm and no more than 5 mm in a mode I or mode II procedure, prior to testing.

Delamination growth is unstable in mode II; hence, using this procedure for inducing a

natural delamination is more complex and a detailed recommended procedure is specified

in the standard. The recommended specimen width is b = 20 mm and may vary between

15 mm and 30 mm. Three width measurements shall be made and recorded at evenly

spaced points along the specimen length. Specimen thickness is measured three times

along the center line of the specimen and the maximum difference between measurements

is prescribed to be lower than 0.1 mm where the required thickness shall be 2h ≈ 3 mm

for a 0.6 fiber volume fraction of a CFRP specimen and 2h ≈ 5 mm for a 0.6 fiber volume

fraction of GFRP specimen. Note that the specimens are prescribed to be UD. The test

is carried out in displacement control and the load is transferred to the specimen through

a load block which is loaded vertically and includes a pin to allow rotation of the bottom

end of the specimen at the delamination end. A clamping arrangement creates free hor-

izontal sliding of the specimen in the bearings but restricts vertical motion and rotation

(see Fig. 1.13a). It is noted in the standard that an energy analysis predicted that the test

is stable for approximately 0.75 > ap/Lf > 0.55, where ap is the natural delamination

length between the load-line and the tip of the natural delamination. Hence, stability

may be improved by using larger values of ap/Lf , but this will result in delamination

propagation length reduction.

1.3.3 Mixed mode fracture toughness testing

Only one standard exists for mixed mode fracture tests of UD fiber reinforced laminate

composites (ASTM D6671M-13, 2014). This standard utilizes the MMB specimen. Its

main advantage is that various mode mixities may be achieved. Many other beam type

specimens have been suggested for this type of testing, among them is the MMELS speci-

men. A test protocol based on Round Robins has been proposed for the MMELS specimen.

All beam type specimens suitable for mixed mode testing which have not been standard-

ized, including the MMELS, have a small number of mixed mode ratios which limits their

usefulness. The MMB and MMELS will be discussed in Section 1.3.3.1. Other beam type

specimens presented in the literature will be mentioned in that section, as well.

Other test methods and specimen configurations (not beam types) have been developed

to achieve a wide range of mode mixities. Among these test methods, two will be described

here: the Arcan specimen and the BD specimen. Both specimens enable a wide mode

mixity range using one specimen and test setup. The Arcan specimen will be presented

in Section 1.3.3.2 and the BD specimen will be discussed in Section 1.3.3.3.
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(a)

(b)

L

dc

Figure 1.14: MMB test setup: (a) MMB specimen (b) MMB aparatus (ASTM D6671M-13,
2014)

1.3.3.1 Beam specimens: MMB and MMELS

The ASTM D6671M-13 (2014) standard, based on an MMB specimen and apparatus,

is the only standardized test method for determining fracture toughness of CFRP and

GFRP UD composites under mixed mode conditions. The main advantage of this test

method is that it enables a wide range of mixed mode ratios using a single apparatus. The

MMELS specimen, also known as the asymmetric double cantilever beam (ADCB) or the

fixed ratio mixed mode (FRMM) test (Hashemi et al., 1990; Xiao et al., 1993; Choi et al.,

1999; Blackman et al., 2001; Szekrényes and Uj, 2004) was utilized by ESIS and was part

of a few Round Robin activities. Although this specimen may be used to obtain only a

single mixed mode ratio, it utilizes the DCB specimen and the same apparatus used for

the pure mode II ELS test. This may be useful for performing parallel DCB, ELS tests

for pure modes I and II, and MMELS tests for a specific mixed mode ratio.

Many other beam type specimens have also been proposed and used for mixed mode

delamination fracture toughness determination. Among these specimens are the single

leg bending (SLB) (Davidson and Sundararaman, 1996, Szekrényes and Uj, 2004) and the

single leg four point bend (SLFPB) test (Tracy et al., 2003), the crack lap shear (CLS)

test (Ramkumar and Whitcomb, 1985, Lai et al., 1996), and the mixed mode flexure

(MMF) test (Yoon and Hong, 1990a).

The MMB test specimen was first introduced by Reeder and Crews (1990) and af-

ter some modifications to reduce non-linearities, the method was standardized (ASTM

D6671M-13 (2014)). The test specimen and apparatus are presented in Fig. 1.14a and
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1.14b, respectively. In Fig. 1.14a, a is the delamination length measured from the load-

line, b is the width of the specimen, L is the span length from the load-line and 2h is the

thickness of the specimen. The test shall be conducted under displacement control with

a constant displacement rate in the range of 0.5 mm/min and 5 mm/min. The load is

applied through piano hinges or alternative tabs shown in Fig. 1.14a. In Fig. 1.14b, P

is the applied load, c is the lever length of the MMB test apparatus, cg and Pg are the

length to center of gravity and the weight of the lever and attached loading apparatus,

respectively. The overall specimen length is not critical, but should be about 137 mm; the

width b is recommended to be between 20 mm and 25 mm and the thickness 2h is between

3 mm and 5 mm. The tested specimen contains an initial artificial delamination specified

to be of length 2a, approximately 50 mm long which is about 25 mm from the loading

tabs. The initial delamination is obtained by inserting a non-adhesive insert during the

layup stage of specimen manufacture.

The MMB test produces various mode mixities by varying the length of the lever

arm c in Fig. 1.14b. The lever arm length c for a specific mode mixity in the range

0.15 ≤ GII/GT ≤ 0.95 is obtained from an iterative solution using the energy release rates

GI and GII and may be calculated as

c =
[
0.167 + 0.000137ã2 − 0.108

√
ln(ã) (GII/GT )4

+
−1400 + 0.725ã2 − 141 ln(ã)− 302 ln (GII/GT )

219− 5000 (GII/GT ) + 55 ln(ã)

]
L

(1.85)

where GT is the total energy release rate given in eq. (1.14). and ã is defined as

ã =
a

hχ
. (1.86)

The parameter χ is the delamination length correction parameter and is defined as

χ ≡

√√√√E11

G13

[
3− 2

(
Γ

1 + Γ

)2
]
. (1.87)

In eq. (1.87), E11 is the longitudinal modulus of elasticity measured in tension, G13 is the

out-of-plane or axial shear modulus which may be assumed equal to the in-plane shear

modulus G12 and Γ is the transverse modulus correction parameter given as

Γ ≡ 1.18

√
E11E22

G13

, (1.88)

where E22 is the transverse modulus of elasticity.

A specific mode mixity determines the ratio between the mode I energy release rate GI
and the mode II energy release rate GII . Linear elastic behavior is assumed in calculating

the total mixed mode fracture toughness Gc. This assumption is only valid when the
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damage and non-linear deformation zones in front of the delamination are small compared

to the specimen thickness. Three fracture toughness values may be obtained by this

method. The first is for delamination initiation from an artificial delamination; the second

is for delamination propagation. A third toughness value may be obtained by precracking

the specimen which is not recommended. This value should be lower than the value of

the fracture toughness measured with the artificial delamination. Depending on the mode

mixity tested, the delamination will grow from the insert in either a stable or unstable

manner where toughness values are attainable only when stable propagation takes place

(ASTM D6671M-13, 2014).

The displacement is measured from the cross-head separation of the load frame or

from an external gage attached to the MMB apparatus. If the load point displacement is

measured from the cross-head separation, a load system compliance correction must be

made to include the load frame and the MMB apparatus. Compliance calibration of the

MMB testing system must be determined for each lever length c. The system compliance

is determined using a calibration specimen which is a rectangular homogeneous bar at

least as stiff as steel, with a known Young’s modulus. The calibration specimen is loaded

in the MMB apparatus and the slope of the load-displacement curve mcal is measured.

The compliance of the calibration specimen may be calculated by

Ccal =
2L (c+ L)2

Ecalb3cal
, (1.89)

where Ecal and bcal are the Young’s modulus and the width of the calibration bar, respec-

tively. The compliance of the MMB loading system is then given as

Csys =
1

mcal

− Ccal . (1.90)

If the load point displacement is measured using an external gage or transducer, calibra-

tion correction is not necessary and Csys = 0. Various equations are presented in the

standard for different parameters, among them are the flexural modulus E1f , the fracture

toughness Gc and mode mixity GII/GT . The flexural modulus is given as

E1f =
8 (a0 + χh)3 (3c+ L)2 +

[
6 (a0 + 0.42χh)3 + 4L3

]
(3c+ L)2

16L2bh3
(

1

m
− Csys

) , (1.91)

where a0 is the initial delamination length, c is the lever length of the MMB test apparatus

given in eq. (1.85), m is the slope of the load-displacement record of a tested specimen.

The energy release rate for mode I may be calculated as

GI =
12P 2 (3c− L)2

16b2h3L2E1f

(a+ χh)2 , (1.92)

where P is the critical load and a is the delamination length. The energy release rate for

mode II may be calculated as

GII =
9P 2 (c+ L)2

16b2h3L2E1f

(a+ 0.42χh)2 . (1.93)
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The total mixed mode energy release rate GT is a superposition of the two modes as shown

in eq. (1.14). The energy release rate expressions presented in eqs. (1.92) and (1.93) were

developed based on classical beam theory (Williams, 1988) with delamination length cor-

rections of χh (Williams, 1989; Wang and Williams, 1992; Kinloch et al., 1993). The cor-

rected equations were compared with FE results and good agreement was found (Bhashyan

and Davidson, 1997). For critical conditions which will cause delamination growth, the

total energy release rate in eq. (1.14) is equal to the fracture toughness value GTc for a

specific ratio GII/GTc. In some cases, the lever weight may cause significant loading of

the MMB specimen and affect the measured toughness value. Corrections for such cases

are available in the standard.

Interlaminar fracture tests under mixed mode loading conditions using the MMB spec-

imen have been conducted for UD composites (Benzeggagh and Kenane, 1996; Pereira

and de Morais, 2008), MD composites (Ozdil and Carlsson, 1999; Dharmawan et al.,

2006; de Morais and Pereira, 2007; Pereira and de Morais, 2008) and woven fabrics

(Gill et al., 2009; Feret et al., 2013). The study performed by Pereira and de Morais

(2008) and the study performed by Feret et al. (2013) will be described here. In the

study of Pereira and de Morais (2008), carbon fibers (T300) within a toughened epoxy

manufactured from a prepreg (reference HS 160 REM) formed into laminates were in-

vestigated. DCB, ENF and MMB tests were conducted on unidirectional (034//034)

and multi-directional laminates with the following layups: [(02/90)6/02//(02/90)6/02],

[(02/90)6/02//45/(02/90)6/02],[(02/90)6/02//90/(02/90)6/02], [010// ± 45/010/ ± 45/010]

and [010//90/012/90/010]. Note that two slashes indicate the position of the delamina-

tion. The tested specimens were obtained from laminate plates manufactured by hot

plate pressing and cut with a water jet. All specimens had width b = 20 mm. The total

specimen length l for the DCB specimen or the span length L between the load-lines for

the ENF and MMB specimens, shown in Figs. 1.11, 1.14 and 1.12a, respectively, were

l, L = 160 mm for UD specimens and l, L = 200 mm for MD specimens. In addition, the

delamination length a = 55 mm and a = 70 mm were used for UD and MD specimens,

respectively. Note that a0 in Fig. 1.11 equals a. A delamination was formed using a 13 µm

thick polytetrafluoroethylene (PTFE) film. A minimum of five specimens was tested for

each method, mode mixity and layup. All tests were carried out in displacement control

under a 2 mm/min loading rate which is in the loading rate range recommended in the

ASTM DCB, ENF and MMB standards (ASTM D5528-13,2014; ASTM D7905/D7905M-

14, 2014; and ASTM D6671M-13, 2014, respectively).

A beam model was developed for predicting the compliance and total energy release

rate GT for the MMB test. It consisted of superposition of both compliances and energy

release rates calculated from the DCB and the ENF models and presented in Pereira and

de Morais (2008). It could not be shown that these expressions coincided with those in the

ASTM 6671M-13 standard (2014). The compliance of the beam model was compared with

experimental data from the DCB, ENF and MMB tests. The comparison showed that
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the beam model produced results with a 5% maximum difference from the experimental

results.

DCB and ENF tests were carried out in previous studies (Pereira and de Morais,

2004; Pereira et al., 2004, respectively) and conducted again in Pereira and de Morais

(2008) for various reasons such as verification of the GIc and GIIc results. In the previous

studies, specimens with a fiber volume fraction of Vf = 58% were tested in displacement

control, under a displacement rate of 1 mm/min; whereas, in Pereira and de Morais

(2008), the specimens tested had a fiber volume fraction of Vf = 62% and a loading rate

of 2 mm/min was used. The results for the fracture toughness were found to be lower for

the specimens with the higher fiber volume fraction. In the study carried out by Pereira

and de Morais (2008), the GIc values found from DCB tests for UD [0◦//0◦] and MD

[0◦//45◦] and [0◦//90◦] interfaces were 242, 264 and 245 N/m, respectively. These results

are 14-20% lower than the 302, 323 and 284 N/m, respectively, found in Pereira and de

Morais (2004). For the ENF tests, the GIIc results were also lower for the higher volume

fraction specimens. In the study made by Pereira and de Morais (2008), the GIIc values

for [0◦//0◦], [0◦//45◦] and [0◦//90◦] interfaces were found to be 847, 881 and 909 N/m,

respectively; whereas, in Pereira et al. (2004), the results were found to be 1115, 1082 and

1621 N/m. The results found in 2008 are 19− 24% lower than the ones found in 2004 for

the first two interfaces. The authors suggested that a possible reason for the difference in

the results was the difference in the fiber volume fraction of the tested specimens.

In the MMB tests, the lever arm lengths c used (see Fig. 1.14) were between 40 mm and

280 mm for UD specimens and between 50 mm and 350 mm for MD specimens with a range

of GII/GT ≈ 0.12− 0.85, where GT is given in eq. (1.14). Misalignment of the loading axis

and the center of mass of the lever and attachments may result in unwanted initial loading

of the specimen. Therefore, the MMB fixture employed included a balancing weight at

the end of the lever arm to avoid any initial loading. The delamination of the mode II

dominated tests initiated in an unstable manner, as expected, with no intraply damage

observed. Mode I dominated tests showed an unexpected minor instability causing an

unclear initiation point in the load-displacement curve. Fiber bridging was observed in

all layups and caused load increase after delamination initiation in the mode I dominant

tests. Intraply damage was observed in the MD [0◦//45◦] and [0◦//90◦] layups.

An investigation of the effect of fiber volume fraction on mixed mode interlaminar

fracture toughness was made by Feret et al. (2013). The material tested was a 5 harness

satin (5HS) woven (as seen in Fig. 1.10) carbon/epoxy composite manufactured by resin

transfer moulding (RTM). Mode I, mode II and mixed mode tests with mode ratios I/II

of 3 : 1, 1 : 1, and 1 : 3 were carried out using the DCB, ENF and MMB methods,

respectively. Each loading condition was repeated six times with a total of 60 specimens

with fiber volume fractions of 57% and 66%. All specimens used in the investigation had

a width of approximately 20 mm, average thickness of 4.4 ± 0.03 mm and total length
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of 140 mm for the DCB and MMB specimens and 170 mm for the ENF specimens. The

initial delamination was created in all specimens using a 10 µm thick Teflon film placed

at the mid-plane. The length of the delamination from the load-line in the DCB and

MMB specimens was 50 mm and 30 mm, respectively. Three different initial delamina-

tion lengths of 20 mm, 30 mm and 40 mm from the load-line were used for the ENF

specimen. In all testing methods, the specimens were loaded in displacement control.

The displacement rate for the DCB and MMB tests was 0.5 mm/min during loading and

25 mm/min during unloading. These loading rates are the slowest recommended in both

the DCB and MMB standards (ASTM D5528-13, 2014; ASTM D6671M-13, 2014). The

displacement rate used for the ENF test was 0.8 mm/min during loading and 1.6 mm/min

during unloading. The recommended constant displacement rate mentioned in the ENF

ASTM D7905/D7905M-14 (2014) standard is between 0.1 mm/min and 0.8 mm/min for

loading and 0.1 mm/min and 1.6 mm/min for unloading.

Resistance to delamination R-curves were obtained for each specific mixed mode ra-

tio and fiber volume fraction. During delamination propagation in both modes I and II

dominated tests, the toughness values increased before reaching a stabilized propagation

toughness plateau. Initiation and steady state propagation fracture toughness values were

obtained from these R-curves. The steady state values were determined from the plateau

part of each R-curve. The same R-curve behavior was also observed in an investigation

made by Gill et al. (2009). In the investigation carried out by Feret et al. (2013), for all

specimens and tested modes, regardless of the mixed mode ratio, the initial fracture tough-

ness GIc, GIIc and GTc were found to be lower for the material with a higher fiber volume

fraction. These results coincide with the findings for UD composites found for the critical

energy release rates in Pereira et al. (2004) and Pereira and de Morais (2004, 2008). In

a separate investigation of the same material, made by Gill et al. (2009), different results

were found. Minimal variations in the initial fracture toughness values were obtained from

mode I tests for specimens with different fiber volume fractions and inconsistent results

were obtained from mixed mode tests with a higher mode II component.

A consistent trend for the plateau propagation toughness values was not found from

the results. The explanation for this was that the plateau propagation values were affected

by both fiber volume fraction and mode ratio. For the material with a higher fiber volume

fraction, with a high mode I component, the propagation toughness values were found to

be higher and for a high mode II component, lower than the values obtained for the lower

fiber volume fraction material. It may be noted that fewer results were obtained for the

high mode II component tests because the plateau region was not reached as a result of

increased delamination instability.

A fractographic analysis was made and three toughening mechanisms were discussed

which included non-planar fiber architecture, fiber bridging and shear hackles. The non-

planer fiber architecture caused a tortuous, longer delamination path, resulting in a higher
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energy requirement for additional fracture surfaces. An intraply toughening mechanism

called fiber bridging caused the propagating delamination to arrest. This resulted with the

need of additional energy for the delamination to grow and overcome the tensile strength

of the bridging fibers. For all mixed mode ratios, as the mode II contribution increased,

fiber bridging complexity increased and shear hackles in the resin, between weft fibers,

perpendicular to the direction of the delamination growth, were observed. The latter was

believed to be the major energy dissipating mechanism at high mode II. These toughening

mechanisms provide an explanation for the results obtained and described above for the

propagation toughness values for a higher mode I contribution versus a higher mode II

contribution. For a high mode I contribution, fiber bridging is the most dominant mech-

anism; hence, a higher fiber volume fraction results with higher propagation toughness

values. For a high mode II contribution, the shear hackle mechanism is dominant and

the resin becomes dominant. This leads to a lower propagation toughness in the case of

a higher fiber volume fraction. It was also mentioned that fiber volume fraction has a

negligible effect on the propagation toughness when these two mechanisms are balanced.

For this material, a balance was reached at an approximately 75% mode II contribution.

The main advantage of the MMB test is that it enables testing of a wide range of mixed

mode ratios by simply relocating the lever arm of the apparatus (see Fig. 1.14b). However,

the MMB test does not include pure modes I and II testing; hence, both DCB and ENF

specimens and test setups are necessary for obtaining all in-plane mode combinations.

The advantage of the MMELS specimen is that testing requires the same fixture as that

used for the C-ELS geometry (Fig. 1.13a). The only difference is that in a C-ELS test,

the load is applied to the lower specimen leg causing both legs to move together (see

Fig. 1.13a) and in the MMELS test the load is applied only to the upper leg allowing the

bottom leg to deform freely (see Fig. 1.13b).

The MMELS test protocol (Blackman et al., 2001) prescribes a test procedure for de-

termination of the fracture toughness resistance curve of UD CFRP or GFRP composites

under a fixed mixed mode I/II deformation ratio of 4/3 (for the case of a delamination

located at mid-plane). The protocol includes the recommended specimen dimensions pre-

sented in the ISO standard 15114:2014(E) (2014) for the C-ELS specimen and is summa-

rized in Section 1.3.2, here. It is noted in the protocol that the free length of the specimen

Lf (see Fig. 1.13b) is generally 100 mm but may be shorter for promoting delamination

propagation in some materials. An initial delamination is created using a starter film

insert as thin as possible with maximum thickness of 13 µm and at least 50 mm long

from the load-line, placed at mid-plane during moulding. A natural delamination may be

obtained in mode I by either a DCB rig or by a wedge opening procedure. Alternatively,

mode II deformation or a mixed mode I/II test procedure may be used to obtain the

natural delamination.

The test is conducted under displacement control at a constant rate between 1 mm/min
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for specimens in which the specimen length l = 170 mm (see Fig. 1.13b) and 5 mm/min

for longer specimens. The load and displacement signals are recorded. The delamination

length is to be measured visually using a traveling microscope in increments of 1 mm or

less in the first 5 mm of delamination propagation. After that, it should be measured

in 5 mm increments. For the last 5 mm of delamination propagation, the delamination

length should be measured in increments of 1 mm. The ideal maximum delamination

growth should be 40 mm with a minimum distance of 10 mm from the clamped end.

Once the maximum delamination length is reached, the specimen is completely unloaded

at a constant rate of 25 mm/min (or less). A minimum of five specimens should be tested

and stable delamination growth is expected. Analysis of the test results may be carried

out using two different methods, the corrected beam theory (CBT) or the experimental

compliance method (ECM).

Using CBT, the total energy release rate GT is given as the sum of the GI and the GII

components where

GI =
3P 2 (a+∆I)

2

b2E1fh3
F , (1.94)

GII =
9P 2 (a+∆II )

2

4b2E1fh3
F . (1.95)

In eqs. (1.94) and (1.95), P is the load, a is the delamination length measured from the

load-line and ∆I and ∆II are the delamination length corrections for the mode I and II

components, respectively. A detailed explanation for obtaining the delamination length

correction for mode I may be found in the ISO 15024:2001(E) (2011) standard. The

correction for mode II is determined from ∆II = 0.42∆I . The width and thickness of the

specimen are b and 2h, respectively, and E1f is the flexure modulus, parallel to the fiber

direction. The flexural modulus may be determined from an independent measurement

with a separate three-point bend test or from a clamp calibration test (Blackman et al.,

2006) and calculated as

E =
1

2b(hn)3
(1.96)

where n is the slope of a plot of the cube-root of the compliance versus free length Lf .

The compliance is calculated as

C =
d

P
(1.97)

where both the machine load P and the corresponding machine displacement d are

recorded during the test. In eqs. (1.94) and (1.95), F is a correction for large displace-

ments, given by

F =

[
1− θ1

(
d

Lf

)2

− θ2

(
dl1
L2
f

)]
(1.98)

where d is the machine displacement, l1 is the distance from the center of the load block to

the mid-plane of the specimen and Lf is the free length of the specimen (see dimensions
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in Fig. 1.13b). The factors θ1 and θ2 are calculated as

θ1 =
3

20

[
15 + 150

(
a

Lf

)2

+ 367

(
a

Lf

)4
]

[
1 + 7

(
a

Lf

)3
]2 (1.99)

θ2 = 3

(
Lf
a

)
[
1 + 7

(
a

Lf

)2
]

[
1 + 7

(
a

Lf

)3
] . (1.100)

Analysis of the test results by means of ECM is based on experimental results for the

delamination length a and the compliance C shown in eq. (1.97). The mixed mode energy

release rate GT may be calculated as

GT =
3P 2ma3

2b
F (1.101)

where the load and specimen width are defined as P and b, respectively, and m is the

slope from the plot of the compliance C versus the cubed delamination length a3. The

delamination length a is measured visually by means of a traveling microscope from the

load-line and F is the correction factor defined in eq. (1.98). The separate modes I and

II energy release rates may be found based on the fact that GI/GII = 4/3, hence

GI = 0.57GT (1.102)

GII = 0.43GT . (1.103)

Resistance curves or R-curves of GI and GII versus the delamination length are obtained.

It is noted that a minimum of 15 points shall be recorded for each specimen.

For specimens with different arm thickness

GI
GII

=
1

3

[
h1
h2

(
1 +

h1
h2

)]2
(1.104)

where h1 and h2 are the distance between the top of the specimen and the film insert

and between the film insert and the bottom of the specimen, respectively (see Fig. 1.13b).

Another problem is friction and potential micro-cracking ahead of the delamination front.

It may be noted that high mode II MMB tests suffer from the same problem but to a

greater extent. The results of the test may be analyzed using CBT which requires addi-

tional tests (DCB for obtaining the delamination correction length ∆I and a method for

obtaining the flexure modulus E1f ). If the results are analyzed using ECM, then insuf-

ficient delamination propagation or unstable delamination growth may cause inaccurate

results (Blackman et al., 2001).

36



(a) (b)

Figure 1.15: Arcan specimen: (a) loading fixture for pure shear and mixed mode inter-
laminar fracture testing and (b) specimen and holder (Arcan et al., 1987).

1.3.3.2 Arcan specimen

Although the MMELS method is simple there are some problems with the test procedure

and analysis method. The most significant problem is that only one mixed mode ratio may

be obtained. This ratio is independent of the delamination length and is nearly constant

for UD composites. The ratio may be found from the relation of the mixed mode ratio

and film location.

The Arcan specimen holder and loading fixture presented in Fig. 1.15 are one of

many configurations appearing in the literature for mode II and mixed mode testing of

laminate composites. Specimen shapes and arrangements are presented in Fig. 1.16, where

specimens shown in Figs 1.16a–1.16c are used for shear modulus testing and specimens

shown in Figs. 1.16d–1.16g are used for mode II and mixed mode fracture testing. It

Composite 

strip

Composite 

strip
CompositeComposite 

strip

(d) (e) (f) (g)

Composite CompositeComposite

(b) (c)(a)

Figure 1.16: Arcan specimen configurations: (a-c) for shear modulus determination and
(d-g) for mode II and mixed mode testing.

37



should be noted that the specimen and fixture described here are not the original one

proposed by Arcan. The Arcan specimen was originally designed to measure the shear

modulus of composite materials (Arcan et al., 1978). A modified specimen was later

proposed for mode II and mixed mode fracture testing (Banks-Sills et al., 1984). The

Arcan test was designed based on the existence of a uniform two-dimensional stress field.

This region was investigated using a homogeneous photoelastic specimen without a crack.

The stress field was obtained by means of FE and photoelastic analyses. Although a

dominant shear region in an uncracked specimen was found for the range of loading angles

between 0◦ ≤ α ≤ 20◦ (see Fig. 1.15a)(Banks-Sills et al., 1984), the Arcan specimen has

been used in many fracture toughness investigations (Yoon and Hong, 1990b; Nikbakht

and Choupani, 2008; Choupani, 2008; Nikbakht and Choupani, 2009 and Heydari et al.,

2011) for all loading angles α, with and without angular limitations.

The Arcan test specimen may be attached to the fixture in different ways. The original

design tested by Banks-Sills et al. (1984) included a butterfly shaped specimen glued to

the fixture (see Fig. 1.16a). Later, a common configuration, used in many investigations,

included a specimen holder with two or three pins at each end as shown in Figs. 1.16c, 1.16f,

and 1.16g. In each case, the composite specimen was designed differently to reduce local

stress raisers and make use of a smaller composite body. The fixture to fit this design is

presented in Fig. 1.15a. Loading is applied through a pair of holes located on opposite sides

of a diameter. The shape of the loading fixture and holder create deformation between

pure mode I and pure mode II. Various combinations of modes I and II deformation are

obtained by rotating the fixture. Each loading angle, α in Fig. 1.15a, creates a different

combination of mixed mode conditions.

Many variations of the Arcan fixture and specimen have been proposed in the literature.

Another specimen type used included a rectangular specimen and holder together with a

circular Arcan fixture (Rikards, 2000). It may be noted that this specimen does not have

the desired uniform field in an uncracked specimen. The results obtained from tests using

this specimen are less reliable than those obtained with the Arcan specimen (Banks-Sills,

2015).

Mixed mode fracture delamination tests using the Arcan specimen were made for differ-

ent interfaces. Choupani (2008) investigated the fracture toughness of adhesive/adherent

joints. Different types of composites have also been characterized using this test method,

for example, Yoon and Hong (1990b) investigated UD composites and Nikbakht and

Choupani (2008), tested MD composites. Woven fabric composites were also tested using

the Arcan specimen by Nikbakht and Choupani (2009) and Heydari et al. (2011). The in-

vestigations made by Yoon and Hong (1990b), Choupani (2008) and Heydari et al. (2011)

will be summarized here.

Interlaminar fracture behavior characteristics of a unidirectional graphite/epoxy com-

posite laminate were evaluated experimentally with the Arcan test by Yoon and Hong
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(1990b). The specimen configuration used is presented in Fig. 1.16d and was glued to the

fixture without the holder. Seven different loading angles were tested with between three

to six specimens for each loading angle. Results showed that the mode I stress intensity

factor remained almost constant for loading angles larger than 15◦ while the mode II

stress intensity factor decreased monotonically with an increase in the loading angle from

0◦ (pure mode II) to 90◦ (pure mode I). The energy release rate values obtained were

60.0 N/m for GIc and 312.0 N/m for GIIc. The fracture toughness in terms of KIc and

KIIc were not explicitly given but may be obtained from analytical expressions given in

the article. An empirical mixed mode fracture criterion in the form of(
KI

KIc

)m
+

(
KII

KIIc

)n
= 1 (1.105)

was used to model the fracture behavior under mixed mode deformation. Yoon and Hong

(1990b) found that their experimental results showed a good fit for m = 2 and n = 3.

In their investigation, it was noted that the Arcan test produced unstable delamination

growth.

Fracture of adhesive joints constructed from several combinations of adherends (com-

posite and metal) was considered by Choupani (2008). Experiments were carried out

using the Arcan specimen presented in Fig. 1.16g. In the middle of the adhesive layer, a

starter crack was introduced using a non-adhering film. For each loading angle, at least

three tests were carried out with a total of 63 specimens with different adherends tested.

Results showed that the relationship between mode I, mode II, and mixed mode fracture

toughness of all adherends was GIc ≤ GTc ≤ GIIc, where GTc is given in eq. (1.14) and

is the critical value at fracture for the specific mixed mode ratio GII/GTc. Crack growth

between the aluminum adherend tested was predominately cohesive, mostly in the middle

of the adhesive layer. In the steel adherends, the crack growth was almost cohesive with

no distinct pattern of the movement between the adhesive/adherend upper and lower

interfaces. For the woven carbon fiber/polyetherimide (CF/PEI) composite adherends,

the crack initiated in the adhesive, running into the adhesive/adherend interface. Results

showed that the mode I stress intensity factor increased and the mode II stress intensity

factor decreased with an increase in the loading angle from 0◦ (pure mode II) to 90◦ (pure

mode I) for all adherends tested. The fracture toughness values obtained for KIc were

0.76 MPa
√
m, 0.65 MPa

√
m and 0.47 MPa

√
m for the aluminum, CF/PEI composite

and steel adherends, respectively. The fracture toughness values obtained for KIIc were

1.24 MPa
√
m, 0.81 MPa

√
m and 0.88 MPa

√
m for the aluminum, CF/PEI composite and

steel adherends, respectively. It was also noted that the results obtained with specimens

fabricated from composite adherends fit well with the criterion presented in eq. (1.105)

for values of m = 2 and n = 3.

Heydari et al. (2011) carried out an experimental and numerical investigation of a

carbon/polyester woven composite. The tested specimens were composed of 130 woven
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Figure 1.17: Modified Arcan specimen and fixture (Heydari et al., 2011).

plies, with the direction of the fibers and the edge delamination coinciding. Each ply was

approximately 0.2 mm thick. The starter delamination was obtained using a 0.1 mm thick

Teflon film inserted in the middle of the laminate. Tests were carried out using a modified

version of the Arcan specimen (see Fig. 1.17) under a full range of mode mixities which

were produced by varying the loading angle α (α = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦, see

Fig. 1.15), from pure mode II to pure mode I. The modified Arcan specimen was attached

to the fixture by three pins on each side (see Fig. 1.17). The grips of the fixture were

loaded in tension. Tests were conducted in displacement control with a displacement rate

of 0.5 mm/min and repeated at least three times for each loading angle.

Using a finite element, linear elastic analysis of the entire apparatus and specimen,

under plane strain conditions, a relation between the non-dimensional stress intensity

factors and crack length was obtained. The mechanical properties used in the analysis are

presented in Table 1.5. Using a conservative two-dimensionalM -integral, non-dimensional

stress intensity factors were determined for non-dimensional delamination lengths a/W

between 0.1 and 0.8, where a is the delamination length and W , the specimen width (see

Fig. 1.17). It must be noted that in the article, the equations for the auxiliary stress

field in the vicinity of the delamination front were given for an isotropic material rather

than for the tetragonal material tested. Yet, it appears that the stress calculation was

made using Abaqus software auxiliary functions and that the given equations were not

used. Therefore, it may be assumed that the calculations are correct. Using fourth order

Table 1.5: Elastic properties of carbon-polyester laminated composite.

E1 = E2 (GPa) E3 (GPa) G13 = G23 (GPa) G12 (GPa) ν13 = ν23 ν12

43.7 8.2 2.6 6.4 0.31 0.037
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polynomial expressions, the geometrical factors necessary for calculating the critical stress

intensity factors for the modified Arcan specimen, were derived. From the obtained results,

it was observed that both the mode I and mode II non-dimensional stress intensity factors

increased with increasing delamination length. Large changes were observed in the former

and minor changes in the latter. A graph of non-dimensional stress intensity factors versus

loading angle revealed that the non-dimensional mode II stress intensity factors decreased

but remained dominant for increasing loading angles from 0◦ (pure mode II) to 15◦ and

that the mode I stress intensity factor increased and remained dominant for loading angles

between 30◦ and 90◦ (pure mode I).

For each loading angle, using the fracture loads, together with the calibration equa-

tions, the interlaminar fracture toughness and critical energy release rates for mode I and

II were obtained. The interlaminar mode I fracture toughness, KIc was found from pure

mode I tests (α = 90◦) as 1.08 MPa
√
m. This value was lower than the interlaminar

mode II fracture toughness, KIIc which was found from pure mode II tests (α = 0◦) as

1.20 MPa
√
m, meaning that the material is tougher in in-plane shear deformation than

in opening deformation.

Critical energy release rates were calculated based on the stress intensity factor failure

values, apparently, using relations given by Sih et al. (1965) and Banks-Sills et al. (2005a)

for an orthotropic material. They were plotted as a function of the ratio GII/GT where GT
is given in eq. (1.14). It was observed from the graph that for GII/GT ≤ 0.53, GI decreased
as GII/GT increased and remained dominant; above this value, the increasing GII value

became dominant.

1.3.3.3 Brazilian disk specimen

In order to obtain a wide range of mode mixities, using a simple test set up and only one

specimen type and fixture, it has been decided to carry out mixed mode fracture tests,

in the current investigation, using the Brazilian disk (BD) specimen. The BD specimen

has been used in mixed mode fracture tests of many types of interfaces. In this section,

investigations including isotropic and interface cracks between two isotropic materials will

be presented, as well as investigations of UD and MD composite laminates.

Isotropic and interface cracks between two isotropic materials have been tested using

the BD specimen. There are different methods, described in the literature, for measuring

fracture properties of a linear elastic, homogeneous, isotropic material and of a crack

along the interface between two linear elastic, homogeneous, isotropic materials. In order

to carry out mixed mode tests, one method makes use of a BD specimen.

A BD specimen composed of homogeneous material is presented in Fig. 1.18a. The

load P is applied at an angle ω with respect to the crack which may be varied to achieve

different mixed mode combinations. A central crack of length 2a is located in the middle

41



Figure 1.18: Brazilian disk specimen (ω > 0): (a) homogeneous material (b) interface
crack between two isotropic, homogeneous materials.

of the specimen and the specimen diameter is 2R. Atkinson et al. (1982) presented an

explicit series solution for the stress intensity factors valid for any orientation ω of the

BD specimen. It was noted that the crack closed for angles between 21.3◦ − 27.2◦ for

a normalized crack length of 0.3 ≤ a/R ≤ 0.6. The stress intensity factors from this

derivation were compared for different loading angles and crack lengths with previous

numerical results. The comparison showed differences of less than 10% for a two term

solution and no discernible differences for a five term solution. Another solution based

on a small crack approximation was obtained and compared with results from both the

series solution and finite element (FE) analyses. This comparison showed that the small

crack approximation was quite good. Finally, the feasibility of using the BD specimen as a

reliable method to investigate the problem of combined mode fracture was demonstrated

by conducting tests on a homogeneous polymethyl methacrylate (PMMA) BD specimen

with a diameter of 1.5 in. and an approximate thickness of 0.125 in. Test results were

obtained for both modes I and II.

This specimen was then utilized to determine the interface toughness for two perfectly

bonded homogeneous, isotropic materials (Banks-Sills et al., 1999 and Banks-Sills et al.,

2000). Unlike the case of a homogeneous material, each time a different material pair

is tested, a new set of calibration equations is required. A calibration equation relates

the stress intensity factors to the loading and geometric parameters. In those studies, a

normalized complex stress intensity factor was given in terms of the non-dimensional crack

length a/R for different values of the loading angle ω. A methodology including analysis

of experimental results for two different material pairs was presented. The dimensions of

the BD specimen used had a nominal radius R = 20 mm, a nominal thickness t = 8 mm

and a varying central crack of length 2a along the interface (see Fig. 1.18b). The load P

was applied at an angle ω which was varied to achieve different mixed mode combinations.
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In both investigations, the methodology for obtaining the total complex stress intensity

factor K(T ) was described. The superscript T indicates total which is the superposition of

the stress intensity factors resulting from applied loading (f) and residual curing stresses

(r). The stress intensity factors caused by applied loading were calculated using two-

dimensional FE analyses together with the interaction energy or M -integral which was

previously described in Section 1.2.2. For a unit load and a unit specimen thickness, K
(f)
1

and K
(f)
2 were obtained for a set of specific loading angles ω and a set of non-dimensional

crack lengths a/R. The set of non-dimensional stress intensity factors K̃
(f)
1 and K̃

(f)
2 were

calculated from the results, using

K̃(f) =
2πRtaiε

P
√
πa

K(f) , (1.106)

where R and t are the radius and thickness of the specimen, respectively, a is the half-

crack length, P is applied load as seen in Fig. 1.18b and ε is the oscillatory parameter

given in eq. (1.19). The stress intensity factors K̃ and K are complex, see eq. (1.22).

Curve fitting of the calculated K̃
(f)
1 and K̃

(f)
2 produced the calibration equations. After

the tests were completed, for specific values acr/R and ω, K̃
(f)
1 and K̃

(f)
2 were calculated

from the corresponding calibration equations. The stress intensity factors K
(f)
1 and K

(f)
2

were then determined from eq. (1.106) with the measured values of Pcr, acr, R and t from

the tests.

The stress intensity factors caused by residual stresses were calculated using calibration

equations, as well. The temperature change experienced by the specimens during curing

caused residual stresses in the specimens. The stress intensity factors were determined by

use of a weight function method, presented by Banks-Sills (1993), and two-dimensional

FE analyses. For a set of non-dimensional crack lengths and a ∆ϑ = 5◦C temperature

decrease, K
(r)
1 and K

(r)
2 were obtained. Non-dimensional stress intensity factors were

calculated from

K̃(r) =
K(r)âiε

σ
√
πa

, (1.107)

where

σ =
[(1− ν1)α1 − (1− ν2)α2] ∆ϑ

1

E2

− 1

E 1

, (1.108)

for given values of νk, Ek and αk (k = 1, 2). In eq. (1.108), the parameters αk are the

thermal expansion coefficients of each material and the parameters Ek are defined in

eq. (1.16); the subscripts k = 1, 2 represent the upper and lower materials, respectively.

Curve fitting of the calculated values of K̃
(r)
1 and K̃

(r)
2 produced calibration equations for

the normalized residual stress intensity factors K̃
(r)
1 and K̃

(r)
2 in terms of a/R. Use of

these equations was made for each fracture test to calculate the values of K̃
(r)
1 and K̃

(r)
2

for a critical normalized crack length acr/R. Finally, the stress intensity factors K
(r)
1 and

K
(r)
2 were determined from eq. (1.107), for test values of ∆ϑ, σ and acr.
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Superposition of the stress intensity factors, K
(f)
1 andK

(f)
2 , resulting from applied load,

and K
(r)
1 and K

(r)
2 , resulting from specimen curing, yielded the values of K

(T )
1 and K

(T )
2 .

In turn, the critical energy release rate Gic for each test was computed from eq. (1.31).

It may be noted that a two-dimensional analysis was considered here, so that KIII was

omitted. The phase angles ψ̂ were obtained from eq. (1.27) for L̂ = 600 µm for the

glass/epoxy specimens and L̂ = 100 µm for the ceramic pair of materials. The oscillatory

parameter was found from eq. (1.19) to be ε = −0.088 for the glass/epoxy interface and

ε = −0.00563 for the interface between the ceramic pair of materials. In each case, the

Gic values were plotted as a function of ψ̂.

In Banks-Sills et al. (1999), results for the interface between glass and epoxy were

presented. The specimens were composed of two semi-circles: the first made of glass and

the second epoxy with an aluminum arc about the epoxy. The specimens were cured in an

oven at 25◦C. An initial notch was fabricated along the interface by means of Teflon strips.

Natural cracks with 9.01 mm≤ ac ≤ 11.32 mm were developed with a loading angle of 5◦

and a maximum pre-load P ≤ 1500 N. The specimens were tested at room temperature

so that ∆ϑ varied between −4.5◦C and +2.3◦C. Twenty-five tests were carried out with

a range of loading angles between −10◦ ≤ ω ≤ 13◦ (see Fig. 1.18b). The test results were

presented and discussed in Banks-Sills and Ashkenazi (2000). To obtain the failure curve

in eq. (1.33) with ϕ = 0, the value of G1c was calculated to be 5.12 N/m.

In Banks-Sills et al. (2000), the interface between two ceramic clays, K-142 and K-144

was considered. The fabrication process included heating and cooling with temperature

holding steps. The range of critical crack lengths was measured as 5.4 mm ≤ ac ≤ 6.4 mm.

Thirty-one tests were carried out with a range of loading angles between −15◦ ≤ ω ≤ 15◦.

The value of G1c was found to be 3.7 N/m and a criterion was then found from eq. (1.33)

with ϕ = 0. In both investigations, the test results fit the trend of the failure curve well,

with observed scatter.

In Banks-Sills et al. (2010), the necessity of using a three-dimensional approach to

predict interface fracture, when in-plane loading is applied, was investigated. The two

material pairs of glass/epoxy and the ceramic clays were reconsidered using two and three-

dimensional analyses. Stress intensity factors resulting from applied load and residual

stresses were obtained by means of the FE method with an interaction energy integral.

Stress intensity factors for the applied force K
(f)
1 and K

(f)
2 were obtained by means of the

two-dimensional M -integral with the appropriate crack length and applied force. There

was a maximum difference of 0.9% and −1.2% in the results obtained here as compared

to those obtained in Banks-Sills et al (1999) for the glass/epoxy specimens and Banks-

Sills et al. (2000) for the two ceramic clay specimens, respectively. Stress intensity

factors resulting from residual stresses, K
(r)
1 and K

(r)
2 , were determined by means of a two-

dimensional thermal M -integral. There was a maximum difference of −2.6% and 5.6% in

the results obtained here as compared to those obtained in Banks-Sills et al. (1999) for
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Figure 1.19: Illustration of a BD specimen with a delamination between two fiber rein-
forced composite plies (ω > 0).

the glass/epoxy specimens and Banks-Sills et al. (2000) for the ceramic clay specimens,

respectively. It is thought that the M -integral used in this investigation produced more

accurate results than the weight function.

In addition, the specimens were reanalyzed by means of a three-dimensional FEA.

Stress intensity factors K
(f)
1 , K

(f)
2 and K

(f)
III , as well as K

(r)
1 , K

(r)
2 and K

(r)
III , were ob-

tained. Normalized stress intensity factors resulting from applied load and from residual

stresses were calculated using eq. (1.26) and presented as a function of the normalized

x3-coordinate (see Fig. 1.3). The results, as expected, were symmetric with respect to the

center plane of the specimens for K̂
(f)
1 , K̂

(r)
1 , K̂

(f)
2 and K̂

(r)
2 and antisymmetric for K̂

(f)
III

and K̂
(r)
III .

Based on these analyses, two and three-dimensional fracture criteria were presented

and compared. For the two-dimensional failure curves, ϕ was omitted in eq. (1.33). It was

concluded that for these cases of an isotropic body containing an interface crack, subjected

to in-plane loading, two-dimensional analysis and fracture criteria were sufficient and

three-dimensional analyses were unnecessary and did not provide new information.

The BD specimen presented in Fig. 1.19 is a modification of the homogeneous and bi-

material specimens presented in Fig. 1.18. The modified specimen includes a composite

strip with a specific layup and a delamination along an interface between two plies. The

composite strip is glued to two aluminium partial disks, creating a circular specimen.

Loading and geometric description of the specimen may be found earlier in this section.

A methodology for measuring delamination toughness of MD fiber reinforced laminates

using the BD specimen was first introduced by Banks-Sills et al. (2005b). In their

investigation a CFRP (AS4/3502) composite prepreg was considered. Two different layups

were fabricated. The first layup was composed of three layers, [0◦//90◦/0◦], where each

layer was approximately 4.2 mm thick. The second layup was composed of five layers,

[±45◦/0◦//90◦/0◦/ ± 45◦]. Each of the outer layers was approximately 4.4 mm thick

and the three inner layers were about 0.54 mm thick. Note that two slashes indicate the
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position of the delamination which was the same in both layups; that is between 0◦ and 90◦

plies. The delamination was obtained using a 25.4 µm thick Teflon strip. The oscillatory

parameter which is a function of the mechanical properties was found to be ε = −0.0363.

After the curing process, residual stresses and a series of transverse cracks which were

observed within the 90◦ layer were assumed to affect the values of the modes 1 and 2 stress

intensity factors, as well as the interface delamination toughness. Therefore, these two

phenomena were taken into account in the calculation of the stress intensity factors. Tests

were carried out to obtain the critical load, Pc and the delamination length, 2ac at failure.

The problem was treated in two dimensions with modes 1 and 2 present. The shear mode

III component was neglected although it may increase in regions in which the delamination

front intersects with the free surfaces of the specimen. Expressions for in-plane stresses

and crack face displacements in the vicinity of the delamination front for two homogenized

transversely isotropic materials were given in an earlier paper (Banks-Sills and Boniface,

2000). Matrices and parameters for this specific 0◦//90◦ interface were found following

Ting (1996). These expressions are derived in the current investigation for the materials

considered here and further described in Chapter 2. Mechanical stress intensity factors,

resulting from loading, were calculated using the FE method and a mechanicalM -integral.

Thermal stress intensity factors were determined using a thermalM -integral developed in

Banks-Sills and Dolev (2004). It was also concluded that the transverse cracks acted to

lower the stress intensity factors and their presence and location affected the mode mixity.

The total stress intensity factors, namely, K
(T )
1 and K

(T )
2 , were computed by superposition

of the mechanical and thermal stress intensity factors obtained.

Results of the thermal, mechanical and superposed stress intensity factors K1 and K2

were presented for each of the layups tested, for each loading angle ω, load Pc and crack

length at fracture 2a. Interface toughness values Gic were also presented as a function

of the phase angle ψ̂, defined in eq. (1.27). The toughness data Gic were centered about

ψ̂ = 0 using the length parameter L̂ = 100 µm. Use of this parameter is presented in

eq. (1.26). Interface toughness results measured with both layups correlated well with each

other. The mode 1 delamination toughness G1c, was found as 26.5 N/m from eq. (1.34).

In addition, an energy based two-dimensional fracture criterion was applied as shown in

eq. (1.33), with ϕ = 0. It was observed that the test values fit well with the failure

criterion; hence, a reliable delamination failure prediction for the tested 0◦//90◦ interface

was found.

The methodology developed in Banks-Sills et al. (2005b) was extended to a +45◦//−
45◦ interface in Banks-Sills et al. (2006). Mixed mode fracture tests were conducted on

the same CFRP (AS4/3502) composite material, using the BD specimen. The interface

fracture toughness Gic was determined as a function of the two phase angles ψ̂ and ϕ

described in eqs. (1.27) and (1.28), respectively. Basic expressions related to interface

fracture for this specific pair were given. Unlike the case studied by Banks-Sills et al.

(2005b), where the problem was treated in two dimensions, the problem discussed in this
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case was three-dimensional. The complex stress intensity factor which is the amplitude of

the square-root, oscillatory singularity was given as K = K1+ iK3 and the mode II stress

intensity factor KII , which is the amplitude of the square-root singularity, represented the

in-plane shear deformation. The stress intensity factors resulting from the applied load

were determined using a mechanical three-dimensionalM -integral (Freed and Banks-Sills,

2005). A thermal three-dimensionalM -integral was presented for calculation of the stress

intensity factors resulting from residual curing stresses and used to find the thermal stress

intensity factors.

Composite strips for the BD specimen in Fig. 1.19 were cut from an approximately

12.4 mm thick plate with an inner layup of [0◦/ − 45◦// + 45◦/0◦]s. Each layer had a

nominal thickness of 0.54 mm. To prevent plate bending, ±45◦ outer layers, approximately

4.05 mm thick, were included in the layup. The delamination was placed between one

of the +45◦ and the −45◦ inner layers. The delamination was obtained using a 25.4 µm

thick Teflon strip. The length of the Teflon strip of 15.4 mm determined the length of the

delamination 2a. The oscillatory parameter was found to be ε = 0.000615. Tests were

carried out and the load Pc and the delamination length 2ac at fracture were obtained.

Finite element analyses were carried out to obtain the stress intensity factors resulting

from the applied load and residual stresses; these were superposed to determine K
(T )
1 ,

K
(T )
II and K

(T )
3 . Interface toughness values Gic and the corresponding phase angles ψ̂ in

eq. (1.27) and ϕ in eq. (1.28) were obtained. The length parameter L̂ was chosen to be

200 µm. The mode 1 delamination toughness G1c was found as 90.3 N/m from eq. (1.34).

In addition, an energy based three-dimensional fracture criterion was determined as shown

in eq. (1.33). The failure surface may be used to predict failure.

In the current investigation, mixed mode fracture experiments will be carried out on

a UD/woven fabric composite with a delamination between a UD ply and a woven ply.

Tests will be carried out using a BD specimen. With this specimen, a wide range of mode

mixities may be achieved using a single specimen type and fixture.

1.4 Research objectives

The aim of this research investigation is to predict the delamination failure of a fiber

reinforced composite laminate with a delamination between a UD ply with fibers oriented

in the 0◦-direction and a plain balanced weave ply with fibers oriented in the +45◦/−45◦-

directions. The laminate is fabricated by means of a wet-layup. This material is composed

of carbon T300 fibers and an epoxy matrix; the epoxy is Epikote resin L20 with the

hardener Epikure 960 (EPR-L20/EPH960). Both critical initiation energy release rates,

as well as resistance energy release rates required for propagation are considered.
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The main goals of this investigation include: (1) development of the first term of the

asymptotic solution to be used for the displacement extrapolation method and mechan-

ical and thermal M -integrals for this material and interface, as well as development of

software based upon these tools to be used in analyses of the tests; (2) carrying out frac-

ture toughness tests by means of several specimen types, namely, the Brazilian disk (BD),

calibrated-end loaded split (C-ELS) and mixed mode end loaded split (MMELS) speci-

mens under various mixed mode ratios; (3) obtaining stress intensity factors, the interface

energy release rate and phase angles by means of the analytical-numerical tools developed

for the tested specimens when subjected to mechanical loading, as well as residual thermal

curing stresses; (4) developing two and three-dimensional initiation failure criteria for the

investigated interface and material; (5) comparing results obtained by means of the dif-

ferent specimen types and several analyses methods; (6) determining fracture resistance

curves or R-curves for the investigated material and interface. Realizing these objectives

should lead to a better understanding of interlaminar delamination for this composite and

interface. This understanding may improve the design and safety of such structures.

In Chapter 2, the composite type and properties of the materials used in this investi-

gation will be described. The eigenvalues and eigenvectors found for the specific interface

considered will be presented and used to develop the first term of the asymptotic stress

and displacement fields. Two methods for extracting stress intensity factors will be pre-

sented in Chapter 3. Use of the first term of the asymptotic displacement field is made

for both methods. First, the displacement extrapolation (DE) method will be presented.

Then, the interaction energy conservative integral or M -integral for mechanical loading

and residual thermal curing stresses, will be described. Both methods are used in con-

junction with a finite element solution of the body in order to determine and separate the

stress intensity factors.

The mixed mode fracture toughness test procedure using the BD specimen, together

with test results and analysis of the specimens will be presented in Chapter 4. The critical

interface energy release rate Gic and phase angles found based on the tests carried out

will also be shown. Finally in this chapter, two and three-dimensional failure criteria are

proposed and statistical analyses are performed to account for scatter in the test results.

In Chapter 5, resistance curves were determined based upon results from nearly mode

I, nearly mode II and mixed mode fracture tests. Initiation, propagation and steady

state energy release rate values, were determined. For mode I, results from DCB tests

which were performed and described in Chocron and Banks-Sills (2019) were reanalyzed

using the ECM. For nearly mode II and mixed mode deformations, tests were performed

with C-ELS and MMELS specimens, respectively. The results were analyzed by means of

the post-processors described in Chapter 3, as well as by means of ECM. The obtained

resistance curves were compared. In addition, the phase angles ψ̂ and ϕ were calculated.
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Finally, a discussion and conclusions of the results are made in Chapter 6 where

comparison of the initiation fracture toughness values Gic obtained from all specimen

types is presented.
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Chapter 2

The asymptotic stress and
displacement fields

In this chapter, the analytic expressions for the first term of the asymptotic stress and

displacement fields of a delamination along the interface between two composite plies is

developed. The upper ply is a unidirectional (UD) fabric composite with 97% carbon fibers

oriented in the 0◦-direction (the x1-direction in Fig. 2.1), and 3% glass fibers oriented in

the transverse direction. The lower ply is a plain balanced weave with fibers oriented

in the +45◦/−45◦-directions. The former is referred to as material (1) in Fig. 2.1, and

the latter is material (2). The mechanical properties of each material will be described

in Section 2.1. The stress function and the displacement fields were derived based on

Stroh (1958) and Lekhnitskii (1963) formalisms as described by Ting (1996). Since both

methods are equivalent, as has been shown by Barnett and Kirchner (1997), they were

used interchangeably in the development. In Section 2.2, the sextic differential equation

developed by Lekhnitskii (1963) is presented and the eigenvalues and eigenvectors for

both materials are obtained. The eigenvalues may be arranged into two matrices A and

B. These matrices are employed to calculate the oscillating parameter ε. In Section 2.3,

the displacement and stress fields in the neighborhood of a general delamination front are

presented (see Ting, 1996, for details). Using appropriate boundary conditions, the first

r

θ

material (1)

UD

material (2)

weave

Figure 2.1: An interface crack between a UD composite with fibers in the 0◦-direction
and a +45◦/−45◦ weave.
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Table 2.1: Properties of the epoxy and hardner EPR-L20/EPH-960 (provided by IAI).

material E ν α

(GPa) (10−6/C◦)

EPR-L20/EPH-960 2.8 0.36 70

term of the asymptotic expansion for the stress and displacement fields of the delamination

along the interface between the two specific materials shown in Fig. 2.1 are developed.

These are based on the effective mechanical properties of each material as described in

Section 2.1, as well as matrices A and B, defined in Section 2.2.

2.1 Mechanical structure and properties

In this study, a delamination between two composite plies is investigated. The upper

material is a UD fabric and contains mainly carbon fibers in the 0◦-direction (the x1-

direction in Fig. 2.1), as well as some glass fibers directed in the transverse direction. The

lower ply is a +45◦/−45◦ plain weave. Each material is denoted by k, where k = 1 is

used for the upper material, while k = 2 for the lower material, as shown in Fig. 2.1.

Both materials are composed of carbon T300 fibers embedded in an epoxy matrix. The

epoxy EPR-L20/EPH-960 is isotropic and may be fully described by two independent

elastic constants and one thermal constant: Young’s modulus E, Poisson’s ratio ν and

the coefficient of thermal expansion (CTE) α. The mechanical and thermal properties of

the epoxy are presented in Table 2.1. These were provided by the manufacturer of the

material. A range of properties may be found in the literature for carbon T300. The

mechanical properties used in this investigation are given in Miyagawa et al. (2005). The

axial CTE of the T300 carbon may be found in a Torayca T300 data sheet (2015); its

transverse component was taken from Bowles and Tompkins (1989). Properties of the

graphite T300 fibers are presented in Table 2.2. The upper material is a UD fabric and

contains some glass fibers directed in the transverse direction. In the modeling, Young’s

modulus, Poisson’s ratio and the coefficient of thermal expansion (CTE) of the glass were

Table 2.2: Mechanical (Miyagawa et al., 2005) and thermal (Torayca T300 data sheet,
2015, Bowles and Tompkins, 1989) properties of graphite T300 fibers.

material EA ET GA GT νA νT αA αT

(GPa) (GPa) (GPa) (GPa) (10−6/C◦) (10−6/C◦)

T300 230.0 8.0 27.3 3.1 0.26 0.30 -0.41 10.08
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Table 2.3: Mechanical and thermal properties of the glass fibers (Matweb, 2015).

material E ν α

(Gpa) (10−6/C◦)

Glass 69 0.22 7.2

also used. These properties are given in Table 2.3. The upper material may be considered

transversely isotropic with x1 = 0 a plane of symmetry (see Fig. 2.1). A transversely

isotropic material may be described by five independent mechanical properties EA, ET ,

νA, νT and GA; EA and ET are the axial and transverse Young’s moduli, respectively,

νA and νT are the axial and transverse Poisson’s ratios, respectively, and GA is the axial

shear modulus. The transverse shear modulus, GT , may be calculated as

GT =
ET

2 (1 + νT )
. (2.1)

The axial and transverse CTEs are respectively, αA and αT .

Four out of five necessary properties (EA, ET , GA and νA) of the UD fabric, used in the

current investigation, were obtained experimentally and are presented in the first line of

Table 2.4. The missing properties GT and νT were obtained by means of the High-Fidelity

Generalized Method of Cells (HFGMC) (Aboudi, 2004) and from the relation between

GT and νT , given in eq. (2.1).

The structure of this UD fabric includes T300 carbon and glass fibers embedded in

an epoxy matrix, as shown in Fig. 2.2. The total fiber volume fraction (including both

fiber types) was determined using a weight fraction test. The volume fraction was then

Table 2.4: UD fabric mechanical properties obtained from experiments and from three
HFGMC models: model 1: Vf(T300) = 0.58, Vf(e) = 0.42, E(e) = 2.8 GPa; model 2:
Vf(T300) = 0.58, Vf(e+g) = 0.42, E(e+g) = 5.9 GPa; and model 3: Vf(T300) = 0.485, Vf(e+g) =
0.42, E(e+g) = 5.9 GPa and the final properties used in this investigation for numerical
verification.

method Vf EA ET GA GT νA νT

(GPa) (GPa) (GPa) (GPa)

experiments 0.58 114.6 7.2 2.8 - 0.39 -

HFGMC model 1 0.58 134.6 5.3 3.7 1.8 0.30 0.43

HFGMC model 2 0.58 135.9 7.5 6.7 2.6 0.30 0.41

HFGMC model 3 0.485 114.6 7.4 5.3 2.6 0.31 0.44

final properties 114.6 7.2 2.8 2.5 0.39 0.44
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3

Figure 2.2: UD fabric structure; carbon fibers are in the x1-direction; glass fibers are in
the x3-direction.

calculated and determined as 0.6. This value includes 97% carbon fibers in the axial

direction and 3% glass fibers in the transverse direction. Hence, the material is composed

of approximately Vf(T300) = 0.58 (carbon fibers), Vf(g) = 0.02 (glass fibers) and the volume

fraction of the remaining epoxy matrix which is Vf(e) = 0.4; the subscripts T300, e and g

represent the T300 fibers, the epoxy matrix and the glass fibers, respectively.

Three different HFGMC models were used to obtain the mechanical properties. First,

a model composed of carbon fibers with Vf(T300) = 0.58 was used, as was determined based

on a calculation of the weight fraction experimental results. In this model, the glass fibers

are neglected and the epoxy is assumed to have a volume fraction of Vf(e) = 0.42. The

results from this model are presented in the second row of Table 2.4 (model 1). The

obtained properties were found to be higher than expected in the axial direction and

lower than expected in the transverse direction.

The second model was composed of Vf(T300) = 0.58 and a combination of the glass

fibers and the epoxy matrix, namely, Vf(e+g) = 0.42; the subscript e + g represents the

combination of the glass fibers and the epoxy matrix. Young’s modulus for the epoxy and

glass was calculated by means of the rule of mixtures. This new modulus was used to

model the matrix of the composite as if the matrix were isotropic. Hence, the glass fibers

stiffen the material not only in the direction transverse to the carbon fibers, but also in

their axial direction. This approximation was implemented in order to simplify the design

of the HFGMC model, leading to an increase in the composite properties in the transverse

direction of the composite. The matrix is composed of 40% EPR-L20/EPH-960 epoxy

and 2% glass fibers. Hence, 95.3% of the matrix is the epoxy and 4.7% is fiberglass. For

the rule of mixtures

E(e+g) = V(f(e))E(e) + V(f(g))E(g) . (2.2)

The Young’s modulus of the EPR-L20/EPH-960 epoxy matrix including the glass fibers
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was found to be E(e+g) = 5.9 GPa and used in the micromechanical model. The UD

fabric mechanical properties obtained from this model are presented in the third row of

Table 2.4 (model 2). It may be observed from the results that the glass fibers had a

negligible contribution to the axial Young’s modulus EA of the UD fabric of less than 1%.

On the other hand, the result for the transverse Young’s modulus increased by 41.5% and

the new value of 7.5 GPa was found to be closer to the experimental result of 7.2 GPa. It

may also be noted that the value of GA is overestimated.

To better understand the obtained results, a simple calculation, using the rule of

mixtures, was made

EA = Vf(T300)EA(T300) + Vf(e)E(e) + Vf(g)E(g) . (2.3)

The axial Young’s modulus was calculated to be 134.6 GPa. This result is much higher

than the experimental result and shows exact agreement with the HFGMC model. The

actual volume fraction of the carbon fibers may be lower than that measured, causing the

significantly lower experimental results in the axial direction.

In the third HFGMC model, the volume fraction of the T300 carbon fibers was chosen

to produce the axial Young’s modulus obtained by means of the tests, namely 0.485. In

this model, the Young’s modulus of glass fibers was again included in the modulus of the

matrix as calculated with model 2. The results for the mechanical properties obtained

from this model are presented in the fourth row of Table 2.4 (model 3). The axial and

transverse Young’s moduli, as obtained from this model, agree well with the experimental

results. It was observed further that the maximum change in νT was −6.8% between

model 2 and 3 and was only −2.3% between model 1 and 3. As a result of this relatively

small change compared with the changes of the other properties, the value obtained for

νT from model 3 was chosen for modeling this material. The final properties were chosen

from the experiments, together with νT = 0.44 from the HFGMC model. The value of

GT was calculated using eq. (2.1). These properties are presented in the fifth row of

Table 2.4 (final properties). The final chosen fiber volume fraction value is the one used

to obtain the missing property of νT using HFGMC. This volume fraction was only used

to obtain properties which resemble the experimental results, but will not be further used

in this study. Based on the methodology described here for the UD fabric ply properties,

the properties of the tested specimens will be obtained using the fiber volume fractions

measured for those specimens.

The lower material (k = 2 in Fig 2.1) is a plain woven composite with fibers in the

+45◦/−45◦-direction. The weave with fibers in the 0◦/90◦-direction is rotated by 45◦

about the x2-axis in Fig 2.3a, resulting in the fibers rotated in the ±45◦-direction. This

material is tetragonal, defined by six independent mechanical properties. Some of the

effective mechanical properties, used in this investigation, were determined by means

of the two-step HFGMC (for details see Aboudi, 2004 and Decad, 2008); others were

54



g

a

(a)

ag/2 g/2g a

h

(b)

Figure 2.3: Repeating unit cell (RUC): (a) a plain weave with a representative unit cell
shown in red. (b) Schematic drawing of the RUC model.

obtained from experiments. All properties were found for a plain weave with fibers in the

0◦/90◦-direction as shown in Fig. 2.3a and transformed by a 45◦ rotation.

The experimental results, as well as the measured volume fraction Vf(f/w), are pre-

sented in Table 2.5, in the first row. Note that the subscripts f and w, in parenthesis,

represent the fibers in the weave, respectively. In Table 2.5, E11 = E33 are the Young’s

moduli in the x1 and x3-directions, respectively, that is, the in-plane elastic moduli (see

Fig 2.3a); E22 is the out-of-plane Young’s modulus; G13 is the in-plane shear modulus

and G23 = G21 are the out-of-plane shear moduli; ν13 is the in-plane Poisson’s ratio and

ν23 = ν21 are the out-of-plane Poisson’s ratios. Note that

νij
Eii

=
νji
Ejj

. (2.4)

To use the HFGMC micromechanical model, a repeating unit cell (RUC) shown in

Fig. 2.3 is defined. In Fig. 2.3a, a plain weave is shown, with the chosen RUC marked

Table 2.5: Woven fabric mechanical properties obtained from experiments and from
HFGMC models for a 0◦/90◦ weave, and the final properties chosen for this investiga-
tion for numerical verification.

method Vf(f/w) E11 = E33 E22 G13 G21 = G23 ν13 ν21 = ν23

(GPa) (GPa) (GPa) (GPa)

experiments 0.45 57.8 - 3.1 - 0.1 -

HFGMC model 1 0.45 46.7 5.6 2.7 2 0.038 0.051

HFGMC model 2 0.55 57.4 6.2 3.7 2.4 0.032 0.045

final properties 57.8 6.2 3.1 2.4 0.1 0.045
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in red. This RUC is repetitive and maintains the symmetry of the model. The RUC is

composed of yarn and epoxy where the yarn is a UD composite bundle of fibers and epoxy.

In Fig. 2.3b, a schematic drawing of the chosen RUC is presented. The drawing includes

sub-cells with either epoxy or yarn, oriented in a defined direction. The geometrical

dimensions of the yarn and the epoxy in the RUC may be measured, as shown in Fig. 2.3a,

where a is the yarn width, g is the distance between yarns and h is the thickness of each

ply. These properties are then used in the micro-mechanical model as shown in Fig. 2.3b.

The geometrical measurements were obtained from a cross-section of the weave using a

digital microscope with a magnification of 10× (DinoLite AM311ST, AnMo Electronics,

Hsinchu,Taiwan); the averaged results were a = 1.73 mm and g = 0.27 mm obtained from

77 and 79 measurements, respectively. The average thickness of each ply h = 0.24 mm

was obtained by dividing the specimen thickness by the number of plies, namely 10.

The volume fraction of the yarn in the RUC was calculated. The calculation was

carried out using the geometrical measurements of a and g, as shown in Fig. 2.3. The

total yarn volume in the RUC was calculated as

Vyarn = h
[(
16a2

)
+ (16ag)

]
; (2.5)

the total volume of the RUC, was calculated as

VRUC = 4h(2a+ 2g)2. (2.6)

The volume fraction Vf(y/w) of the yarn (y) in the weave (w) or the RUC is obtained from

Vf(y/w) =
Vyarn
VRUC

. (2.7)

This value was found to be 0.87.

The weight fraction of the fibers within the composite were measured by the plate

manufacturer and the volume fraction was calculated to be Vf(f/w) = 0.45. Using this

value, the volume fraction of the fibers within the yarn Vf(f/y) where the subscripts f and

y, in parenthesis, represent the fibers in the yarn, respectively, was found from

Vf(f/y) =
Vf(f/w)
Vf(y/w)

=
0.45

0.87
. (2.8)

The result is a fiber volume fraction of Vf(f/y) = 0.52 within the yarn. This volume

fraction was used in the HFGMC Geometrical User Interface (GUI) to calculate the yarn

properties.

The yarn is a UD material, effectively transversely isotropic, composed of a volume

fraction of 0.52 of T300 carbon fibers and 0.48 EPR-L20/EPH-960 epoxy. The desired

properties EA, ET , νA, νT and GA were obtained by means of HFGMC. The transverse

shear modulus GT , was calculated by means of eq. (2.1). The yarn properties found are
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Table 2.6: Fiber volume fractions and yarn properties used to obtain weave properties.

fibers
weave

yarn
weave

fibers
yarn EA ET GA GT νA νT

(measured) (geometry a, g) (calculated) (GPa) (GPa) (GPa) (GPa)

0.45 0.87 0.52 121.0 5.0 3.1 1.8 0.31 0.40

0.55 0.87 0.63 147.1 5.5 4.5 1.9 0.29 0.42

presented in the first row in Table 2.6. Also presented, are the volume fractions described

previously.

The mechanical properties presented in Table 2.6 and the geometrically measured

parameters a, g and h, were used as input for an HFGMC two-step calculation to obtain

the weave properties. The model produced the mechanical properties shown in the second

row and denoted as ’HFGMC model 1’ in Table 2.5. It may be observed that there is

a great difference between the experimentally obtained result for the in-plane Young’s

modulus and that obtained using HFGMC.

To better understand the results obtained from the model and the experiments, a

simplified rule of mixtures was used to determine an upper bound for the Young’s modulus

within the weave, namely

E33(weave) = E11(weave) =
Vf(f/w)

2
EA(T300) +

Vf(f/w)
2

ET (T300) +
(
1− Vf(f/w)

)
E(e) . (2.9)

Although the result was expected to produce an upper bound for the in-plane Young’s

moduli E11 = E33, it was found to be 55.1 GPa, which is lower than the obtained experi-

mental result. Another method was then used to check the upper bound of the in-plane

Young’s moduli. An HFGMC cross-ply model was considered; the results were expected

to be higher in the in-plane directions than were obtained for the weave. The in-plane

Young’s moduli calculated from this model were also 55.1 GPa, again lower than the ob-

tained experimental result. Perhaps there was an error in the measured weight fraction.

In order to obtain values for the in-plane Young’s moduli E11 = E33 similar to those

from the tests, HFGMC was used with the volume fraction of the fibers in the weave

incremented from the experimentally obtained value of 0.45 to 0.55. The volume fraction

of the fibers in the yarn was then calculated from the first two terms of eq. (2.8) to be

0.63 (see Table 2.6). This value was obtained by dividing the volume fraction of the

fibers in the weave (0.55) by the volume fraction of the yarn in the weave (0.87). The

mechanical properties of the yarn EA, ET , νA, νT and GA were calculated for the case of

Vf(f/y) = 0.63 by means of HFGMC for a transversely isotropic material. The transverse

shear modulus GT , was calculated by means of eq. (2.1). The results for the calculated

mechanical properties of the yarn are presented in the second row in Table 2.6.
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Table 2.7: Final transformed woven fabric mechanical properties with fibers in the
+45◦/−45◦-directions.

material E
(2)
11 = E

(2)
33 E

(2)
22 G

(2)
13 G

(2)
21 = G

(2)
23 ν

(2)
13 ν

(2)
21 = ν

(2)
23

(GPa) (GPa) (GPa) (GPa)

+45◦/−45◦ 11.3 6.2 26.2 2.4 0.8 0.040

The yarn properties, as well as the geometrically measured parameters a, g and h,

were again used as input for an HFGMC two-step calculation (Aboudi, 2004; Decad,

2008) to obtain the weave properties. The results are presented in the third row of

Table 2.5 denoted as ’model 2’. The final properties for a plain weave with fibers oriented

in the 0◦/90◦-direction were taken from the tests. The missing properties were taken

from the HFGMC two-step model results, namely E22, G21 and ν21. The experimental

and calculated results show good agreement for the in-plane Young’s moduli. The final

properties are shown in the fourth row in Table 2.5.

The properties obtained for the 0◦/90◦ weave were rotated by 45◦ about the x2-axis

in Fig. 2.3a. The transformed final properties, to be used in further calculations, are pre-

sented in Table 2.7. The transformation is described in Ting (1996, pp. 53-56). Note that

these properties will be recalculated for specimens that will be tested in this investigation

based on the volume fractions measured for these specimens. These calculations will be

made using the same methodology that has been described in this section. In addition,

it may be noted that a superscript (2) appears on the mechanical properties presented in

Table 2.7 to indicate that these results are used for material (2) in Fig. 2.1 with fibers

oriented in the +45◦ and −45◦-directions.

The effective thermal properties for each material were not calculated at this point

because no experimental data was found for comparison with the properties obtained from

HFGMC. The coefficients of thermal expansion (CTEs) will be calculated by means of

HFGMC for the volume fractions obtained for the tested specimens.
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The compliance matrix for the upper material, k = 1, is given by

S
(1)

=



1

EA
− νA
EA

− νA
EA

0 0 0

1

ET
− νT
ET

0 0 0

1

ET
0 0 0

1

GT

0 0

sym
1

GA

0

1

GA



. (2.10)

The compliance matrix may be written with reduced compliance components, S ′
αβ (α, β =

1, ..., 6), where

S
′

αβ = Sαβ −
Sα3S3β

S33

. (2.11)

Note that

S ′
3α = S ′

α3 = 0 , (2.12)

where α = 1, ..., 6. The reduced compliance coefficients for k = 1 are found as

S ′(1)
11 =

1

EA

(
1− ν2A

ET
EA

)
(2.13)

S ′(1)
12 = − νA

EA
(1 + νT ) (2.14)

S ′(1)
22 =

1

ET

(
1− ν2T

)
(2.15)

S ′(1)
44 =

2 (1 + νT )

ET
(2.16)

S ′(1)
55 = S ′(1)

66 =
1

GA

(2.17)

S ′(1)
14 = S ′(1)

15 = S ′(1)
16 = 0 (2.18)

S ′(1)
24 = S ′(1)

25 = S ′(1)
26 = 0 (2.19)

S ′(1)
45 = S ′(1)

46 = S ′(1)
56 = 0 . (2.20)

The reduced compliance components are symmetric.

The lower woven material with tows in the +45◦/−45◦-directions, referred to as k = 2

in Fig. 2.1, is tetragonal with x2 = 0 a symmetry plane. This material may be described
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with six independent mechanical properties E11, E22, ν21, ν13, G23 and G13 (for the axes,

see Fig. 2.1) where E11 = E33 and E22 are the Young’s moduli; ν21 = ν23 and ν13 are the

Poisson’s ratio’s; G21 = G23 andG13 are the shear moduli. For this material, the properties

used in the numerical verification made in this investigation and given in Table 2.7. Note

that the mechanical properties obey the relation presented in eq. (2.4). The compliance

matrix for a tetragonal material with x2 = 0 a symmetry plane is of the form

S
(2)

=



1

E
(2)

11

− ν
(2)

12

E
(2)

11

− ν
(2)

13

E
(2)

11

0 0 0

1

E
(2)

22

− ν
(2)

23

E
(2)

22

0 0 0

1

E
(2)

11

0 0 0

sym
1

G
(2)

23

0 0

1

G
(2)

13

0

1

G
(2)

23



. (2.21)

The reduced compliance components are

S ′(2)
11 =

1− ν
(2)

13

2

E
(2)

11

(2.22)

S ′(2)
12 = −

ν
(2)

21

(
1 + ν

(2)

13

)
E

(2)

22

(2.23)

S ′(2)
22 =

1

E
(2)

22

(
1− [ν

(2)

21 ]
2E

(2)

11

E
(2)

22

)
(2.24)

S ′(2)
44 = S ′(2)

66 =
1

G
(2)

23

(2.25)

S ′(2)
55 =

1

G
(2)

13

(2.26)

S ′(2)
14 = S ′(2)

15 = S ′(2)
16 = 0 (2.27)

S ′(2)
24 = S ′(2)

25 = S ′(2)
26 = 0 (2.28)

S ′(2)
45 = S ′(2)

46 = S ′(2)
56 = 0 . (2.29)
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2.2 Eigenvalues and eigenvectors

Using the Lekhnitskii (1963) formalism as described in Appendix A, a sextic differential

equation is produced, shown in eq. (A.11). For the two materials described in Section 2.1,

L3 = 0 so that

(L2L4)χ = 0 (2.30)

where L2 and L4 are defined in eqs. (A.12). A general solution is chosen to be

χ = F (z) (2.31)

where the definition of z appears in eq. (A.14) and for completeness is given here as

z = x1 + px2. (2.32)

The parameter p in eq. (2.32) is a complex constant. As a result, the sextic equation from

eq. (A.15) becomes

l2(p)l4(p) = 0 (2.33)

where

l2 = S ′
55p

2 + S ′
44 (2.34)

and

l4 = S ′
11p

4 + (2S ′
12 + S ′

66) p
2 + S ′

22 . (2.35)

The solution of eq. (2.33) provides three pairs of complex conjugate roots p, where

pα+3 = pα, ℑ(pα) > 0, (α = 1, 2, 3) . (2.36)

The obtained roots are

p
(k)

1,2 =

√√√√−(2S ′(k)
12 + S ′(k)

66 )±
√(

2S ′(k)
12 + S ′(k)

66

)2 − 4S ′(k)
11 S

′(k)
22

2S ′(k)
11

, (2.37)

and

p
(k)

3 = i

√
S ′(k)
44

S ′(k)
55

. (2.38)

The upper material is transversely isotropic and so the expression in the inner square-root

of eq. (2.37) is always positive. For that reason the eigenvalues are given by

p
(1)

1 = iβ
(1)

1 , p2 = iβ
(1)

2 p
(1)

3 = iβ
(1)

3 . (2.39)

where

β
(1)

1,2 =

√√√√(2S ′(1)
12 + S ′(1)

66 )∓
√(

2S ′(1)
12 + S ′(1)

66

)2 − 4S ′(1)
11 S

′(1)
22

2S ′(1)
11

, (2.40)
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and

β
(1)

3 =

√
S ′(1)
44

S ′(1)
55

. (2.41)

In the case of the lower material, which is tetragonal, the inner square-root expression

may be positive or negative. If the inner square-root expression is positive, the obtained

eigenvalues are of the form shown in eq. (2.39), if the expression is negative then the

obtained eigenvalues are given by

p
(2)

1 = α
(2)

+ iβ
(2)

, p
(2)

2 = −α(2)

+ iβ
(2)

, p
(2)

3 = iβ
(2)

3 . (2.42)

In this study, substituting the properties given in Table 2.7 into the reduced compliance

components given in eqs. (2.22)-(2.29), the eigenvalues are found to be of the former form

presented in eq. (2.39) namely,

p
(2)

1 = iβ
(2)

1 , p2 = iβ
(2)

2 p
(2)

3 = iβ
(2)

3 . (2.43)

2.3 The displacement and stress fields for an
interface delamination

In this section, the first term of the asymptotic solution for a delamination along an

interface between two anisotropic materials is presented. The solution will then be devel-

oped for the specific interface with a delamination between a transversely isotropic and a

tetragonal material shown in Fig. 2.1 and described in Section 2.1.

The displacement field and stress function for a delamination along an interface be-

tween two anisotropic materials is derived from the sextic formalism due to Stroh (1958),

presented in eqs. (A.24) and (A.29), respectively. The first term of the asymptotic solution

is obtained by using eq. (A.30) and defining a general solution of the form

f
(k)
(
z
(k)

α

)
= z

(k)

α

δ+1
(2.44)

where δ is the order of the stress singularity and z
(k)

α (α = 1, 2, 3) from eq. (2.32) is given

as

z
(k)

α = x1 + p
(k)

α x2 . (2.45)

In eqs. (2.44) and (2.45), k = 1, 2 represents the upper and lower materials, respectively.

The parameter z
(k)

α may be written in polar coordinates, as

zα
(k) = rζα

(k), ζα
(k) = cos θ + pα

(k) sin θ (2.46)
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where r is the distance from the crack tip and θ is the polar angle shown in Fig. 2.1.

Following Ting (1996, p. 341) it is possible to write

u
(k)

=
{
Ak

⟨
z
(k)

α

δ+1
⟩
qk +Ak

⟨
z
(k)

α

δ+1
⟩
q̃k

}
(2.47)

ϕ
(k)

=
{
Bk

⟨
z
(k)

α

δ+1
⟩
qk +Bk

⟨
z
(k)

α

δ+1
⟩
q̃k

}
. (2.48)

where, the matrices Ak and Bk are 3× 3 matrices related to the mechanical properties of

the two materials. The bar over a parameter, a vector or a matrix represents the complex

conjugate. The diagonal matrix
⟨
z
(k)

α

δ+1
⟩
is defined as⟨

z
(k)

α

δ+1
⟩
= diag

[
z
(k)

1

δ+1
, z

(k)

2

δ+1
, z

(k)

3

δ+1
]
. (2.49)

The complex constant δ and vectors qk and q̃k are unknown and may be found by using

boundary and continuity conditions.

The matrices Ak and Bk are obtained by comparing Stroh’s general solutions with

Lekhnitskii’s general solutions. For further explanation see Ting (1996, pp. 170-172). For

the materials studied here, and the components of the effective compliance matrix of each

material presented in Section 2.1, these matrices become

Ak = −


k

(k)

1

(
S ′(k)
11 β

(k)

1

2
− S ′(k)

12

)
k

(k)

2

(
S ′(k)
11 β

(k)

2

2
− S ′(k)

12

)
0

ik
(k)

1

β
(k)

1

(
S ′(k)
22 − S ′(k)

12 β
(k)

1

2
) ik

(k)

2

β
(k)

2

(
S ′(k)
22 − S ′(k)

12 β
(k)

2

2
)

0

0 0 −ik
(k)

3 S ′(k)
44

β
(k)

3

 , (2.50)

and

Bk =

 −ik(k)

1 β
(k)

1 −ik(k)

2 β
(k)

2 0

k
(k)

1 k
(k)

2 0

0 0 −k(k)

3

 . (2.51)

In eqs. (2.50) and (2.51), k
(k)
α , α = 1, 2, 3, are normalizing parameters. For further calcu-

lations, B−1
k and −AkB

−1
k are found as

B−1
k =

1

β
(k)

2 − β
(k)

1


− i

k
(k)

1

β
(k)

2

k
(k)

1

0

i

k
(k)

2

−β
(k)

1

k
(1)

2

0

0 0
β

(k)

1 − β
(k)

2

k
(k)

3


(2.52)

−AkB
−1
k =


iS ′(k)

11

(
β

(k)

1 + β
(k)

2

)
−S ′(k)

12 −
√
S ′(k)
11 S

′(k)
22 0

S ′(k)
12 +

√
S ′(k)
11 S

′(k)
22 i

√
S ′(k)
11 S

′(k)
22

(
β

(k)

1 + β
(k)

2

)
0

0 0 i
√
S ′(k)
44 S

′(k)
55

 . (2.53)
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The boundary conditions used to determine δ, qk and q̃k, k = 1, 2, include two main

requirements. First, the delamination faces are traction free, so that

ϕ(1)(π) = ϕ(2)(−π) = 0 . (2.54)

The second requirement is that the two materials are perfectly bonded along the interface

ahead of the delamination. Thus, traction and displacement continuity along the bonded

part of the interface implies that

ϕ(1)
∣∣
θ=0

= ϕ(2)
∣∣
θ=0

u(1)
∣∣
θ=0

= u(2)
∣∣
θ=0

. (2.55)

By setting the vectors qk and q̃k in eq. (2.48) to be

qk = (−1)
k i

2
B−1
k e(−1)kiδπ gk ,

q̃k = (−1)(k+1) i

2
Bk

−1
e(−1)k+1iδπ gk ,

(2.56)

the boundary condition in eq. (2.54) is satisfied. In eq. (2.56), gk are two, arbitrary, 3× 1

complex vectors. Traction continuity in eq. (2.55)1 leads to the relation

g1 = g2 ≡ g . (2.57)

The order of the stress singularities δ may be determined by using the displacement

continuity condition in eq. (2.55)2. This requirement leads to the relation{
S̆− cot(δπ)I

}
g = 0 , (2.58)

where
S̆ = D−1W

D = L1
−1 + L2

−1

W = S1L1
−1 − S2L2

−1

. (2.59)

The tensors Sk and Lk, (k = 1, 2), known as the Barnett-Lothe tensors, are real. These

tensors may be determined using

−AkB
−1
k = SkL

−1
k + iL−1

k . (2.60)

In eq. (2.58), I is a unit 3 × 3 matrix. Using the relation in eq. (2.60) with the explicit

expressions given in eq. (2.53), it is possible to write

SkLk
−1

=


0 −S ′(k)

12 −
√
S ′(k)
11 S

′(k)
22 0

S ′(k)
12 +

√
S ′(k)
11 S

′(k)
22 0 0

0 0 0

 (2.61)
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and

L
−1

k =


S ′(k)
11

(
β

(k)

1 + β
(k)

2

)
0 0

0

√
S ′(k)
11 S

′(k)
22

(
β

(k)

1 + β
(k)

2

)
0

0 0
√
S ′(k)
44 S

′(k)
55

 . (2.62)

The matrices D and W in eq. (2.59)2 and eq. (2.59)3, respectively, are functions of the

Barnettt-Lothe tensors and may be written explicitly as

D =



2∑
k=1

S ′(k)
11

(
β

(k)

1 + β
(k)

2

)
0 0

0
2∑

k=1

√
S ′(k)
11 S

′(k)
22

(
β

(k)

1 + β
(k)

2

)
0

0 0
2∑

k=1

√
S ′(k)
44 S

′(k)
55


(2.63)

and

W =


0

2∑
k=1

(−1)
k

(
S ′(k)
12 +

√
S ′(k)
11 S

′(k)
22

)
0

2∑
k=1

(−1)
k−1

(
S ′(k)
12 +

√
S ′(k)
11 S

′(k)
22

)
0 0

0 0 0

 .

(2.64)

It should be noted that the members of the matrix W have the same value with opposite

signs, namely

W12 = −W21 . (2.65)

In the case of the material properties presented in Section 2.1 and used in this study, the

value of W12 is positive. The matrix S̆ is calculated from eq. (2.59)1 as

S̆ =


0

W12

D11

0

W21

D22

0 0

0 0 0

 . (2.66)

The explicit expressions are

S̆12 =

2∑
k=1

(−1)
k

(
S ′(k)
12 +

√
S ′(k)
11 S

′(k)
22

)
2∑

k=1

S ′(k)
11

(
β

(k)

1 + β
(k)

2

)

S̆21 =

2∑
k=1

(−1)
k−1

(
S ′(k)
12 +

√
S ′(k)
11 S

′(k)
22

)
2∑

k=1

√
S ′(k)
11 S

′(k)
22

(
β

(k)

1 + β
(k)

2

) .

(2.67)
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All parameters in eq. (2.58), which is an eigenvalue equation, have been defined. The

order of the stress singularities δ may be calculated using this equation. The parameter

cot δπ are the eigenvalues and g are the eigenvectors in eq. (2.58). The eigenvalues may

be obtained from a non-trivial solution, namely

det
[
S̆− cot(δπ)I

]
= 0 . (2.68)

The eigenvalues obtained are

cot(δπ) = ∓ iW12√
D11D22

, 0 (2.69)

recalling that W12 > 0. Note that, D11 and D22 have the same sign for a delamination

along the interface between the two materials investigated in this study. A parameter β

may be defined as

β ≡ W12√
D11D22

(2.70)

where β is taken to be positive (Ting, 1996, p. 426). Finally, the order of the stress

singularities δm, m = 1, 2, 3, may be calculated from eq. (2.69) as

δ1 = −1

2
+ iε, δ2 = −1

2
− iε, δ3 = −1

2
(2.71)

where the oscillatory parameter ε is given by

ε =
1

2π
ln

(
1 + β

1− β

)
(2.72)

and ε > 0, since β is positive.

The eigenvectors gm may be found by substituting the eigenvalues δm into eq. (2.58),

so that

g1 = d, g2 = d g3 = d∗ (2.73)

for which

d =


i

√
D22

D11

1

0

 d2, d∗ =


0

0

1

 d3 . (2.74)

In eq. (2.74), d2 is an unknown complex constant and the constant d3 is real. Furthermore,

d2 may be uniquely related to the complex stress intensity factor K which is defined in

eq. (1.22) and d3 may be uniquely related to the mode III stress intensity factor KIII .

These relations will be found later in this section.

The displacement field u
(k)

and the stress function ϕ
(k)

may be separated into two

superposed parts, the oscillatory, square-root singular and the square-root singular part.

The oscillatory, square-root singular solution is composed of two superposed solutions
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corresponding to δ1 and δ2. The square-root singular solution corresponds to δ3. These

vectors may be written as

u
(k)

= u
(k)

os + u
(k)

s

ϕ
(k)

= ϕ
(k)

os + ϕ
(k)

s

(2.75)

where the subscripts os and s represent the oscillatory, square-root singular and the square-

root singular parts of the solution, respectively. By substituting δ1 = δ and δ2 = δ with

their corresponding related eigenvectors d and d, respectively, into eqs. (2.56), (2.57),

(2.74) and then into eqs. (2.47) and (2.48), the oscillatory, square-root singular solution

takes the form

u
(k)

os = ℜ
{
e(−1)k−1πεAk

⟨
z
(k) ( 1

2
+iε)

∗

⟩
Bk

−1 d+ e(−1)kπεAk

⟨
z
(k) ( 1

2
−iε)

∗

⟩
B−1
k d

}
ϕ

(k)

os = ℜ
{
e(−1)k−1πεBk

⟨
z
(k)

∗ (1
2
+ iε)

⟩
Bk

−1 d+ e(−1)kπεBk

⟨
z
(k) ( 1

2
−iε)

∗

⟩
Bk

−1 d
}

.

(2.76)

It may be mentioned that much mathematical manipulation is required to arrive at

eqs. (2.76). In the same way, by substituting δ3 = −1
2
with the corresponding eigenvector

d∗ into the same equations, namely, eqs. (2.56), (2.57), (2.74) and then into eqs. (2.47)

and (2.48), the square-root singular solution becomes

u
(k)

s = ℜ
{
Ak

⟨
z
(k) 1

2
∗

⟩
Bk

−1
}
d∗

ϕ
(k)

s = ℜ
{
Bk

⟨
z
(k) 1

2
∗

⟩
Bk

−1
}
d∗ .

(2.77)

In order to relate the eigenvector constants d2 and d3, in eqs. (2.74), to the stress inten-

sity factors, K and KIII , respectively, the traction components on the interface σi2(θ = 0),

i = 1, 2, 3, are needed. The traction components are related to the stress function through

eq. (A.28)2. By differentiating eq. (2.76)2 and eq. (2.77)2 by x1 and substituting the re-

sults into eq. (A.28)2, with θ = 0, the oscillatory, square-root singular and square-root

singular parts of the traction components along the interface may be found. The tractions

obtained may be written as

ϕ
(k)

os,1|θ=0 = r−
1
2 cosh (πε)ℜ{(1 + 2iε)riε d}

ϕ
(k)

s,1|θ=0 =
1

2
r−

1
2d∗

(2.78)

for the oscillatory, square-root singular and the square-root singular parts, respectively.

An explicit expression for the oscillatory component may be written as
σ12os

σ22os

σ32os



∣∣∣∣∣∣∣∣∣∣
θ=0

= r−
1
2 cosh πε


−
√
D22

D11

ℑ [(1 + 2iε)riεd2]

ℜ [(1 + 2iε)riεd2]

0


(2.79)
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and the square-root singular component may be written as
σ12s

σ22s

σ32s



∣∣∣∣∣∣∣∣∣∣
θ=0

=
1

2
d3r

− 1
2


0

0

1

 . (2.80)

It may be observed that σ12 = σ12os, σ22 = σ22os and σ32 = σ32s .

In order to fully define all parameters in the displacement field and stress function,

d2 and d3 must be obtained. First, d2 will be determined as a function of the complex

stress intensity factor K, given in eq. (1.22). This complex stress intensity factor may be

defined as

K ≡ lim
r→0

√
2πr r−iε

(
σ22 − i

√
D11

D22

σ21

)∣∣∣∣∣
θ=0

. (2.81)

For plane deformation conditions, along the interface ahead of the delamination tip, the

in-plane stress components from eq. (2.81) may be written as

σ22(r)− i

√
D11

D22

σ21(r)

∣∣∣∣∣
θ=0

=
Kriε√
2πr

. (2.82)

By substituting eq. (2.79) into eq. (2.82), d2 may be obtained as

d2 =
K√

2π(1 + 2iε) cosh πε
. (2.83)

In a similar manner, KIII is defined as

KIII ≡ lim
r→0

√
2πr σ23

∣∣∣
θ=0

. (2.84)

For plane deformation conditions, along the interface ahead of the delamination tip, the

out-of-plane stress component from eq. (2.84) may be written as

σ23(r)|θ=0 =
KIII√
2πr

. (2.85)

By substituting eq. (2.80) into eq. (2.85), d3 may be obtained as

d3 =
2KIII√

2π
. (2.86)

The displacement field and stress function vectors u
(k)
, ϕ

(k)
(k = 1, 2) may now be

written explicitly using definitions presented in this section. For the displacement field,

matrix multiplications in eq. (2.76)1 were carried out. The first term of the asymptotic

expansion of the in-plane displacement components may be written as

u
(k)

α =

√
r

2π

[
ℜ
(
Kriε

)
kU

(1)

α (θ) + ℑ
(
Kriε

)
kU

(2)

α (θ)
]

(2.87)
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with α = 1, 2, representing the directions x1 and x2 (see Fig. 2.1), respectively, and the

superscripts 1 and 2 representing the functions related to the real and imaginary parts of

Kriε, respectively. In the same manner, matrix multiplications in eq. (2.77)1 were carried

out and the explicit expression for the out-of-plane displacement may be written as

u
(k)

3 =

√
r

2π
KIII kU

(III )
3 (θ) . (2.88)

In eqs. (2.87) and (2.88), the displacement functions kU
(1)
α (θ), kU

(2)
α (θ) and kU

(III )
3 (θ) are

given below. These functions depend upon θ, and the mechanical properties, all given

previously in this section and in Sections 2.1 and 2.2 of this chapter. These properties

will be recalculated with respect to the fiber volume factions measured in the specimens

which will be tested. It may be noted that these functions have units of L2/F where L is

a length unit and F is force. The in-plane displacement functions for both the upper and

lower materials are given by

kU
(1)

1 = kc
∗
1

2∑
s=1

2∑
t=1

(−1)s+t kÑ st kQs

(
kN

∗
stD̃ + kβ

∗
s

)
kU

(2)

1 = kc
∗
1

2∑
s=1

2∑
t=1

(−1)s kÑ st kQs

(
kn

∗
stD̃ + kM

∗
st kβ

∗
s

)
kU

(1)

2 = kc
∗
1

2∑
s=1

2∑
t=1

(−1)s kÑst kQs+2

(
β

(k)

s

)−1 (
kM

∗
stD̃ + kn

∗
st kβ

∗
s

)
kU

(2)

2 = −kc
∗
1

2∑
s=1

2∑
t=1

(−1)s+t kÑst kQs+2

(
β

(k)

s

)−1 (
D̃ + kN

∗
st kβ

∗
s

)
.

(2.89)

In eqs. (2.89) for s, t = 1, 2, kc
∗
s, kÑst, kN

∗
st, kn

∗
st, kM

∗
st and kβ

∗
s are given as

kc
∗
s =

2
[
1
2
(1 + 4ε2)

]s−1(
β

(k)

1 − β
(k)

2

)
(1 + 4ε2) cosh πε

, kÑst = knst kNst kMst kBs
1/4 ,

kN
∗
st = kNs1 kNs2 kNst

−2, kn
∗
st = kns1 kns2 knst

−2 ,

kM
∗
st = kMs1 kMs2 kM

−2
st , kβ

∗
s = β

(k)

1 β
(k)

2

(
β

(k)

s

)−1

(2.90)

where ε is given in eq. (2.72) and the parameters β
(k)
s may be found in eq. (2.40). In

eqs. (2.90), kÑst, kN
∗
st, kn

∗
st and kM

∗
st are defined with kNst and kMst, where s = 1, 2, and

with knst, where s = 1, 2, 3, namely

kns1 = cos
(
kφs
2

)
, kns2 = sin

(
kφs
2

)
,

kNs1 = cosh
[
ε(π + (−1)k kφs)

]
, kNs2 = (−1)(k−1) sinh

[
ε(π + (−1)k kφs)

]
.

kMs1 = kMs3 + 2ε kMs4 , kMs2 = kMs4 − 2ε kMs3 ,

kMs3 = cos (kms) , kMs4 = sin (kms) .

(2.91)

In eqs. (2.91), the parameters kMst are defined with kms and the parameters kNst and

knst are defined using kφs. The parameters kms (s = 1, 2) and kφs (s = 1, 2, 3) are given
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as

kms =
ε

2
ln (kBs) ,

kφs = arg
(
cos θ + iβ

(k)

s sin θ
)
,

(2.92)

where kBs (s = 1, 2, 3) is defined as

kBs = cos2 θ +
(
β

(k)

s

)2
sin2 θ . (2.93)

In eq. (2.89), the parameters kQs and kQs+2 where s = 1, 2 are given by

kQs = −S ′(k)
12 +

(
βs

(k)
)2
S ′(k)
11 , kQs+2 = S ′(k)

22 −
(
β
(k)
s

)2
S ′(k)
12 . (2.94)

The parameter D̃ is defined as

D̃ =

√
D22

D11

, (2.95)

using two diagonal members of the matrix D given in eq. (2.63). The out-of-plane dis-

placement functions in eq. (2.88) are written as

kU
(III )

3 = 2 (kB3)
1
4
kn32

√
S ′(k)
44 S

′(k)
55 (2.96)

Explicit expressions for the stress components were obtained using eqs. (A.28). By dif-

ferentiation of the vector ϕ, given in eq. (2.76)2, and substituting parameters described in

this section, the first term of the asymptotic expansion for the in-plane stress components

was obtained. This expression may be written as

σ
(k)

αβ =
1√
2πr

[
ℜ
(
Kriε

)
kΣ

(1)
αβ(θ) + ℑ

(
Kriε

)
kΣ

(2)
αβ(θ)

]
, (2.97)

with α, β = 1, 2, representing the directions x1 and x2, respectively, and the superscripts

1 and 2 representing the functions related to the real and imaginary parts of Kriε, re-

spectively. Explicit expressions for the functions kΣ
(1)

αβ(θ) and kΣ
(2)

αβ(θ) are given below.

The expression for the out-of-plane stress components is found in a similar manner by

differentiating eq. (2.77)2, so that

σ
(k)

α3 =
KIII√
2πr

kΣ
(III )

α3 (θ) . (2.98)

Explicit expressions for the functions kΣ
(III )

α3 (θ) are also given below.

With the representation shown in eq. (2.97), the in-plane stress functions kΣ
(1)
αβ(θ) and
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kΣ
(2)
αβ(θ) may be written as

kΣ
(1)
11 = −kc

∗
2

2∑
s=1

2∑
t=1

(−1)skÑst (kBs)
− 1

2

(
β

(k)

s

)2 (
kN

∗
st D̃ + kβ

∗
s

)
kΣ

(2)
11 = kc

∗
2

2∑
s=1

2∑
t=1

(−1)s+t kÑ
(k)

st (kBs)
− 1

2

(
β

(k)

s

)2 (
kn

∗
st D̃ − kM

∗
st kβ

∗
s

)
kΣ

(1)
12 = −kc

∗
2

2∑
s=1

2∑
t=1

(−1)s+t kÑst (kBs)
− 1
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(k)

s

(
kM

∗
st D̃ − kn

∗
st kβ

∗
s

)
kΣ

(2)
12 = kc

∗
2

2∑
s=1

2∑
t=1

(−1)skÑst (kBs)
− 1

2 β
(k)

s

(
D̃ + kN

∗
st kβ

∗
s

)
kΣ

(1)
22 = kc

∗
2

2∑
s=1

2∑
t=1

(−1)skÑst (kBs)
− 1

2

(
kN

∗
st D̃ + kβ

∗
s

)
kΣ

(2)
22 = −kc

∗
2

2∑
s=1

2∑
t=1

(−1)s+t kÑst (kBs)
− 1

2

(
kn

∗
st D̃ − kM

∗
st kβ

∗
s

)
.

(2.99)

where all functions used are given in eqs. (2.90), (2.94),(2.95), (2.91), (2.92) and (2.93).

The out-of-plane functions kΣ
(III )
α3 are given by

kΣ
(III )
13 = −β(k)

3 (kB3)
− 1

4
kn32

kΣ
(III )
23 =(kB3)

− 1
4

kn31

(2.100)

where the parameters kB3 and kn32 are given in eqs. (2.93) and (2.91)2, respectively.
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Chapter 3

Methods for extracting stress
intensity factors

Stress intensity factors for a given problem may be calculated numerically using various

methods. In this investigation, the displacement extrapolation method and the conser-

vative, interaction energy M -integral are used. In the first chapter, in Sections 1.2.1

and 1.2.2, both methods were introduced, respectively, for linear elastic, homogeneous,

isotropic materials.

In this chapter, both methods will be extended for a delamination along an inter-

face between a transversely isotropic UD fabric and a tetragonal weave. Both methods

make use of the first term of the asymptotic expansion for the displacements, presented

in Section 2.3, along with a finite element analysis. First, the displacement extrapola-

tion method will be presented in Section 3.1. This direct method is considered to be

less accurate than the energy based M -integral and is used for validation of the results

(Banks-Sills, 2010). The conservative, interaction energy integral or M -integral is an en-

ergy based method and will be presented in Section 3.2. This integral was derived from

the conservative J-integral; therefore, the J-integral will be considered first. In eq. (1.31),

an expression relating the energy release rate G and a combination of the stress intensity

factors is presented. Since J = G this expression relates J to the stress intensity factors.

However, from this equation the stress intensity factors for the different modes cannot be

separated. In order to separate the different stress intensity factors in a mixed mode prob-

lem, the M -integral, with use of auxiliary solutions, is employed. This integral provides

a sufficient number of equations allowing determination of the stress intensity factors K1,

K2 and KIII . Both extended methods and software were validated with three mechanical

benchmark problems and one thermal problem. Comparison made for this purpose are

described in Section 3.3.
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3.1 Displacement extrapolation method

One of the methods used to extract the stress intensity factors K1, K2 and KIII is the dis-

placement extrapolation (DE) method. In this section, the DE method will be presented

and extended for the particular case of a delamination along an interface of a transversely

isotropic material and a tetragonal material. In particular, the interface between a UD

fabric with fibers mainly in the 0◦- direction and a +45◦/− 45◦ balanced plain weave as

shown in Fig. 2.1 is considered. The first term of the displacement field in the vicinity of

the delamination front which was developed in Section 2.3 may be employed to extract

the stress intensity factors using the DE method.

The delamination displacement jump within the neighborhood of the delamination

front is defined by

∆ui ≡ u
(1)
i (r, θ = π)− u

(2)
i (r, θ = −π) (3.1)

where the coordinate system is shown in Fig. 2.1. Here the superscripts (1) and (2)

represent the upper and lower materials, respectively, and ui is the displacement in the

xi-direction for i = 1, 2, 3. Substitution of θ = π and θ = −π for the upper and lower ma-

terials, respectively, into the oscillatory, square-root singular and the square-root singular

displacement expressions in eqs. (2.87) and (2.88) will result in

u
(1)
os

∣∣∣∣
θ=π

= 2
√
r L−1

1 ℜ{riεd} ,

u
(2)
os

∣∣∣∣
θ=−π

= −2
√
r L−1

2 ℜ{riεd} ,
(3.2)

and

u
(1)
s

∣∣∣∣
θ=π

=
√
r L−1

1 d∗ ,

u
(2)
s

∣∣∣∣
θ=−π

= −
√
r L−1

2 d∗ ,
(3.3)

respectively. In eqs. (3.2), and (3.3), L−1
k is defined in eq. (2.62). The jump in the

oscillatory, square-root singular displacement may be obtained by substituting eqs. (3.2)1

and (3.2)2 into eq. (3.1) as

∆uos = 2
√
r D ℜ

{
riεd

}
(3.4)

where D is the 3× 3 matrix given in eq. (2.63). For the jump in the square-root singular,

displacement, eqs. (3.3)1 and (3.3)2 are substituted into eq. (3.1) leading to

∆us =
√
r Dd∗ . (3.5)

Using D and d given in eqs. (2.63), (2.74)1 and (2.83) in eq. (3.4), the oscillatory,
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square-root singular part of the delamination face displacement jump vector may be ob-

tained as 
∆u1os

∆u2os

∆u3os

 =

√
2r

π

D22

cosh πε


−
√
D11

D22

ℑ
[
Kriε

1 + 2iε

]
ℜ
[
Kriε

1 + 2iε

]
0


(3.6)

where D11 and D22 are diagonal elements of the matrix D. In the same manner, by

substituting D and d∗ given in eqs. (2.63), (2.74)2 and (2.86) into eq. (3.5), the square-

root singular part of the delamination face displacement jump vector may be obtained

as 
∆u1s

∆u2s

∆u3s

 =

√
2r

π
D33KIII


0

0

1

 . (3.7)

From the obtained delamination face displacement jump components given in eqs. (3.6)

and (3.7) , it may be observed that the square-root singular part of ∆u1 and ∆u2 is zero,

therefore they have only oscillatory, square-root singular components; whereas, ∆u3 is

solely square-root singular (∆u3os = 0).

In the same manner that the traction components along the interface ahead of the

delamination front are related to the stress intensity factors, as given in eqs. (2.81) and

(2.84), it is possible to obtain a relation between the delamination face displacement jump

components and the local stress intensity factors K
∗
1 , K

∗
2 and K

∗
III as

∆u2 − iD̃∆u1 =
2D22

(1 + 2iε) cosh πε

√
r

2π
Kriε (3.8)

and

∆u3 = 2D33

√
r

2π
KIII . (3.9)

These expressions are separated for the in-plane stress intensity factor K, given in

eq. (1.22), and the out-of-plane stress intensity factor KIII , respectively. The parame-

ter D̃ in eq. (3.8) is given in eq. (2.95) and the parameter D22 is a diagonal member of

the matrix D given in eq. (2.63). In eq. (3.9), D33 is a diagonal member of the matrix

D, as well. By manipulating eq. (3.8), explicit expressions for the local stress intensity

factors may be written as

K
∗
1 (r) = C

√
2π

r
cos [γ(r, ε)]

K
∗
2 (r) = C

√
2π

r
sin [γ(r, ε)]

(3.10)
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Figure 3.1: Delamination tip (a) before virtual delamination opening ∆a; (b) after virtual
delamination opening ∆a.

where

C =

√
1 + 4ε2 coshπε

2D22

√
(∆u2)

2 +
(
D̃∆u1

)2
(3.11)

and

γ =

[
tan−1

(
−D̃∆u1
∆u2

)
+ tan−1(2ε)− ε ln r

]
. (3.12)

From eq. (3.9), the out-of-plane local stress intensity factor K
∗
III is obtained as

K
∗

III(r) =

√
2π

2D33

∆u3√
r

. (3.13)

3.2 Interaction energy integral

The stress intensity factors K1, K2 and KIII may be extracted using the interaction energy

or M -integral. In this section, the three-dimensional M -integral will be extended for the

particular case of a delamination along an interface of a transversely isotropic material

and a tetragonal material. In particular, the interface between a UD fabric with fibers

mainly in the 0◦-direction and a +45◦/ − 45◦ balanced plain weave as shown in Fig. 2.1

is considered.

Based on the Irwin crack closure integral (Irwin, 1958), an explicit expression for

the in-plane interface energy release rate for a delamination along an interface between

a transversely isotropic material and a tetragonal material may be developed beginning

with

Gos = lim
∆a→0

1

2∆a

∫ ∆a

0

ℜ

{[
σ22(x1)− i

√
D11

D22

σ21(x1)

]

×

[
∆u2(∆a− x1) + i

√
D22

D11

∆u1(∆a− x1)

]}
dx1 . (3.14)
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In eq. (3.14), the subscript os represents the oscillatory, square-root singular solution

which contributes to the in-plane part of the energy release rate, ∆a is the virtual de-

lamination extension shown in Fig. 3.1b, ℜ represents the real part of the quantity in

parentheses and i =
√
−1. The parameters D11 and D22 are diagonal members of the

matrix D given in eq. (2.63) and related to the mechanical properties of the upper and

lower materials. In eq. (3.14), σ22 and σ21 are the traction components calculated ahead

of the delamination front on the interface before the delamination has been extended. In

Fig. 3.1a, the normal stress is shown schematically. It is known that the stresses oscil-

late near the delamination front. The displacement jumps ∆u2 and ∆u1 are calculated

along the delamination faces after it has been extended. The jump ∆u2 is shown in

Fig. 3.1b. For the out-of-plane interface energy release rate, an explicit expression may

also be developed beginning with

Gs = lim
∆a→0

1

2∆a

∫ ∆a

0

σ23(x)∆u3(∆a− x)dx (3.15)

where the subscript s represents the square-root singular solution which contributes to

the out-of-plane part of the energy release rate.

The in-plane interface energy release rate given in eq. (3.14) and the out-of-plane

interface energy release rate given in eq. (3.15) are also related to the in-plane stress

intensity factor K, given in eq. (1.22) and to the out-of-plane stress intensity factor KIII ,

respectively. By substituting eqs. (2.82), with r = x1, and the complex conjugate of (3.8),

with r = ∆a−x1, into eq. (3.14) and carrying out the integration, a relation between the

in-plane interface energy release rate, given in eq. (3.14) and the in-plane stress intensity

factors may be obtained. In the same manner, the out-of-plane relation between the mode

III interface energy release rate and the out-of-plane stress intensity factor KIII may be

obtained by substituting eq. (2.85), with r = x1, and eq. (3.9), with r = ∆a − x1, into

eq. (3.15) and carrying out the integration.

As was previously shown in eq. (1.13) for a homogeneous material, the overall energy

release rate, GT , is the sum of the in-plane and out-of-plane energy release rates. For an

interface between two isotropic or anisotropic materials, this expression becomes

Gi = Gos + Gs (3.16)

where the subscript i represents interface. Thus, the interface energy release rate becomes

Gi =
1

H1

(
K2

1 +K2
2

)
+

1

H2

K2
III . (3.17)

where
1

H1

=
D22

4 cosh2 πε

1

H2

=
D33

4
.

(3.18)
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In eqs. (3.18), D22 and D33 are diagonal members of the matrix D given in eq. (2.63) and

the oscillating parameter ε is found from the mechanical properties of the two materials

and given in eq. (2.72).

For a delamination along an interface between a transversely isotropic material and a

tetragonal material, the two phase angles ψ̂ and ϕ are given by

ψ̂ = arctan

{
ℑ(KL̂iε)
ℜ(KL̂iε)

}
= arctan

{√
D11

D22

σ12
σ22

}∣∣∣∣
θ=0,r=L̂

(3.19)

and

ϕ = arctan

{√
H1

H2

KIII√
K2

1 +K2
2

}
= arctan

(√
H1

H2

σ32√
σ2
22 + σ2

12

)∣∣∣∣
θ=0,r=L̂

, (3.20)

respectively. It should be recalled that the parameter L̂ in eqs. (3.19) and (3.20) is an

arbitrary length.

The three-dimensional mechanical M -integral was presented in eq. (1.65) for a delam-

ination along an interface between two isotropic materials. By equating this expression

with the expression given in eq. (1.64), the mechanical stress intensity factors were ob-

tained. For the material combination studied here eq. (1.64) is replaced by

M
(1,2α)
N =

2

H1

{
K

(1)
1N
K

(2α)
1N

+K
(1)
2N
K

(2α)
2N

}
+

2

H2

K
(1)
IIIN

K
(2α)
IIIN

. (3.21)

In eq. (3.21), the parameters H1 and H2 are given in eq. (3.18). The auxiliary solutions

2α (α = a, b, c) are calculated from the first term of the asymptotic solution of the dis-

placement components. The first term of the asymptotic solution for the specific interface

studied here was developed and is given in eqs. (2.87) and (2.88). The stress intensity

factors related to cases 2α = 2a, 2b and 2c are given in Table 1.4. By equating eq. (1.65)

with eq. (3.21), the mechanical stress intensity factors are obtained as

K
(1)
1 =

H1

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2a)
i

∂x1
+ kσ

(2a)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2a)δ1j

]
∂q1
∂xj

dV ; (3.22)

K
(1)
2 =

H1

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2b)
i

∂x1
+ kσ

(2b)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2b)δ1j

]
∂q1
∂xj

dV ; (3.23)

K
(1)
III =

H2

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2c)
i

∂x1
+ kσ

(2c)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2c)δ1j

]
∂q1
∂xj

dV (3.24)

The thermal three-dimensional M -integral was presented in eq. (1.78) for a constant

temperature change. For a delamination along an interface between two anisotropic ma-

terials kβij is given as

kβij = kCijrs kαrs . (3.25)
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where the upper and lower materials are denoted by k = 1, 2, respectively, with no

summation on k. In eq. (3.25), Cijrs (i, j, r, s = 1, 2, 3) are the stiffness components for

each material. Both compliance matrices, in contracted form, for the materials on each

side of the interface were presented in eqs. (2.10) and (2.21), for the upper and lower

materials, respectively. The stiffness matrices for both materials are equal to the inverse

of these compliance matrices. In eq. (3.25), kαrs are the components of the coefficients

of thermal expansion (CTE) for each material. The stress-strain-thermal constitutive

relation is given by

kσij = kCijrs kεrs − kβij k∆ϑ (3.26)

where k∆ϑ represents the temperature change in each material and kεrs are the total

strain components of each material. In the same manner as that for a delamination along

an interface between two isotropic materials, the auxiliary temperature change k∆ϑ
(2α) is

taken to be zero so that the auxiliary solution is the same as that for mechanical loading.

The temperature change in each material k is then equal to the temperature change in

the problem at hand, namely

k∆ϑ = k∆ϑ
(1). (3.27)

By equating eq. (1.78) with eq. (3.21), the thermal stress intensity factors in the three-

dimensional case of the delamination studied here may be found as

K
(r)
1 =

H1

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2a)
i

∂x1
+ kσ

(2a)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2a)
F δ1j

]
∂q1
∂xj

(3.28)

K
(r)
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H1

2A1

2∑
k=1

∫
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kσ

(1)
ij

∂ ku
(2b)
i

∂x1
+ kσ

(2b)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2b)
F δ1j

]
∂q1
∂xj

(3.29)

K
(r)
III =

H2

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2c)
i

∂x1
+ kσ

(2c)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2c)
F δ1j

]
∂q1
∂xj

(3.30)

where H1 and H2 are given in eq. (3.18), and the interaction strain energy density is given

in eq. (1.72).

3.3 Benchmark problems

The methodology for determining the mechanical and thermal stress intensity factors in-

cludes development of the first term of the asymptotic expansion of the displacement

components, as presented in Section 2.3, as well as development of expressions and soft-

ware for the DE method and the mechanical and thermal M -integrals, as described in

Sections 3.1 and 3.2, respectively. In order to demonstrate the validity of the developed

expressions and post processors, as well as to assess their accuracy, three benchmark prob-

lems were solved to validate the mechanical M -integral and DE method. In addition, a

thermal problem with an applied temperature change was carried out. The mechanical
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Figure 3.2: Three-dimensional cylindrical model containing an edge delamination used
for the benchmark problems and for the thermal problem. The upper and lower materials
are colored in gray and purple, respectively.

properties of both the upper and lower materials were homogenized to obtain effective

properties which were presented in Section 2.1. These properties will be recalculated for

the specimens used in the fracture tests. Some recalculations were carried out, although

not final; they were used in the benchmark problems. The thermal properties, used in

the thermal problem, were calculated for the upper and lower materials using HFGMC.

These properties will be recalculated by means of HFGMC for the fiber volume fractions

of the specimens used in the fracture tests. The effective properties are used to determine

the stress intensity factors.

The solved benchmark problems, as well as the thermal problem are for a cylindrical

body composed of two materials, in grey and purple, respectively, shown in Fig. 3.2;

between them is an edge delamination. In Fig. 3.2, a is the delamination length, R is the

radius of the cylindrical body and B is its thickness. The specific sizes of the model used

were R = 30 mm, a = 30 mm and B = 20 mm. In the benchmark problems, the first term

of the asymptotic solution for the displacement components in eqs. (2.87) and (2.88) were

applied to the outer boundary of the body except for the delamination faces, which were

assumed to be traction free. Three sets of stress intensity factors were imposed to obtain

the desired displacement components for each problem. These are shown in Table 1.4

as 2a, 2b and 2c. In the thermal problem, a coupled thermal-stress analysis was carried

out. Two steps were used in the calculation. The initial step consists of application of a

uniform temperature, 0◦ C; the final step consists of application of a uniform temperature,

−60◦ C.

In Fig. 3.3, the mesh used, is shown. The mesh contains 83,200 twenty-noded isopara-

metric elements of type C3D20 and C3D20T in the mechanical benchmark and thermal

problem, respectively, with 352,513 nodal points. Quarter-point elements were used sur-

rounding the delamination front to model the dominant square-root singularity. The

elements near the delamination front had a size of 0.15 × 0.15 × 1 mm3, where element
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(a) (b)

Figure 3.3: Finite element mesh for benchmark problem (a) focused view of the delami-
nation region; (b) entire model.

density was increased, as shown in Fig. 3.3a. An in-plane aspect ratio of 1×1 was fulfilled

in this region in order to enhance modeling of the singular stresses; through the thickness,

this ratio was not maintained.

Finite element analyses were performed using the FE program Abaqus (2017) to obtain

the displacement fields of each problem. The deformed models for the three sets of stress

intensity factors used, are presented in Fig. 3.4. The displacement field was used for

calculating the stress intensity factors by means of the DE method and the mechanical and

thermalM -integrals. With theM -integral, strain and stress components were determined

from the displacement components by means of a finite element scheme for both the FE

results and the auxiliary solutions. In the three benchmark problems, for both methods,

the stress intensity factors obtained were compared with the expected imposed stress

intensity factors shown in Table 1.4. The stress intensity factors for the thermal problem

were obtained using the DE method and compared with those obtained using the thermal

UD - 0°

weave  ±45°

(a)

UD - 0°

weave  ±45°

(b)

UD - 0°

weave  ±45°

(c)

Figure 3.4: Three benchmark deformed models (a) K
(f)
1 = 1, K

(f)
2 = 0, K

(f)
III = 0; (b)

K
(f)
1 = 0, K

(f)
2 = 1, K

(f)
III = 0; (c) K

(f)
1 = 0, K

(f)
2 = 0, K

(f)
III = 1.
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Figure 3.5: Stress intensity factors for the first benchmark problem: K
(f)
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(f)
2 = 0

and K
(f)
III = 0; (a) K
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(f)
2 and (c) K
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M -integral. With this comparison the quality of the mechanical M -integral and DE

methods was evaluated. Results for the three benchmark problems will be described first,

then results from the thermal problem will be presented.

In the mechanical case, DE was carried out. It has been observed in other cases

that the local stress intensity factors K
∗(f)
1 , K

∗(f)
2 and K

∗(f)
III in eqs. (3.10) and (3.13),

respectively, produced the exact imposed solutions. Extrapolation led to the exact result.

The results give confidence to the accuracy of the solution. In general, results obtained

with the DE method are less accurate than those found by means of the M -integral.

The M -integral was calculated and the stress intensity factors were obtained for each

volume containing a layer of elements along the delamination front from eqs. (3.22) -

(3.24). The calculated stress intensity factors along the delamination front for the three

benchmark problems are plotted in Figs. 3.5, 3.6 and 3.7 as a function of the normalized

coordinate x3/B (see Fig. 1.7). The parameter B is the model thickness shown in Fig 3.2.

Six domains were used in the calculations, as shown in Fig. 1.8. For each stress intensity
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Figure 3.6: Stress intensity factors for the second benchmark problem: K
(f)
1 = 0, K

(f)
2 = 1

and K
(f)
III = 0; (a) K

(f)
1 , (b) K

(f)
2 and (c) K

(f)
III .
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Figure 3.7: Stress intensity factors for the third benchmark problem: K
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factor, a percent difference was calculated as

% difference =

(
K

(1)
m −K

(2)
m

)
K

(2)
m

× 100 (3.31)

where K
(1)
m , m = 1, 2, III, is the stress intensity factor obtained from the M -integral and

K
(2)
m represents the the exact value of Km. In the denominator, the analytic result for the

dominant stress intensity factor was used meaning K
(2)
m in the denominator is unity in all

cases.

In the three solved benchmark problems, it is observed as expected, that the results for

domain 1, the smallest domain, closest to the delamination front, are less accurate than

all other domains. This error is a result of the stress singularity near the delamination

front which is not accurately represented in the FEA. In addition, relatively large errors

are observed for the calculated stress intensity factors, adjacent to the outer surfaces of

the body, namely x3/B → 0 and x3/B → 1. It may be noted that, as expected, the

results from the first and second benchmark problems in Figs. 3.5 and 3.6, respectively,

show K
(f)
1 and K

(f)
2 to be symmetric about the mid-surface (x3/B = 0.5) and K

(f)
III is anti-

symmetric. For the third benchmark problem in Fig. 3.7, the opposite trend occurs, K
(f)
1

and K
(f)
2 are anti-symmetric about the mid-surface (x3/B = 0.5) and K

(f)
III is symmetric.

The results of the first benchmark problem (case 2a in Table 1.4) are presented in

Fig. 3.5. The errors calculated using eq. (3.31) in domain 1, neglecting the results obtained

near the outer specimen surfaces, were found to be approximately 1%, 0.7% and 0% for

K
(f)
1 , K

(f)
2 and K

(f)
III , respectively. For the stress intensity factors calculated in domains

2 to 6, these errors decreased and converged to 0.01%, 0.02% and 0% for K
(f)
1 , K

(f)
2 and

K
(f)
III , respectively. Tabulated results of the first benchmark problem are presented in

Appendix B in Tables B.1 and B.2.

The results for the second benchmark problem (case 2b in Table 1.4) are presented in

Fig. 3.6. The error in K
(f)
2 calculated in domain 1, neglecting the results obtained near
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the outer surfaces, was found to be approximately 26% which is very high compared to

all other calculated errors. Hence, the curve for K
(f)
2 in domain 1, is off the scale and is

not shown in Fig. 3.6b. A clear decrease of this error was observed in the other domains.

In domain 2, the error was approximately 0.8% and in domains 3 through 6, the results

converge and the error is reduced to less than 0.16%. For K
(f)
1 and K

(f)
III , the errors

found in domain 1 were 1.8%, and 0.01%, respectively. These errors decreased in the

other domains and reached the values of 0.01% and 0%, respectively, in the sixth domain.

Tabulated results for the second benchmark problem are presented in Appendix B in

Tables B.3 and B.4.

The results for the third benchmark problem (case 2c in Table 1.4) are presented in

Fig. 3.7. The errors calculated for this problem were lower than those for the other two

benchmark problems. This occurs since there is only a square-root singularity along the

delamination front and the quarter-point elements model this well. In domain 1, neglect-

ing the results obtained near the outer surfaces, the errors were found to be approximately

0%, 0% and 3.2% for K
(f)
1 , K

(f)
2 and K

(f)
III , respectively. The results remain constant for

K
(f)
1 and K

(f)
2 in the other domains and the error in domain 6 for K

(f)
III decreases to ap-

proximately 0.01%. Tabulated results of the third benchmark problem are presented in

Appendix B in Tables B.5 and B.6.

With the obtained stress intensity factors from the three solved benchmark problems,

the DE method and the mechanical M -integral were seen to be valid. Neglecting the

results obtained from domain 1, excellent results were obtained from both methods. Hence,

it may be concluded that the software used for both methods is both correct and accurate.

This software will be used to analyze the experimental data.

For the thermal problem, both the DE method and theM -integral were used to obtain

the stress intensity factors. Twenty elements, through the thickness, were used in the

model. With the DE method, the displacement at each nodal point is obtained from the

FE model at the upper and lower faces of the delamination and used in eqs. (3.10) and

(3.13) to determine twenty-one values of the local stress intensity factors K
∗
1 (r), K

∗
2 (r)

and K
∗
IIII(r) for each distance r from the delamination front, along the delamination

faces. Linear regression was applied to every three sequential points at a distance of

0.025 ≤ r/R ≤ 0.3, where R is the radius of the disk and r/R represents the normalized

distance from the delamination front in which the DE produced valid values. Goodness of

fit was assessed for every set of results using the coefficient of determination. The points

taken from the best fit were extrapolated to determine KDE
m , m = 1, 2, III . Tabulated

results from the thermal problem obtained by means of the DE method are presented in

Appendix B in Table B.7. With the M -integral, the stress intensity factors are obtained

for each volume containing a layer of elements along the delamination front from eqs. (3.28)

- (3.30). A value is obtained for each stress intensity factor for each element along the

delamination front, resulting with twenty values through the model thickness. In addition,

83



in the same manner as that for the mechanical M -integral, six domains were used in the

calculations, as shown in Fig. 1.8. Tabulated results from the thermal problem obtained

by means of the thermal M -integral are presented in Appendix B in Tables B.8 and B.9.

Path independence is achieved in paths 4 through 6.

In order to validate the results obtained with the thermal M -integral, for each stress

intensity factor, a percent difference between the results obtained by the M -integral,

for each domain, and the results obtained using the DE method was calculated using

eq. (3.31) where K
(1)
m , m = 1, 2, III, is the stress intensity factor obtained by means of the

DE method and K
(2)
m is the stress intensity factor obtained from the thermal M -integral.

It may be noted that in order to compare the results, the values obtained from the DE

method for two adjacent nodes were averaged so as to give a result in the middle of the

element. Note that, the quantities obtained by this comparison are not exact.

As observed with the mechanical M -integral, the results for domain 1 were less accu-

rate than those obtained for all other domains. In order to evaluate the differences between

the first and sixth domains, a comparison of the thermal stress intensity factors K
(r)
1 , K

(r)
2

and K
(r)
III obtained for these domains was made and differences of 0.7−12.7%, 15.9−28.0%

and 1.9 − 3.2% were observed, respectively. These large differences are a result of the

square-root, oscillatory stress singularity at the delamination front causing the results

for domain 1 to be less accurate than those obtained for all other domains. In addi-

tion, it should be noted that convergence was observed for the results obtained from the

M -integral in domains four, five and six.

Tabulated results of the averaged values obtained from the DE method and used

in the comparison, as well as the results obtained from the sixth domain with the M -

integral are presented in Appendix B in Table B.10. The percent differences between the

values obtained using both methods, as calculated with eq. (3.31), are also shown in that

table. Differences of 0.2− 3.6%, 3.1− 7.2% and 0.0− 0.1% were observed for the thermal

stress intensity factors K
(r)
1 , K

(r)
2 and K

(r)
III , respectively. Note that, the stress intensity

factors obtained by the DE method, adjacent to the outer surfaces of the body, namely

x3/B → 0 and x3/B → 1, were neglected. It was observed that at these locations, the

values of K∗
m(r), m = 1, 2, III, were not linear as a function of r, as expected. Since

linearity is necessary for the use of this method, these results were not used. Hence, two

values on each outer surface were omitted for K
(r)
1 and K

(r)
2 and one value on each outer

surface was omitted for K
(r)
III . The differences between the values of the stress intensity

factors obtained by means of the M -integral and DE method which were omitted, show

that the DE method is not sufficiently reliable to use in predicting failure.

In a previous investigation by Rogel (2009), two sets of material pairs, namely, two UD

plies with fibers oriented in the +30◦/−60◦ and −30◦/+60◦-directions were investigated.

A similar comparison of the stress intensity factors obtained with the M -integral, as well

as with the DE method for a thermal problem was made. The comparison in that study
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Figure 3.8: Stress intensity factors for the thermal problem; (a) K
(r)
1 , (b) K

(r)
2 and (c)

K
(r)
III .

provided larger differences than observed in the current investigation. Differences of up

to 34%, 9% and 10% were obtained for K
(r)
1 , K

(r)
2 and K

(r)
III , respectively, using the finest

mesh and the largest calculation domain, domain four. Similarly to what was done here,

the results obtained from the outer surfaces of the model were neglected in the comparison.

The differences observed here are less than those found in that study with the same two

methods. It may be noted that the mesh used here is much finer than that used in Rogel

(2009). Perhaps a finer mesh would lead to smaller differences.

The calculated stress intensity factors along the delamination front, obtained from the

DE method and from the M -integral in the sixth domain for the thermal problem are

plotted in Fig. 3.8 as a function of the normalized delamination front coordinate x3/B

(see Fig. 1.7). The parameter B is the model thickness shown in Fig 3.2. It may be

observed from Fig. 3.8 that the results from the thermal problem for K
(r)
1 and K

(r)
2 are

symmetric about the mid-surface (x3/B = 0.5) and K
(r)
III is anti-symmetric.

The interface energy release rate G(r)
i (i = 1, 2, III) along the delamination front was

computed using eq. (3.17) for the results obtained from theM -integral in the sixth domain

and for the results obtained from DE. In addition, comparisons were made between results

for G(r)
i obtained by means of the M -integral, DE and J-integral computed by Abaqus

(2017). The results obtained from all three methods are presented in Fig. 3.9. Small

differences of approximately 0−1.3% were observed for the comparison of J from Abaqus

(2017) and G(M−integral)
i computed with the M -integral in the sixth domain. Larger

differences of up to 15.5% were observed when comparing G(M−integral)
i versus G(DE)

i .

Note that the largest differences were found in the mid-thickness of the model, where

vary small values of G(r)
i were obtained. If only results larger than 10 N/m are taken

into account in the comparisons, these differences become approximately 0 − 0.3% and

0.2− 6.6% for G(M−integral)
i compared with the results from Abaqus (2017) for J and for

the comparison of G(M−integral)
i versus G(DE)

i , respectively. Note that in all comparisons

discussed here, the results obtained from DE on the outer surfaces of the model, were

neglected.
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i calculated by means of DE, the M -integral in

the sixth domain and the J-integral computed by Abaqus (2017) at the sixth domain.

It may be concluded that the software used for both methods is correct. This software

will be used to analyze the experimental data. It may be pointed out that the DE method

leads to higher errors and is not recommended as a stand alone method. It may be used

to validate results obtained with the more accurate M -integral.
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Chapter 4

Fracture tests using the Brazilian
disk specimens

In this investigation, mixed mode fracture tests were carried out in order to produce a

failure criterion for the material pair studied. Various specimen types may be used for

mixed mode fracture toughness testing. Some were discussed in Section 1.3. The Brazilian

disk (BD) specimen, described in Section 1.3.3.3, was chosen to be used here.

A plate was designed for the BD specimens and manufactured by means of a wet-layup

process. This process involved impregnation of dry reinforcement with a low viscosity

thermosetting epoxy resin using hand lamination. The dry reinforcement was impregnated

on a flat surface. Specimens were cut from the plate using a water jet and then glued

to aluminum partial disks, as shown in Fig. 1.19. In Section 4.1, the plate design is

presented. The mechanical and thermal properties of the UD and the woven plies in

the plate were recalculated for the measured volume fractions based on the methodology

described in Section 2.1. Details regarding these calculations, as well as the resulting

properties which will be used in the analyses are discussed in Section 4.2. As described in

Section 1.3.3.3, the Brazilian disk specimen has been used for mixed mode fracture tests

for different interfaces. Based on the mixed mode protocol presented in Banks-Sills et al.

(1999), Banks-Sills et al. (2000), Banks-Sills et al. (2005b) and Banks-Sills et al. (2006),

a detailed protocol has been developed to be used for the tests carried out here. This

protocol is described in Section 4.3.

Twenty-seven successful tests were carried out with different loading angles ω, shown

in Fig. 1.19, to obtain results for various mixed mode combinations. The specimen dimen-

sions and test results are presented in Section 4.4. In Section 4.5 a convergence study for

the FE model mesh for both mechanical and thermal loading is presented. In addition,

in this section domain independence is examined for both the mechanical and thermal

M -integrals. The FEAs used to analyze each BD specimen, as well as the results ob-

tained from the analyses are presented in Section 4.6. Based on the results and analyses,

several two and three-dimensional mixed mode interface failure criteria are proposed for
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Figure 4.1: Schematic view of the composite Brazilian disk plate design: ; (a) layup; (b)
thermo-couples and Teflon film locations, blue - delamination and red - separation.

predicting delamination failure of the multi-directional, laminate composite studied. The

curves and surfaces obtained are described in Section 4.7. Also in this section, a statis-

tical analysis is carried out to obtain failure curves or surfaces with a 10% probability

of unexpected failure in the safe zone with a 95% confidence. These curves or surfaces

may be used to predict failure of structures fabricated from the investigated material and

interface, as well as to assist in composite design.

4.1 Plate for fracture tests and Brazilian disk speci-

men design

A laminate composite carbon/epoxy plate containing 69 plies was designed. Each woven

ply thickness may range from 0.21 mm to 0.27 mm and each UD fabric ply is approximately

0.2 mm thick. The composite plate layup was designed to create a nominal thickness of

approximately 15 mm. This layup is presented in Fig. 4.1a. The layup of the plies

was chosen based on previous experience to be both symmetric and balanced about the

mid UD-fabric ply, with a stacking sequence of [(45/ − 45)7, 02, (45/ − 45)4, 03, (45/ −
45)4, 04 , (45/−45)4, (0/(45/−45))2, 0, (45/−45), 0// (45/−45), 0, ((45/−45)/0)2, (45/−
45)4, 04, (45/− 45)4, 03, (45/− 45)4, 02, (45/− 45)7]. The layup listed here begins with ply
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1 which is the uppermost ply in the plate and ends with ply 69 which is located at the

bottom of the plate.

Before the plate was manufactured, FE analyses were carried out using the finite

element program Abaqus (2017) to determine the possible loading angles ω, for which

the delamination near its front is open. The dimensions of the BD FE model used were

R = 20 mm, 2a = 16 mm and B = 8 mm, where R represents the specimen radius, 2a

represents the delamination length and B represents the specimen thickness (see Fig. 1.19).

The FE mesh of the specimen contained 406,080 C3D20 quadratic hexahedral elements

with 1,683,565 nodes. The mechanical properties used in the analyses are given in the

last row in Table 2.4 and Table 2.7, for the UD and woven fabrics, respectively. These

properties are not those of the plate which was used in the BD tests. For the BD specimens

tested, new material properties were obtained after the plate was manufactured. These are

presented in Section 4.2. It may be noted that the thermal residual curing stresses were

neglected in the predesign analyses. The numerical results from the predesign analyses

showed that the delamination faces are open for loading angles in the range−13◦ ≤ ω ≤ 5◦.

For loading angles in the range of 8◦ ≤ ω ≤ 13◦, the delamination faces remained open

on one side of the delamination and closed on the other side. On this basis, the designed

layup of the composite plate was approved for fabrication.

Five thermo-couples (TC) were inserted during plate fabrication at different locations,

as shown in Fig. 4.1b, to verify a uniform degree of cure during the curing process. As

a result of the temperature changes applied during the curing process, residual stresses

were induced within the laminate. Polytetrafluoroethylene (PTFE) strips, 15 µm thick,

were positioned at different locations in the plate, as shown schematically in red and blue

in Fig. 4.1. The PTFE film used to create the artificial delamination, shown in blue,

was placed periodically between the UD-fabric ply (ply 35), and a plain woven ply (ply

36), shown as the double slash in the layup description. The PTFE films shown in red

were used for ply separation, to provide samples used to measure the carbon fiber weight

fraction Wf . The separation of four UD-fabric plies and four woven plies was enabled

using these PTFE strips. Plies 1 through 20, as well as plies 36 through 69 were also

separated which included both UD fabric and woven fabric plies. These plies are denoted

in Fig. 4.1a as ”mixed”.

The composite plate was fabricated in two stages by means of a wet-layup. The first

stage included plies 69 to 33 shown in gray in Fig. 4.1a. The plies were held in a vacuum

bag for 12 hours and then cured in an oven at 40◦ C for two hours. The second stage

included plies 32 to 1 arranged on top of plies 69 to 33 shown in green in Fig. 4.1a. The

plate was then held in a vacuum bag for 24 hours and a full curing procedure was carried

out. During curing, the vacuum bag was placed in an oven for 30 minutes at 60◦ C, 30

minutes at 70◦ C and finally 5 hours at 80◦ C. The temperature was decreased 3◦ C/min.

The plate was then held in the vacuum bag for an additional 24 hours.
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Figure 4.2: The manufactured plate for the Brazilian disk specimens, each specimen in
the plate is numbered as C.R.S.

The manufactured plate is presented in Fig. 4.2, a schematic view of the specimens

cut from the plate and their numbering as Column, Row, Side (C.R.S.) are denoted. The

plate size was approximately 16.56 mm thick, 265 mm wide and 629 mm long. After

the manufacturing process was complete, a non-destructive test (NDT) was performed

to identify voids, as well as the location of the Teflon strips. From the NDT results,

the Teflon was identified. In addition, ply separation was observed (for example, see red

arrows in Fig. 4.3), as well as many voids.

The temperature measured by the TCs increased monotonically to a maximum of

85◦ C in all five locations measured. It was concluded that a uniform degree of cure

was obtained within the composite plate. However, after the plate was completed, it was

observed that plies 33 to 69 were thicker than plies 1 to 32. In Fig. 4.4, two parts of the

plate are shown. It may be noted that the upper part consists of 34 plies and the lower

part, 35. The lower part is formed by plies 36 to 69 which measures approximately 9.8 mm

Figure 4.3: Non-destructive testing result; red arrows indicate ply separation locations.
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Figure 4.4: Two parts of the plate. The lower part includes expanded plies 69 to 36
(approximate thickness 9.8 mm); the upper part includes compressed plies 32 to 1 and
expanded plies 35 to 33 (approximate thickness 7.2 mm).

using a micrometer; this is the expanded part of the plate. Plies 1 to 35 form the upper

part of the plate shown in Fig. 4.4. Plies 1 to 32 are compressed and plies 33 to 35 are

expanded. This part of the plate measured approximately 7.2 mm using a micrometer. It

may be noted that the average plate thickness, measured with a micrometer was found to

be 16.56 mm. Hence, the sum of the thicknesses of both parts shown in Fig. 4.4 was found

to be greater than this average measurement. It may be observed that the measurement

of the two parts in Fig. 4.4 varies at different locations. Nonetheless, the differences in

thickness of the two parts of the specimen appear to be a result of a stronger vacuum

used during the second manufacturing stage. Thus, unfortunately, the two parts of the

plate have different fiber volume fractions, resulting in different mechanical and thermal

properties.

Strips were formed from the plate using a water-jet cutter. Aluminum blocks were

glued to each strip on the bottom and top sides of the laminate and cut again using

the same water-jet cutter, creating circular BD specimens with an approximate thickness

B ≈ 8 mm, diameter 2R ≈ 40 mm and an artificial delamination of length 2a ≈ 16 mm,

as illustrated in Fig. 1.19. During each test, a specific loading angle ω between the

delamination line and the load line as shown in Fig. 1.19 is chosen. For each value of

ω, the mixed mode ratio between the opening and shear deformation changes. Both

negative (ω < 0◦) and positive (ω > 0◦) loading angles were used in the tests. For the

latter, the delamination will propagate from the lower delamination front. To prevent this

occurrence, an arrest hole was introduced with the water-jet cutter, as shown in Fig. 4.5a.

The horizontal and vertical diameters dh and dv, of ∼2 mm, respectively, are illustrated

in Fig. 4.5b, together with the offset distance from the delamination cv. The hole was

induced only for specimens tested with a positive loading angle. It may be noted that

the aluminum partial disks in Fig. 4.5a were covered with black tape in order to prevent

light reflection during the test.
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Figure 4.5: (a) Brazilian disk specimen with a hole at the lower delamination front; (b)
enlarged view of the hole.

Fiber weight fraction measurements were carried out on four parts of the layup, shown

in Fig. 4.1a. These included three parts from the compressed section and one part from

both the compressed and expanded sections of the plate. Each group of plies is presented

in columns one through five of Table 4.1, where the number of plies of each type in each

group is given, indicating whether the plies are in the compressed or expanded part of

the plate. Five specimens were measured from each group of plies. The obtained weight

fractions were converted into fiber volume fractions. These were calculated using the

density of the weight fraction specimens, as well as that of the epoxy and the carbon. It

may be noted that there is about 3% glass fibers within the total percentage of fibers in the

UD fabric. These were included as carbon fibers in calculating the fiber volume fraction

Vf . In Table 4.1, the average volume fractions obtained for each group of plies and the

related standard deviations (SDs) are shown in columns six and seven, respectively. Based

upon the fiber volume fractions, the mechanical properties and CTEs of each material in

the upper and lower parts of the plate were determined.

Table 4.1: Fiber volume fraction Vf of three compressed parts of the plate and one mixed
(compressed and expanded) part calculated from weight fraction measurements.

ply number UD 0◦ weave +45◦/− 45◦ Vf - average SD

compressed expanded compressed expanded

1-20 5 0 15 0 0.54 ±0.004
21-24 4 0 0 0 0.58 ±0.013
25-28 0 0 4 0 0.52 ±0.003
29-69 2 14 2 23 0.39 ±0.018
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4.2 Effective mechanical and thermal properties of

the UD and woven plies of the BD specimens

In this section, effective mechanical and thermal properties of the materials in the fab-

ricated plate for the BD specimens are presented. The materials on either side of the

interface are a UD fabric and a woven composite as shown in Fig. 2.1. The upper material

is the UD fabric with carbon fibers in the 0◦- direction (the x1- direction in Fig. 2.1), with

a small percentage of glass fibers in the x3- direction to hold the carbon fibers together.

The lower material is a plain weave with tows oriented in the +45◦/− 45◦- directions. In

Section 2.1, effective mechanical properties were found for these materials using HFGMC

(Aboudi, 2004). Those calculations were carried out in order to verify tested values of the

mechanical properties. Those tests were performed for specimens with different volume

fractions than those in the plate used for the BD specimens. Hence, the properties are

recalculated using the volume fractions which are appropriate here.

In order to calculate the properties in the expanded part of the plate, Vf of the glass

and carbon fibers in the UD fabric and the volume fraction of the carbon fibers in the

woven fabric composite plies were calculated as

Vf(41) =
1

41

[
2Vf(UDC) + 2Vf(WC) + 14Vf(UDE) + 23Vf(WE)

]
(4.1)

where Vf(41) is the total fiber volume fraction of plies 29 to 69 (41 plies), given in Table 4.1,

the subscripts UDE andWE represent the UD fabric and the woven fabric in the expanded

part of the plate, respectively. In the same manner, the subscripts UDC and WC refer

to the UD and woven fabrics in the compressed part of the plate, respectively. The

latter fiber volume fractions Vf(UDC) and Vf(WC) are given in Table 4.1, where the volume

fractions Vf(UDE) and Vf(WE), for plies in the expanded part of the plate are unknown. In

order to calculate these fiber volume fractions, it was assumed that the ratio between the

measured volume fractions in the compressed part of the plate remain constant in the

expanded part of the plate as well, namely

Vf(UDC)

Vf(WC)

=
0.58

0.52
= 1.12 ; (4.2)

so that,
Vf(UDE)

Vf(WE)

= 1.12 . (4.3)

By substituting eq. (4.3) into eq. (4.1), the desired fiber volume fractions were obtained

for the expanded part of the plate as Vf(UDE) = 0.40 which includes the carbon and the

glass fibers and Vf(WE) = 0.36. Summarized values of the total fiber volume fractions

obtained for each material in the compressed and expanded parts of the plate are given in

Table 4.2. For all plies, the carbon fiber volume fraction was used to obtain the mechanical

properties and CTEs in the expanded and compressed parts of the plate.
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Table 4.2: Volume fractions of the fibers (both glass and carbon) in the UD fabric and
the carbon fibers in the woven fabric in the compressed and expanded parts of the plate.

material Vf

compressed
+45◦/− 45◦ 0.52
UD 0◦ 0.58

expanded
+45◦/− 45◦ 0.36
UD 0◦ 0.40

The UD-fabric is treated as transversely isotropic. The properties EA, ET , νA and

GA were calculated according to experimentally obtained properties as related to the

proportion of the carbon fiber volume fractions in the current plate verses those in the

experiment. These are presented in the second column in Table 4.3. These were calculated

as 97% of the total fiber volume fractions shown in Table 4.2. The ratios between each

of these carbon fiber volume fractions, in Table 4.3, to that related to the plate which

was used to determine mechanical properties, namely Vf = 0.58, was calculated. The

required properties were determined in proportion to the obtained ratio with respect to

the experimental properties in the second line in Table 2.4. The resulting values of EA,

ET , νA and GA are presented in Table 4.3. Since there was no experimental data for νT ,

αA and αT , these were calculated using the High-Fidelity Generalized Method of Cells

(HFGMC) (Aboudi, 2004). Using the values of Vf in Table 4.3, the stiffnesses calculated by

HFGMC were too high. To obtain values corresponding to those of the tests, in the same

manner as that described in Section 2.1, the carbon fiber volume fractions were reduced

to 0.47 and 0.33, for the compressed and expanded parts of the plate, respectively. The

resulting values of νT , αA and αT are also shown in Table 4.3. Moreover, for properties in

the transverse direction, namely νT and αT , the effect of the glass fibers was taken into

consideration by the rule of mixtures, raising E = 2.8 GPa for the epoxy in Table 2.1 to

E = 5.9 GPa. The value of GT was obtained using eq. (2.1).

The lower ply along the interface is a plain, balanced weave which is effectively tetrag-

onal with x2 = 0 a symmetry plane. This material is described by six independent me-

chanical properties and two CTEs. The Young’s moduli are E11 = E33 and E22; ν21 = ν23

and ν13 are the Poisson’s ratios; G21 = G23 and G13 are the shear moduli; and α11 = α33

and α22 are the CTEs (see Figs. 2.3a and 2.3b for coordinate directions). The effective

Table 4.3: Compressed and expanded UD-fabric mechanical properties and CTEs.

Vf EA ET GA GT νA νT αA αT

(GPa) (GPa) (GPa) (GPa)
(
×10−6/◦C

) (
×10−6/◦C

)
compressed 0.56 110.6 7.0 2.7 2.5 0.38 0.42 53.2 0.62

expanded 0.39 77.1 4.8 1.9 1.6 0.26 0.48 65.1 1.46
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(a)

(b)

Figure 4.6: (a) A plain weave with fibers oriented in the 0◦/90◦- directions similar to the
RUC shown in red in Fig. 2.3; (b) a plain weave with fibers oriented in the +45◦/−45◦-
directions with the RUC shown in red

mechanical properties and CTEs of the woven fabric were determined by means of the

two-step HFGMC (Aboudi, 2004; Decad, 2008). All properties were found for a plain

weave with fibers oriented in the 0◦/90◦- directions as shown in Fig. 4.6a and transformed

by a 45◦ rotation about the x2 - axis as shown in Fig. 4.6b.

The measured and calculated carbon fiber volume fractions of 0.52 and 0.36, given

in Table 4.2, respectively, for the compressed and expanded parts of the plate were used

in the calculation. In addition, a repeating unit cell (RUC) shown in Fig. 2.3a in two

dimensions and Fig. 2.3b in three dimensions, was used in the calculation. The parameters

required for an HFGMC calculation are the width of the yarn a, the length and width of

the epoxy between the yarn g, and the ply thickness h shown in Figs. 2.3a and. 2.3b. A

digital microscope with a magnification of 10× (DinoLite AM311ST, AnMo Electronics,

Hsinchu, Taiwan) was used to measure the parameters a and g. Measurements were

carried out at 98 and 86 locations, respectively, on the outer upper and lower plies of

the plate to obtain these parameters for the compressed and expanded woven fabric,

respectively. The thickness of each ply h was obtained using the optical mode of an

Olympus Confocal Microscope (model number OLS4100; Tokyo, Japan) by measuring

the thickness of several groups of woven plies and dividing by the number of plies in that

group. For this measurement 10 specimens were used. The average results for a, g and

h, as well as standard deviations are presented in the columns 2 through 4 in Table 4.4.

The angle β of the yarn in the RUC is shown in Fig. 4.7. This angle is also considered in

the HFGMC calculation and may be determined using the parameters g and h as

Table 4.4: Geometric measurements of the compressed and expanded weave.

a (mm) g (mm) h (mm) β (◦)

compressed 1.80 ±0.007 0.20 ±0.006 0.22 ±0.007 15.4
expanded 1.70 ±0.012 0.26 ±0.009 0.30 ±0.004 16.1
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Figure 4.7: Schematic view of part of the RUC in Fig. 2.3b, showing the angle β of the
yarn in the RUC.

β = tan−1

(
h

4g

)
. (4.4)

Results of this angle are given in the last column in Table 4.4.

Using the geometric parameters a, g and h given in Table 4.4, the volume of the yarn

in the RUC, volume of the RUC and the volume of yarn in the weave (Decad, 2008) were

calculated by means of eqs. (2.5) to (2.7), respectively. The volume fraction of the fibers

in the weave Vf(f/w), where the f in parenthesis denotes fiber, were given in Table 4.2.

These values for the expanded and compressed woven fabrics are shown again in the

second column of Table 4.5. The results for the volume fractions of the yarn in the weave

are presented in the third column of Table 4.5. Using

Vf(f/y) =
Vf(f/w)
Vf(y/w)

, (4.5)

the volume fraction of the fibers in the yarn Vf(f/y) were obtained. These values are

presented in the fourth column of Table 4.5 and were used in the calculation of the yarn

properties.

The mechanical properties and CTEs of the yarn were obtained by means of HFGMC

for the carbon fiber volume fractions Vf(f/y) in Table 4.5 and are presented in Table 4.6.

The Young’s moduli in the axial and transverse directions are EA and ET , respectively; the

shear modulus in the axial direction is GA; the Poisson’s ratios in the axial and transverse

directions are νA and νT , respectively; the shear modulus GT was obtained from eq. (2.1).

The mechanical properties presented in Table 4.6 for the yarn and the geometric pa-

rameters a, g and h in Table 4.4, were used as input to an HFGMC two-step calculation to

obtain the weave mechanical properties. These are presented in Table 4.7. The subscripts

Table 4.5: Volume fraction of the carbon fibers in the weave, yarn in the weave, and
carbon fibers in the yarn for the compressed and expanded parts of the plate.

Vf(f/w) Vf(y/w) Vf(f/y)

compressed 0.52 0.90 0.58
expanded 0.36 0.87 0.41
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Table 4.6: Yarn properties of the compressed and expanded parts of the plate, used to
obtain weave properties.

Vf(f/y) EA ET GA GT νA νT αA αT

(GPa) (GPa) (GPa) (GPa)
(
×10−6/◦C

) (
×10−6/◦C

)
compressed 0.58 134.6 5.5 3.7 2.0 0.30 0.40 0.26 43.9
expanded 0.41 96.0 4.7 2.3 1.6 0.32 0.45 0.87 58.3

on the properties refer to the axes in Figs. 2.3a and 2.3b. The properties obtained for

the 0◦/90◦ weave, shown in Fig. 4.6a, were transformed by a 45◦ rotation about the x2 -

axis (Ting pp. 53-56, 1996) to the form shown in Fig 4.6b. The transformed mechanical

properties which were used in all further calculations are presented in Table 4.8.

In the same manner as that for the mechanical properties, the CTEs for the com-

pressed and expanded woven fabrics were obtained using a two step HFGMC calculation.

The CTEs of the yarn are presented in Table 4.6. These together with the geometric mea-

surements for a, g and h, given in Table 4.4, were used as input for HFGMC to obtain the

CTEs for the expanded and compressed woven fabrics with fibers oriented in the 0◦/90◦-

directions. The obtained CTEs remain the same for fibers oriented in the +45◦/−45◦- di-

rections and are shown in Table 4.8. These values were used in the finite element analyses

(FEAs) of the tested specimens. It may be noted that the effective CTEs obtained for the

expanded woven fabric in the x2 - direction is higher than that of both constituents. This

phenomenon may occur for composites with low fiber volume fractions and is discussed

in (Aboudi pp. 66-71, 1991).

Using the mechanical properties given in Tables. 4.3 and 4.8 for the expanded UD

and woven plies, respectively, parameters which are required for the first term of the

asymptotic expansion, as well as for the DE method and for the mechanical and thermal

M -integrals were computed and are presented in Table 4.9. Among these are ε defined in

eq. (2.72), D11, D22 and D33 which are the diagonal members of the matrix D, given in

eq. (2.63), W12 given in eq. (2.64) and H1 and H2 defined in eqs. (3.18). These parame-

ters are related to the mechanical properties of the two materials along the investigated

interface.

Table 4.7: Compressed and expanded woven fabric mechanical properties obtained from
HFGMC models for a 0◦/90◦ weave.

Vf(f/w) E11 = E33 E22 G13 G21 = G23 ν13 ν21 = ν23
(GPa) (GPa) (GPa) (GPa)

compressed 0.52 52.8 6.2 3.2 2.2 0.036 0.049
expanded 0.36 34.2 5.4 2.1 1.7 0.052 0.073
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Table 4.8: Mechanical properties and CTEs of the compressed and expanded woven fabric
with fibers in the +45◦/−45◦- directions.

Vf E11 = E33 E22 G13 G21 = G23 ν13 ν21 = ν23 α11 = α33 α22

(GPa) (GPa) (GPa) (GPa)
(
×10−6/◦C

) (
×10−6/◦C

)
compressed 0.52 11.5 6.2 25.5 2.2 0.84 0.049 4.1 65.7

expanded 0.36 7.5 5.4 16.3 1.7 0.79 0.073 7.3 85.8

4.3 BD test protocol

A fracture test protocol was developed to be used for the Brazilian disk specimens tested

here. The protocol is based upon the mixed mode methods used in Banks-Sills et al. (1999,

2000, 2005b, 2006) and will be described here in detail. Prior to each test, geometrical

parameters of each specimen were measured. Then, test preparation was performed and

finally the test procedure was carried out.

Specimen preparation included geometric measurements of each specimen. The com-

posite strip thickness B and the specimen diameter 2R were measured using a digital mi-

crometer with a resolution of 0.001 mm and a digital caliper with a resolution of 0.01 mm,

respectively. The thickness B was measured at six locations in front of the delamination,

three times on each side as marked with white stars in Fig. 4.8a. The specimen diameter

2R shown in purple in that figure was measured three times in the composite part of the

specimen. These dimensions were averaged and used in the FEA of each specimen.

Additional measurements, shown in Fig 4.8a, were performed. Among these are the

insert or critical delamination length at fracture 2ac, and the horizontal distance between

each side of the delamination front and the specimen diameter, RR and RL where the

subscripts R and L represent right and left, respectively. These were measured using an

Olympus Confocal Microscope (model number OLS4100; Tokyo, Japan) using its optical

mode. The resolution of the measurement is 0.16 (pixel/µm)2. The center of the artificial

delamination was found from these measured dimensions and used to place the specimen

accurately in the loading frame during the test.

In addition, before testing, each specimen was photographed with the Olympus con-

focal microscope using its optical mode. The images were stitched together using ImageJ

Table 4.9: Parameters related to the mechanical properties of the expanded UD and woven
plies in Tables 4.3 and 4.8, respectively.

ε D11 D22 D33 W12 H1 H2

(1/GPa) (1/GPa) (1/GPa) (1/GPa) (GPa) (GPa)

2.257·10−2 2.791·10−1 6.786·10−1 7.599·10−1 3.081·10−2 5.924 5.264
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Figure 4.8: Illustration of a BD specimen with some dimensions and their measurement
location: (a) three-dimensional view, and (b) two-dimensional view.

software (2015) to create a high resolution photograph of the composite strip. An exam-

ple of such a photograph is presented in Fig. 4.9. Recall that there are twenty-seven ply

groups for each specimen, fourteen above the delamination and thirteen below it. Using

the same ImageJ software, the stitched photograph of each specimen was used to mea-

sure, the height of each stack of plies with fibers oriented in the same direction. These

measurements were also used in the FE model. In addition, by summing up the heights

of the stacked plies above and below the delamination, values of HT and HB, respectively,

shown in Fig. 4.8b in green and white, respectively, were obtained. These parameters

represent the vertical location of the delamination within the composite strip and were

also used to place the specimen accurately in the loading frame during the test.

Using the same stitched photograph, for specimens containing a hole, additional mea-

surements were carried out. The horizontal and vertical hole diameter dh and dv, respec-

tively, as well as the vertical offset distance between the hole center and the delamination

UD

weave

aluminum

Figure 4.9: Example of a high resolution photograph of specimen BD1.6.2 stitched using
ImageJ software (ImageJ, 2015) from 19 × 9 photographs obtained by the optical mode
of the confocal microscope.
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Figure 4.10: Experimental setup of the BD mixed mode fracture toughness test.

cv, shown in Fig. 4.5b, were measured to be modeled in the FEA.

After specimen preparation was completed, black tape was placed on the aluminum

to prevent light reflection. Then, specimens were conditioned at a temperature of 23◦ ±
1◦ C and a relative humidity (RH) of 50% ± 3% for at least one week in a conditioning

chamber (M.R.C. BTH80/-20, Holon, Israel) which is well within the tolerance of the

ASTM Standard D5229/D5229M (2011).

After the specimens were prepared, the test was setup. A LaVision system composed

of one camera, a programmable timing unit (PTU) and computer software were employed

during the test. The camera used is a monochrome CCD of LaVision (model no. 1101396;

Göttingen, Germany) with a 5 MP Imager Pro SX, resolution 2456× 2058 pixels, and a

Nikon Micro-Nikkor 105 mm f/2.8 lens. The camera was connected to a LaVision external

PTU and controlled by DaVis (2015) computer software. The test setup is presented in

Fig. 4.10. Note that the PTU and the computer controlling the LaVision DaVis software

are not shown in the figure.

Before testing, the camera was straightened using a level and scaled by photographing

the specimen with millimetric paper taped to it. Then, the specimen was placed in the

loading frame as shown in Fig. 4.11. The required loading angle ω, in the x1 − x2 - plane

(see Fig. 1.19), specified for each test, was measured from an image of the specimen and

loading frame obtained by the LaVision system. Using Vision Assistant software (2005),

the angle between the load line and the delamination line was measured with respect to

the delamination center. In addition, the specimen location in the loading frame was

examined so that the load line and the delamination center approximately intersect. This

was verified using an image of the specimen and frame, obtained by the Lavision system.

The delamination location was marked on the specimen image, based on the measured

values of RR, RL, 2ac, HT and HB, shown in Figs. 4.8. The load line is marked on an
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Brazilian disk 

specimen

Loading frame

Figure 4.11: Brazilian disk specimen and loading frame.

image of the specimen as a vertical line between the two contact points of the loading

frame and the specimen as shown in Fig. 4.12. Then, the intersection of the two lines is

examined; ideally, they intersect at the delamination center. In some cases, especially for

smaller loading angles, namely −2 < ω < 2◦, the intersection obtained was not ideal, but

it always took place within a quarter of the total delamination length. This positioning

was accounted for in the FEAs. The loading angle was measured using Vision Assistant

(2005) software. Continuous measurements of the temperature and relative humidity,

respectively, were recorded in the Instron working area.

During a test, the loading frame in Fig. 4.11 was loaded by the Instron loading ma-

chine (model number 8872; High Wycombe, England), with a load cell of maximum load

25,000 N and an accuracy of ±0.25% of the reading for loads greater than 250 N. The cross-

head displacement of the Instron was increased quasi-statically at a rate of 0.5 mm/min.

During the test, the applied load and the cross-head displacement were monitored by the

Instron system. The applied load and images were synchronized by the LaVision system.

Images of the specimen were acquired at a rate of 5 Hz as the load increased until fracture.

After each test, it was verified that failure occurred as a result of propagation from

the artificial delamination at the upper delamination front. Verification was made from

Load line

Delamination

2a

Figure 4.12: Brazilian disk specimen image marked with the delamination location and
the load line before testing.
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Figure 4.13: Fracture surface of specimen BD1.3.2.

images obtained by the LaVision system during each test. The critical load at fracture

Pc, for each specimen, was obtained from the load-displacement curve. In addition, the

temperature difference ∆ϑi between the highest temperature measured during curing

(85◦C) and the temperature measured during the test was calculated as

∆ϑi = ϑi − 85◦ (4.6)

where ϑi is the temperature measured at the beginning of each test. In addition, for

two specimens, digital image correlation (DIC) was performed for comparison of the

displacement field obtained during the test and the displacement field obtained using

an FEA.

The parameters 2ac, RR and RL shown in Fig 4.8a were remeasured after a test from

the fracture surface of each specimen which was split into two parts. The measurements

were made using the optical mode of the confocal microscope with a resolution of 0.16

(pixel/µm)2. An image of the fracture surface used for this measurement is presented

in Fig. 4.13. The critical delamination length 2ac was measured after each test as the

length of the smooth part on the fracture surface at ten locations through the specimen

thickness. These are marked in Fig. 4.13, on each side of the split specimen. From the

ten measurements obtained, the inner six, three from each of the lower and upper parts

of the specimen, were averaged. In the same manner, the distances RL(m) and RR(m),

respectively, shown in Fig. 1.19, were measured. Note that the subscript m represents

measured values and the subscript c is the critical length at fracture. The specimen

diameter was calculated as

D = RR(m) + 2ac +RL(m) . (4.7)

Since there were slight differences between the diameter D and the measured diameter 2R,

the dimensions RL(m) and RR(m) where scaled so that 2R = D. Recall that the diameter

of the composite strip was measured before the test. The new dimensions RL(calc) and

RR(calc), where the subscript calc represents the calculated (scaled) values, were obtained
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using the ratio between 2R− 2ac and the computed diameter D − 2ac as

Ri(calc) =
2(R− ac)Ri(m)

D − 2ac
(4.8)

where i = L,R.

4.4 BD test results

In order to determine the mixed mode fracture toughness of the specific material and

interface illustrated in Fig. 2.1, twenty-seven successful mixed mode fracture toughness

tests were carried out. These included twenty tests with negative loading angles of ω ≈
−2◦,−5◦,−10◦ and −13◦ and seven tests with positive loading angles of ω ≈ 2◦, 5◦ and

10◦ (see Fig. 1.19a for the definition of positive and negative loading angles). For ω > 0◦,

the BD specimens contained a hole at the lower delamination front, as shown in Fig. 4.5a.

The geometric parameters described in Section 4.3 were measured for each specimen to

be used in the FE models. The average delamination length 2ac, average thickness B and

average composite diameter 2R of each specimen, as well as the standard error of each,

were calculated and are presented in the second, third and fourth columns of Table 4.10.

These dimensions were used in the FEA of each specimen. In addition, RR(m) and RL(m),

illustrated in Fig. 4.8a, where (m) represents the measured values, are presented in the

fifth and sixth columns of that table, respectively. The diameter D was calculated for each

specimen using eq. (4.7) and the results are presented in the seventh column of that table.

Note that the calculation included more significant figures than shown in Table 4.10. The

values RR(calc) and RL(calc) which were calculated by means of eq. (4.8) and used in the

FEAs are shown in the eighth and ninth columns of Table 4.10, respectively. Note that

the maximum difference between the measured RL(m) and RR(m) and calculated RL(calc)

and RR(calc) values is approximately 0.3 mm.

Additional measurements were performed which included measuring the height of each

stack of plies shown in Fig 4.9. The results were used in the FEAs. From these measure-

ments, the average height of a single ply was found as 0.15±0.02 mm and 0.27±0.01 mm

for the compressed UD and woven plies, respectively. For the expanded part of the com-

posite, the ply heights were found to be 0.23± 0.02 mm and 0.35± 0.04 mm for the UD

and woven plies, respectively. All heights of the stacked plies above and below the delam-

ination were added together and referred to as HT and HB, respectively, as illustrated

in Figs. 4.8b and 4.12. The obtained results are presented in Table 4.11. These dimen-

sions were used to place the specimen in the frame before each test, as was described in

Section 4.3.
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Table 4.10: Dimensions of each BD specimen.

specimen 2ac B 2R RR(m) RL(m) D RR(calc) RL(calc)

number (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

BD1.6.1 15.0 ±0.093 8.5 ±0.022 40.7 ±0.040 40.7 13.5 12.2 12.2 13.5
BD1.14.2 13.6 ±0.076 7.9 ±0.022 40.3 ±0.031 40.0 13.2 13.4 13.3 13.3
BD1.8.2 14.3 ±0.157 7.9 ±0.028 40.2 ±0.023 39.9 12.6 13.2 13.1 12.7
BD1.8.1 15.7 ±0.055 8.0 ±0.014 40.2 ±0.023 39.9 11.4 13.0 12.8 11.6
BD1.12.2 14.6 ±0.190 7.8 ±0.005 40.3 ±0.032 40.1 11.9 13.7 13.6 12.0
BD1.2.2 15.6 ±0.092 8.4 ±0.053 40.5 ±0.026 40.3 13.2 11.7 11.6 13.3
BD1.3.1 15.3 ±0.078 8.5 ±0.083 40.6 ±0.050 40.1 11.9 13.3 13.0 12.1
BD1.1.2 14.9 ±0.102 8.4 ±0.053 40.8 ±0.046 40.5 12.5 13.2 13.0 12.7
BD1.2.1 14.9 ±0.057 8.4 ±0.061 40.3 ±0.062 39.9 13.4 11.8 11.7 13.6
BD1.1.1 15.1 ±0.102 8.3 ±0.015 40.6 ±0.035 40.5 12.7 12.7 12.7 12.7
BD1.3.2 15.2 ±0.039 8.3 ±0.063 40.2 ±0.052 40.3 11.9 13.2 13.2 11.8
BD1.4.2 15.5 ±0.063 8.4 ±0.051 40.9 ±0.047 40.7 13.0 12.3 12.2 13.1
BD1.6.2 15.3 ±0.057 8.4 ±0.033 40.5 ±0.153 40.4 12.5 12.7 12.7 12.5
BD1.5.1 15.3 ±0.233 8.2 ±0.070 40.6 ±0.032 40.6 12.4 12.9 12.9 12.4
BD1.4.1 15.7 ±0.090 8.4 ±0.032 40.6 ±0.025 40.5 13.4 11.4 11.4 13.5
BD1.7.1 15.0 ±0.046 8.3 ±0.037 40.6 ±0.040 40.4 11.6 13.9 13.8 11.7
BD1.11.2 15.7 ±0.060 7.8 ±0.051 40.3 ±0.047 40.1 12.0 12.5 12.4 12.1
BD1.7.2 15.2 ±0.047 8.3 ±0.058 40.6 ±0.066 40.4 13.0 12.3 12.2 13.1
BD1.13.2 16.0 ±0.040 7.9 ±0.023 40.2 ±0.026 40.1 11.4 12.8 12.7 11.5
BD1.5.2 15.0 ±0.135 8.3 ±0.010 40.8 ±0.047 40.4 12.8 12.7 12.5 13.1

BD2.8.1 16.9 ±0.103 7.8 ±0.074 40.3 ±0.020 39.9 11.6 11.7 11.5 11.7
BD2.7.1 15.5 ±0.092 7.7 ±0.013 40.3 ±0.015 40.0 11.5 13.1 12.9 11.7
BD2.7.2 17.5 ±0.089 7.8 ±0.014 40.3 ±0.026 39.9 10.2 12.4 12.2 10.4
BD1.13.1 12.2 ±0.036 7.8 ±0.014 40.3 ±0.042 40.2 12.6 15.5 15.5 12.6
BD2.8.2 15.4 ±0.126 7.7 ±0.006 40.3 ±0.031 39.9 12.9 11.8 11.6 13.1
BD2.1.1 16.0 ±0.128 7.8 ±0.045 40.4 ±0.025 40.2 12.1 12.2 12.1 12.2
BD2.4.2 16.3 ±0.235 7.7 ±0.006 40.2 ±0.006 40.2 11.7 12.2 12.2 11.7

For the specimens with a hole which were tested with ω > 0◦, the measured horizontal

and vertical hole diameters dh, dv, respectively, as well as the vertical offset distances be-

tween the hole center and the delamination cv, illustrated in Fig. 4.5b, were also measured

and are shown in Table 4.12. These values were also used in the FEA models.

Results from all twenty seven tests are reported here. In Table 4.13, the temperature ϑi

and relative humidity (RH), measured at the beginning of each test, are presented. Note

that except for specimens BD1.2.2 and BD1.4.2, all temperatures measured were within

the tolerance recommended in the ASTM Standard D5229/D5229M (2011) of 23◦ ± 3◦C.

In addition, for seven specimens, the RH was not in the range of 50± 10% defined in that

standard. In Table 4.13, the loading angle ω, the critical delamination length 2ac and the

critical load at fracture Pc, are also presented for each specimen.

Load-displacement curves from the tests are shown in Figs. 4.14 and 4.15 for specimens

loaded with negative and positive loading angles, respectively. It may be observed from

the curves and from Table 4.13 that the critical loads Pc measured for specimens loaded

with negative loading angles, were larger than those loaded with positive loading angles.

In addition, it may be observed from the plots that for specimens loaded with ω ≈ −2◦, 2◦
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Table 4.11: Composite heights above and below the delamination.

specimen number HT HB

(mm) (mm)

BD1.6.1 7.19 9.62
BD1.14.2 7.75 10.00
BD1.8.2 7.61 10.12
BD1.8.1 7.02 9.99
BD1.12.2 7.04 9.16
BD1.2.2 7.41 10.21
BD1.3.1 7.28 10.21
BD1.1.2 7.42 10.22
BD1.2.1 7.11 9.92
BD1.1.1 7.07 10.22
BD1.3.2 7.20 10.56
BD1.4.2 7.03 10.18
BD1.6.2 7.15 9.39
BD1.5.1 7.30 9.77
BD1.4.1 7.15 9.99
BD1.7.1 7.18 9.20
BD1.11.2 7.58 10.39
BD1.7.2 7.22 9.63
BD1.13.2 7.48 9.87
BD1.5.2 7.23 9.58
BD2.8.1 7.45 9.79
BD2.7.1 7.54 9.49
BD2.7.2 7.56 9.61
BD1.13.1 7.54 9.84
BD2.8.2 7.51 9.33
BD2.1.1 7.23 9.12
BD2.4.2 7.54 9.40

and 5◦, the compliance was not linear throughout the entire test. Whereas, for all other

loading angles, the load increased in a nonlinear manner until approximately 3 kN, where

it became linear as the displacement grew. It may be pointed out that for specimens

loaded with a negative loading angle, as the loading angle increased in absolute value,

the critical load before failure generally decreased. As for specimens loaded with positive

loading angles, except for specimen BD2.4.2, as the loading angle increased, the load

generally increased, as well.

Table 4.12: Dimensions of the hole in each BD specimen tested with loading angle ω > 0◦.

specimen dh dv cv
number (mm) (mm) (mm)

BD2.8.1 1.77 1.76 0.12
BD2.7.1 1.71 1.69 0.40
BD2.7.2 1.81 1.97 0.00
BD1.13.1 1.09 1.09 -0.17
BD2.8.2 1.69 1.85 0.00
BD2.1.1 1.68 1.61 0.13
BD2.4.2 1.65 1.71 -0.57
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Table 4.13: Parameters from each BD test including the temperature measured during
each test ϑi, relative humidity (RH), loading angle ω, critical delamination length 2ac and
critical load at fracture Pc.

specimen no. ϑi (
◦C) RH (%) ω (◦) 2ac (mm) Pc (kN)

BD1.6.1 25.6 59.8 -1.9 15.0 10.6
BD1.14.2 24.1 39.0 -2.0 13.6 11.0
BD1.8.2 23.3 58.2 -2.2 14.3 11.8
BD1.8.1 23.4 58.3 -2.5 15.7 10.8
BD1.12.2 23.1 57.9 -2.6 14.6 10.8
BD1.2.2 26.3 58.4 -4.4 15.6 10.8
BD1.3.1 25.9 57.6 -4.7 15.3 10.9
BD1.1.2 24.0 37.0 -4.9 15.3 10.5
BD1.2.1 25.8 57.8 -5.3 14.9 9.4
BD1.1.1 25.8 38.6 -5.3 15.1 10.3
BD1.3.2 25.6 54.9 -9.9 15.2 7.5
BD1.4.2 26.2 53.0 -10.1 15.5 8.5
BD1.6.2 22.4 60.1 -10.3 15.3 8.0
BD1.5.1 25.9 53.1 -10.3 15.3 7.5
BD1.4.1 24.3 63.0 -10.5 15.7 7.5
BD1.7.1 21.9 58.4 -12.7 15.0 8.1
BD1.11.2 20.7 54.7 -12.9 15.7 7.7
BD1.7.2 23.4 61.3 -12.9 15.2 7.8
BD1.13.2 22.9 56.3 -12.9 16.0 7.1
BD1.5.2 22.4 60.1 -13.0 15.0 8.1

BD2.8.1 23.7 50.0 2.1 16.9 5.1
BD2.7.1 22.6 54.0 2.3 15.5 6.5
BD2.7.2 21.9 51.8 1.9 17.5 6.0
BD1.13.1 24.2 45.8 4.9 12.2 7.5
BD2.8.2 23.7 50.9 5.1 15.4 6.5
BD2.1.1 23.5 44.4 5.4 16.0 8.9
BD2.4.2 22.4 50.9 9.5 16.3 5.8

In Fig. 4.14a, results for specimens loaded at an approximate loading angle of −2◦, are

presented. Some scatter may be observed between the slopes of the different specimens,

as well as in the critical load Pc measured before the delamination propagated which

was found to range between 10.6 kN and 11.8 kN. It shall be noted that it is difficult to

position the specimen accurately in the frame when smaller loading angles are considered.

The setup of the specimen in the frame was discussed in Section 4.3 and presented in

Fig. 4.12. In Fig. 4.14b, results for specimens loaded at an approximate loading angle of

−5◦, are presented. From the plot, it may be observed that specimens BD1.2.1, BD1.2.2

and BD1.3.1 suffered from some damage at a loading value of approximately 2.2-2.5 kN.

In the images obtained from the tests, this damage is visible in the region near the applied

load. It may be noted, that these three tests were held on the same day and that this

damage might be a result of something different in the setup that day. However, the

critical load Pc, before the delamination propagated, does not appear to be affected by

this damage. The critical load was found to be in the range of 10.3 kN and 10.9 kN for

four out of five specimens tested at this loading angle. For the fifth specimen, the critical

load was measured to be lower than the others with a value of Pc = 9.4 kN. Since the
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(a) (b)

(c) (d)

( )(b)

Figure 4.14: Brazilian disk specimen load-displacement curves (ω < 0): (a) five specimens
with ω ≈ −2◦; (b) five specimens with ω ≈ −5◦; (c) five specimens with ω ≈ −10◦; (d)
five specimens with ω ≈ −13◦.

critical load was found to be similar in all tests, these specimens were used in the analyses.

In Fig. 4.14c, results for specimens loaded with ω ≈ −10◦ are presented. For this loading

angle, the critical load was found to be 7.5 kN ≤ Pc ≤ 8.5 kN. It may be observed from the

figure that for specimens BD1.3.2, BD1.5.1 and BD1.4.1, the delamination propagated at a

(a) (b)

(c)

Figure 4.15: Brazilian disk specimen load-displacement curves (ω > 0): (a) three speci-
mens with ω ≈ 2◦; (b) three specimens with ω ≈ 5◦; (c) one specimen with ω ≈ 10◦.
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Figure 4.16: Mesh of BD specimen: (a) mechanical model and (b) thermal model. (c)
Coarse mesh; (d) fine mesh and (e) finest mesh in the neighborhood of the delamination
front.

similar value of approximately 7.5 N where for the other two specimens, Pc was measured

to be somewhat higher. During the tests, the behavior of all five specimens loaded at

this angle was similar. Results for specimens loaded with ω ≈ −13◦, are presented in

Fig. 4.14d. For this loading angle, the critical load was found to be 7.1 kN ≤ Pc ≤ 8.1 kN.

It may be observed that specimens BD1.13.2 and BD1.11.2 resulted with similar behavior

throughout the test. In addition, specimens BD1.7.1, BD 1.7.2 and BD1.5.2 also resulted

with similar behavior.

In Fig. 4.15a, 4.15b and 4.15c, load-displacement curves for specimens with a hole

which were tested with a loading angle of approximately ω ≈ 2◦, 5◦ and 9◦ are shown,

respectively. It may be observed that the curves are similar for each set of specimens. For

these specimens the critical load was found to be 5.1 kN ≤ Pc ≤ 8.9 kN which is generally

lower than the critical loads obtained for specimens loaded with negative loading angles .

4.5 Convergence and domain independence

In this section, mesh convergence and domain independence for the M -integral are pre-

sented. The FE program Abaqus (2017) was used to obtain the stress and displacement

fields. The FEA results were used with the DE method and the M -integrals, presented

in Sections 3.1 and 3.2, respectively, to determine stress intensity factors resulting from

mechanical loading, as well as from residual curing stresses. Two types of problems were

considered, mechanical and thermal, shown in Figs. 4.16a and 4.16b, respectively. Three
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Figure 4.17: (a) In-plane finest mesh of a Brazilian disk specimen; (b) enlarged view of
six plies near the delamination front; (c) enlarged view of elements at the delamination
front.

meshes were created using the dimensions of specimen BD1.1.1 given in Table 4.10. The

loading angle used in the FEAs was ω = −5.32◦. An example for a positive loading

angle is shown in Fig. 1.19. Also used were the composite stack heights, critical applied

load Pc = 10.3 kN and the test temperature difference from eq. (4.6), ∆ϑi = −59.2◦ C

i = BD1.1.1.

In Fig. 4.17a, a two-dimensional view of the finest mesh of the BD specimen is pre-

sented. The model is composed of the composite strip with two aluminum partial disks

colored in black in Fig. 4.17a. In the thermal analyses the aluminum disks were omit-

ted with the mesh of the composite strip remaining the same. The composite strip is

composed of twenty-seven ply groups including 6 woven compressed, 5 UD compressed, 8

woven expanded and 8 UD expanded plies. These plies are represented in yellow, green,

blue and pink, respectively, in Figs. 4.16a, 4.16b and 4.17. The mechanical properties and

CTEs for each material used in the composite strip are given in Tables 4.3 and 4.8 for

the UD fabric and the woven fabric plies, respectively. The mechanical properties used

for the aluminum were Young’s modulus E = 69 MPa and Poisson’s ratio ν = 0.33.

Twenty-noded, isoparametric, quadratic brick elements were used in solving both prob-

lems. For the mechanical problem, element type C3D20 was used; for the thermal problem,

use was made of element type C3D20T. The plies above and below the delamination are

from the expanded part of the plate, as may be seen in Fig. 4.17b. A denser mesh was

used near the delamination front, to model the square-root, oscillatory singularity. In ad-

dition, along the delamination front, quarter-point elements with an in-plane aspect ratio

of 1× 1 were used as shown for the finest mesh in Figs. 4.17c and 4.18. Since the upper

UD ply is thinner than the lower woven ply, in order to obtain such elements, the woven
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Expanded UD fabric

Expanded woven fabric

Figure 4.18: Brazilian disk specimen model - partitioning in the delamination front region.

ply was partitioned into two layers with the same properties from Table 4.8 used for each.

The height of the upper layer was determined to be equal to the height of the upper UD

ply, namely h
(1)
0 in Fig. 4.18. The total height of the two lower layers was determined

to be equal to the measured woven ply thickness, namely h
(1)
45 in Fig. 4.18. In this way,

the upper UD ply and the upper layer of the lower woven ply near the delamination are

composed of the same thickness and are meshed with elements of the same size.

The total number of elements in each mesh was determined by the mesh refinement

near the delamination front. In order to examine convergence, each element in the ply

above and below the delamination was divided into four elements for each mesh refinement.

That is, three, six and twelve layers of elements were used in the coarse, fine and finest

meshes, respectively, as shown in Figs. 4.16c, 4.16d and 4.16e. The number of elements

and nodal points used in each mesh for each of the models are specified in Table 4.14.

Note that in the corresponding thermal model, the aluminum partial disks were omitted,

resulting in fewer elements in those meshes as compared to the mechanical model.

The load and displacement boundary conditions (BCs) used are illustrated in Fig. 4.19

where the loads are represented using yellow arrows and the displacement BCs using

orange triangles and circles. In Fig. 4.19a, an isometric view of the BD specimen is

presented and in Fig. 4.19b a two-dimensional view is shown. Two coordinate systems

were used to model the directions of the load and displacement BCs. The first is the

global coordinate system (x1, x2, x3), defined in Fig. 1.19, and oriented parallel to the

delamination surface. The second coordinate system (x′1, x
′
2, x3) is rotated according to

the loading angle ω, about the x3-axis, so that it is oriented in the direction of the load.

Table 4.14: Number of nodal points, elements and element size near the delamination
front (ESNDF) in the mechanical and thermal models for coarse, fine and finest meshes.

mechanical model thermal model ESNDF

mesh type nodes elements nodes elements mm × mm × mm

coarse 943,840 224,040 755,804 178,760 0.060× 0.060× 0.415

fine 1,451,224 345,360 1,173,548 278,480 0.030× 0.030× 0.415

finest 2,579,848 615,480 2,122,892 505,900 0.015× 0.015× 0.415
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(a) (b)

Figure 4.19: Illustration of the applied loads and displacement boundary conditions ap-
plied to a BD specimen; (a) isometric view and (b) two-dimensional view of specimen
center plane.

A fine mesh was used in the region in which the load is applied in order to properly model

the loading angle which was used in the test. The critical load obtained from the test was

applied as a line load in the radial direction as shown in Fig. 4.19. The nodes to which

the load is applied are prevented from moving in the tangential direction perpendicular to

it. Directly opposite the load line, on the other specimen side, nodes along the specimen

thickness are restrained from moving in both the in-plane radial direction corresponding

to the direction of the applied load, and to the tangential direction that is orthogonal

to it. One point at the center of this line is restrained for movement in the out-of-plane

direction.

The DE method described in Section 3.1 and the mechanical and thermal M -integrals

described in Section 3.2 were used to determine the stress intensity factors for each prob-

lem. For the DE method, eqs. (3.10) and (3.13) were used to calculate the local stress

intensity factors related to the different modes. The results were extrapolated for r → 0 to

obtain global stress intensity factors. The stress intensity factors obtained by means of the

mechanical M -integral were calculated using eqs. (3.22) through (3.24). The stress inten-

sity factors resulting from residual thermal stresses are given in eqs. (3.28) through (3.30).

Six domains, shown in Fig. 1.8, were used in the analyses of the fine and finest meshes.

For the coarse mesh, since the UD fabric ply above the delamination contained only three

elements through its height, only three domains could be used for the M -integral. The

differences between the results obtained using the different models were computed using

eq. (3.31) where the superscript (1) represents the coarser mesh used in the comparison

and the superscript (2), the finer mesh. The subscript i = 1, 2, III, represents the mode

of the stress intensity factor. The largest relative differences (LRDs) between the results

obtained for the coarse and fine, as well as, the fine and finest meshes are presented in

Tables 4.15 and 4.16, for the mechanical and thermal stress intensity factors, respectively.

For the mechanical case, it is observed that the differences in the values of K
(f)
1 and
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Table 4.15: Comparison of the mechanical stress intensity factors obtained from the dif-
ferent meshes. Largest relative differences (LRD) through the model thickness were cal-
culated using eq. (3.31).

M-integral DE

K
(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III

LRD - coarse vs fine 0.15% -0.30% 0.34% -1.06% -2.40% 1.63%

LRD - fine vs finest 0.04% -0.03% -0.40% 1.15% -0.24% -0.31%

K
(f)
2 calculated using the M -integral in the sixth domain for the fine and finest meshes

were reduced to 0.04% and 0.03%, respectively. ForK
(f)
III , the calculated difference changed

slightly, but there is no decrease. The differences between the stress intensity factors

obtained using the DE method were sometimes above 1%, leading to the conclusion that

the DE method is less accurate than the M -integral. But the results corroborate each

other. For the thermal case, it is observed that the differences between the results obtained

from the different meshes using the M -integral in the sixth domain reduced when the fine

and finest meshes were compared. For the results obtained using the DE method, the

differences also decreased for the finer meshes. Again, it is seen that it is more difficult

to obtain accurate results with the DE method. Moreover, the thermal problem is more

difficult than the mechanical problem.

It may be concluded that the results obtained from the different meshes have converged

using the finest mesh for both mechanical and thermal loading. Since the difference in

computer time between the fine and finest meshes was not significant, the finest mesh was

used for all analyses of the BD specimens.

For the chosen finest BD mesh and model, shown in Figs. 4.16e and 4.17, domain

independence was examined. The mechanical and thermal stress intensity factors which

were calculated by means of the mechanical and thermal M -integrals, respectively, in six

domains shown in Fig. 1.8, were compared. The results obtained from all domains for

each stress intensity factor are plotted in Figs. 4.20a through 4.20f as a function of the

normalized specimen thickness x3/B. For all calculated stress intensity factors, the results

Table 4.16: Comparison of the thermal stress intensity factors obtained from the different
meshes. Largest relative differences (LRD) through the model thickness were calculated
using eq. (3.31).

M-integral DE

K
(r)
1 K

(r)
2 K

(r)
III K

(r)
1 K

(r)
2 K

(r)
III

LRD - coarse vs fine 0.81% 3.91% 0.82% 0.92% 5.24% 2.3%

LRD - fine vs finest -0.36% 0.90% 0.24% 0.81% -2.17% 1.81%
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(a) (b) (c)

(d) (e) (f)(e)

Figure 4.20: Stress intensity factors in six domains (a) K
(f)
1 ; (b) K

(f)
2 ; (c) K

(f)
III ; (d) K

(r)
1 ;

(e) K
(r)
2 ; (f) K

(r)
III

for domain 1, the smallest domain, closest to the delamination front, differ from all other

domains. This is a result of the stress singularity near the delamination front which is not

accurately represented in the FE analysis. This difference is visible in Figs. 4.20a, 4.20b

and 4.20e, for K
(f)
1 , K

(f)
2 and K

(r)
2 , respectively. For all plots in Fig. 4.20 similar results

are presented for domains 2 through 6.

In Table 4.17, the largest relative difference (LRD) between every two adjacent do-

mains, is presented. These were calculated by means of eq. (3.31) where the superscript

(1) represents the smaller domain used in the comparison and the superscript (2), the

larger domain. The subscript i = 1, 2, III, refer to the stress intensity factor mode. The

LRDs calculated for the differences between the results obtained from domains 1 and 2

Table 4.17: Comparison of the mechanical and thermal stress intensity factors obtained in
six different domains (see Fig. 1.8 for the finest mesh). Largest relative differences (LRD)
through the model thickness were calculated using eq. (3.31).

LRD K
(f)
1 K

(f)
2 K

(f)
III K

(r)
1 K

(r)
2 K

(r)
III

(%) (%)

domain 1 and domain 2 9.17 22.46 3.07 62.41 37.03 3.22
domain 2 and domain 3 0.20 0.27 0.12 8.91 3.79 0.22
domain 3 and domain 4 0.05 0.17 0.04 1.26 0.57 0.50
domain 4 and domain 5 0.01 0.06 0.01 1.47 0.72 0.47
domain 5 and domain 6 0.01 0.02 0.01 0.90 0.39 0.17
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are shown in the third row in Table 4.17. These LRDs are respectively large for all stress

intensity factors. Recall that this is a result of the stress singularity near the delamination

front. As expected, for larger domains, these LRDs decrease. It should be noted that

the largest LRD value was calculated for K
(r)
1 to be 62.41%. This value is large since the

two compared K
(r)
1 values tend to zero. A decrease in the LRD values calculated for all

stress intensity factors obtained in domains 2 and 3 is clearly observed in the fourth row

in Table 4.17. Mesh independence is found for domains 3 through 6 for all mechanical

and thermal stress intensity factors.

4.6 BD test analysis

Twenty-seven BD specimens were analyzed by means of the finest FE model, described

in Section 4.5 and presented in Fig. 4.17. Mechanical and thermal stress intensity factors

were calculated for each specimen by means of the DE method, as well as the mechanical

and thermal M -integrals, presented in Sections 3.1 and 3.2, respectively. In this section,

details regarding the models used, as well as results from the analyses are presented.

A parametric representation was used to create a three-dimensional FE mesh for each

BD specimen, so that it could be changed according to the actual measured geometry. The

parameters in this representation include the specimen diameter 2R, specimen thicknessB,

critical delamination length 2ac and the location of the delamination defined by RR(calc)

and RL(calc). These parameters are shown in Fig 4.8 and given for each specimen in

Table 4.10. In addition, the height of each group of plies, shown in Fig. 4.9, was modeled

specifically for each specimen, using the parametric definitions.

For each specimen, two problems were considered, mechanical and thermal. In the

former, the failure load Pc determined from the test and given in the last column of

Table 4.13 was applied to the FE model. In the latter, the FE model was subjected

to a uniform decrease in temperature. The temperature difference ∆ϑi was applied to

the model. This value was calculated by means of eq. (4.6) where ϑi is the temperature

measured at the beginning of each test (i) and given in the second column of Table 4.13.

The curing temperature was ϑ = 85◦. The mechanical and residual curing stress intensity

factors K
(f)
i and K

(r)
i , i = 1, 2, III, respectively, were calculated at twenty elements along

the delamination front, through the specimen thickness using the mechanical and thermal

M -integrals, respectively. The results obtained in the fourth, fifth and sixth domains (see

Fig. 1.8) were averaged and superposed to obtain the in-plane and out-of-plane total stress

intensity factors for every element along the delamination front using eqs. (1.82), (1.83)

and (1.84). The DE method was used for corroboration; the results obtained using this

method are not presented here.

For specimens BD2.8.2 and BD1.2.1, loaded with similar positive and negative loading

angles of ω ≈ ±5◦, the stress intensity factors from domains 4, 5 and 6 (see Fig. 1.8) were
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Table 4.18: Averaged stress intensity factors from the fourth, fifth and sixth domains of
the mechanical and thermal M - integrals for specimen BD2.8.2 with ω = 5.1◦.

x3/B K
(f)
1 K

(f)
2 K

(f)
III K

(r)
1 K

(r)
2 K

(r)
III(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm)

(
MPa

√
mm(mm)

−iε
)

(MPa
√
mm)

0.025 13.07 -56.33 -22.23 -3.68 -0.68 3.52
0.075 18.11 -53.38 -15.01 -1.73 -0.63 1.04
0.125 18.68 -52.88 -11.11 -0.98 -0.45 0.26
0.175 18.51 -52.75 -8.46 -0.57 -0.34 -0.04
0.225 18.20 -52.72 -6.48 -0.30 -0.26 -0.17
0.275 17.89 -52.72 -4.91 -0.11 -0.20 -0.21
0.325 17.61 -52.72 -3.61 0.04 -0.15 -0.20
0.375 17.40 -52.72 -2.47 0.14 -0.12 -0.16
0.425 17.26 -52.73 -1.44 0.21 -0.09 -0.10
0.475 17.19 -52.73 -0.48 0.24 -0.08 -0.04
0.525 17.19 -52.73 0.48 0.24 -0.08 0.04
0.575 17.26 -52.73 1.44 0.21 -0.09 0.10
0.625 17.40 -52.72 2.47 0.14 -0.12 0.16
0.675 17.61 -52.72 3.61 0.04 -0.15 0.20
0.725 17.89 -52.72 4.91 -0.11 -0.20 0.21
0.775 18.20 -52.72 6.48 -0.30 -0.26 0.17
0.825 18.51 -52.75 8.46 -0.57 -0.34 0.04
0.875 18.68 -52.88 11.11 -0.98 -0.45 -0.26
0.925 18.11 -53.38 15.01 -1.73 -0.63 -1.04
0.975 13.07 -56.33 22.23 -3.68 -0.68 -3.52

averaged and are presented in Tables 4.18 and 4.19, respectively. Note that the values

presented possess units. It may be noted that K1 and K2 are symmetric with respect

to the specimen center plane and KIII is anti-symmetric. From these tables it may be

observed that the residual curing stress intensity factors are relatively small compared

to the mechanical ones. The residual curing stress intensity factors are largest near the

specimen free surfaces and decrease towards the mid-thickness, where they approach zero

for K
(r)
2 and K

(r)
III .

In a previous study for a crack along an interface between two linear, elastic ceramic

clays (Banks-Sills et al., 2000), the results for positive and negative loading angles were

found to be similar in absolute values. For the interface studied here, smaller mechanical

stress intensity factors K
(f)
i , i = 1, 2, III, in absolute value, were observed for specimens

loaded with positive loading angles in comparison to those obtained for nearly the same

negative loading angles. Examples of these results are presented in Tables 4.18 and 4.19

for ω = 5.1◦ and ω = −5.3◦, respectively. In addition, for the case studied here, larger

mixed mode ratiosK
(f)
2 /K

(f)
1 , in absolute values were found at mid-thickness for ω > 0◦ as

compared to that for ω < 0◦. For example, the in-plane mixed mode ratio at mid-plane for

specimens BD2.8.2 and BD1.2.1 with loading angles ω = 5.1◦ and ω = −5.3◦, respectively,

were found to be -3.07 and 2.56, respectively. Thus, it is possible to conclude that the

stress intensity factors, mode mixity and critical energy release rate are not symmetric

for positive and negative loading angles for the material and interface studied here.
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Table 4.19: Averaged stress intensity factors from the fourth, fifth and sixth domains of
the mechanical and thermal M - integrals for specimen BD1.2.1 with ω = −5.3◦.

x3/B K
(f)
1 K

(f)
2 K

(f)
III K

(r)
1 K

(r)
2 K

(r)
III(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm)

(
MPa

√
mm(mm)

−iε
)

(MPa
√
mm)

0.025 39.12 69.15 32.27 -2.82 -0.52 3.39
0.075 33.49 64.57 19.59 -1.30 -0.54 1.08
0.125 31.10 64.05 13.69 -0.72 -0.41 0.36
0.175 29.45 64.10 9.98 -0.39 -0.31 0.06
0.225 28.18 64.27 7.37 -0.15 -0.24 -0.08
0.275 27.18 64.43 5.42 0.02 -0.18 -0.14
0.325 26.41 64.56 3.88 0.16 -0.13 -0.14
0.375 25.86 64.65 2.61 0.25 -0.09 -0.12
0.425 25.51 64.71 1.51 0.31 -0.07 -0.08
0.475 25.33 64.74 0.49 0.35 -0.06 -0.03
0.525 25.33 64.74 -0.49 0.35 -0.06 0.03
0.575 25.51 64.71 -1.51 0.31 -0.07 0.08
0.625 25.86 64.65 -2.61 0.25 -0.09 0.12
0.675 26.41 64.56 -3.88 0.16 -0.13 0.14
0.725 27.18 64.43 -5.42 0.02 -0.18 0.14
0.775 28.18 64.27 -7.37 -0.15 -0.24 0.08
0.825 29.45 64.10 -9.98 -0.39 -0.31 -0.06
0.875 31.10 64.05 -13.69 -0.72 -0.41 -0.36
0.925 33.49 64.57 -19.59 -1.30 -0.54 -1.08
0.975 39.12 69.15 -32.27 -2.82 -0.52 -3.39

In Fig. 4.21, an example of the displacement field found from DIC and from the FE

mechanical analysis is presented for specimen BD1.2.1 with a loading angle of ω = −5.3◦.

The displacement in the x2 and x1 - directions which are the delamination opening and

in-plane sliding directions, respectively, are shown in Figs. 4.21a and 4.21b, respectively.

Since the residual curing stresses have a relatively small contribution to the displacement

field which is taken into account in the DIC, a good correlation between the physical

deformation measured with DIC and those obtained by means of FEA is observed. These

results give confidence that the numerical analyses, as well as the mechanical properties

(a) (b)

Figure 4.21: Comparison of the displacement field obtained from DIC versus FEA for
specimen BD1.2.1 with ω = −5.3◦, the scale of the color bar is in mm; displacement in
the (a) x2-direction or (opening) and (b) x1-direction (shear).
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used are correct.

It may be noted that for specimen BD2.4.2 which was loaded with ω = 9.5◦, interpen-

etration or contact of the upper and lower plies near the delamination front was observed.

For x3/B < 0.2 and x3/B > 0.8, the contact length is greater than 5% of half the de-

lamination length a, reaching 40% at the specimen outer surfaces. For 0.2 < x3/B < 0.8

this contact region was less than 5% of half the delamination length a. Although contact

occurred, results are reported for this specimen. For values of ω > 9.5◦, significant contact

was observed throughout the delamination thickness; results from these specimens were

not used. For specimens loaded with ω ≈ 5◦, a contact length of approximately 3% of

half the delamination length a was observed on the outer surfaces of the specimen. For

all other specimens, no interpenetration or contact were found.

The phase angles, ψ̂ and ϕ which represent the in-plane and out-of-plane to in-plane

mode mixities, respectively, as well as the critical interface energy release rate Gic were
calculated for each element along the delamination front through the thickness of each

specimen. The calculation was performed using the total stress intensity factors by means

of eqs. (3.19), (3.20) and (3.17), respectively, where Gic = Gi. The values of ε, H1 and H2

which were used in the calculations are presented in Table 4.9.

The phase angles ψ̂ and ϕ, as well as the critical interface energy release rate Gic
values obtained at x3/B = 0.475 and x3/B = 0.525 for each specimen are the same and

presented in Table 4.20. The results obtained for each specimen at x3/B = 0.175 and

x3/B = 0.825 are also the same and are presented in Table 4.21. Also in those tables are

the parameters K̂i (i = 1, 2) which are the normalized in-plane stress intensity factors

calculated by means of eq. (1.26) with an arbitrary length parameter L̂. The length scale

L̂ may be used as a fitting parameter in a failure criterion and was chosen here to be

L̂ = 100 µm. The normalization was used to regularize the units. The resulting units

are the same as those of the out-of-plane stress intensity factor, namely, FL−3/2, where L

and F represent length and force, respectively.

It may be observed in Tables 4.20 and 4.21 that generally, as the absolute value of ω

increases, the values of K̂
(T )
1 decrease, whereas, the absolute values of K̂

(T )
2 increase. This

results in an increasing phase angle ψ̂, in absolute value, for larger loading angles ω, in

absolute value. In addition, it may be observed that the values of the out-of-plane stress

intensity factors are small compared to the in-plane stress intensity factors, especially

for smaller absolute values of the loading angle ω. In Table 4.20, along the specimen

centerline, values of K
(T )
III are nearly zero, resulting in negligible values of ϕ. In Table 4.21,

values of K
(T )
III and ϕ are larger than those at the specimen mid-thickness. Yet, in both

cases ϕ is small compared to ψ̂, indicating that the out-of-plane mode mixity remains

smaller than the in-plane mode mixity through the specimen thickness. Finally, it may

be observed that the critical interface energy release rate Gic, found for each specimen,

generally increases as mode 2 becomes dominant for larger loading angles, in absolute
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Table 4.20: The loading angle ω, critical interface energy release rate Gic, phase angles
ψ̂ and ϕ, and normalized total stress intensity factors K̂

(T )
1 , K̂

(T )
2 and K

(T )
III calculated

for L̂ = 100 µm for the 0◦//(+45◦/ − 45◦) interface at specimen x3/B = 0.475 and
x3/B = 0.525.

specimen ω Gic ψ̂ ϕ K̂
(T )
1 K̂

(T )
2 K

(T )
III

(◦) (N/m) (rad) (rad) (MPa
√
m) (MPa

√
m) (MPa

√
m)

BD1.6.1 -1.9 262.7 0.656 0.003 0.99 0.76 0.00
BD1.14.2 -2.0 331.4 0.689 0.002 1.08 0.89 0.00
BD1.8.2 -2.2 378.0 0.744 0.004 1.10 1.01 0.01
BD1.8.1 -2.5 471.0 0.800 0.003 1.16 1.20 0.00
BD1.12.2 -2.6 472.8 0.850 0.003 1.10 1.26 0.00

BD1.2.2 -4.4 685.6 1.076 0.006 0.96 1.77 0.01
BD1.3.1 -4.7 788.9 1.128 0.005 0.93 1.95 0.01
BD1.1.2 -4.9 703.4 1.088 0.007 0.95 1.81 0.01
BD1.2.1 -5.3 817.5 1.141 0.007 0.92 2.00 0.01
BD1.1.1 -5.3 864.8 1.135 0.007 0.96 2.05 0.02

BD1.3.2 -9.9 819.0 1.361 0.010 0.46 2.15 0.02
BD1.4.2 -10.1 986.5 1.365 0.009 0.49 2.37 0.02
BD1.6.2 -10.3 909.2 1.386 0.009 0.43 2.28 0.02
BD1.5.1 -10.3 864.7 1.376 0.010 0.44 2.22 0.02
BD1.4.1 -10.5 820.8 1.368 0.011 0.44 2.16 0.02

BD1.7.1 -12.7 1033.6 1.455 0.009 0.29 2.46 0.02
BD1.11.2 -12.9 1256.9 1.458 0.012 0.31 2.71 0.03
BD1.7.2 -12.9 984.8 1.441 0.009 0.31 2.40 0.02
BD1.13.2 -12.9 1036.8 1.450 0.011 0.30 2.46 0.03
BD1.5.2 -13.0 1024.3 1.435 0.010 0.33 2.44 0.02

BD2.8.1 2.1 101.7 -0.741 -0.008 0.57 -0.52 -0.01
BD2.7.1 2.3 167.2 -0.933 0.000 0.59 -0.80 0.00
BD2.7.2 1.9 539.6 -1.237 -0.008 0.59 -1.69 -0.01

BD1.13.1 4.9 598.3 -1.310 -0.010 0.49 -1.82 -0.02
BD2.8.2 5.1 520.2 -1.304 -0.010 0.46 -1.70 -0.02
BD2.1.1 5.4 985.8 -1.330 -0.009 0.58 -2.35 -0.02

BD2.4.2 9.5 1013.8 -1.543 -0.012 0.07 -2.45 -0.03

value. For each tested BD specimen, results from the analyses are presented in Tables C.1

through C.27.

4.7 Two and three-dimensional failure criteria

In this section, two and three-dimensional failure criteria are proposed and examined using

results obtained from the testing and analyses of the mixed mode fracture toughness BD

tests. These results are presented for each specimen in Tables C.1 through C.27. The

criteria may be used for predicting delamination failure for the multi-directional laminate

composite investigated here.
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Table 4.21: The loading angle ω, interface energy release rate Gic, phase angles ψ̂ and
ϕ, and normalized total stress intensity factors K̂

(T )
1 , K̂

(T )
2 and K

(T )
III calculated for L̂ =

100 µm for the 0◦//(+45◦/ − 45◦) interface for each specimen at x3/B = 0.175 and
x3/B = 0.825.

specimen ω Gic ψ̂ ϕ K̂
(T )
1 K̂

(T )
2 K

(T )
III

(◦) (N/m) (rad) (rad) (MPa
√
m) (MPa

√
m) (MPa

√
m)

BD1.6.1 -1.9 291.8 0.601 0.055 1.08 0.74 0.07
BD1.14.2 -2.0 363.8 0.634 0.051 1.18 0.87 0.07
BD1.8.2 -2.2 416.5 0.687 0.071 1.21 0.99 0.11
BD1.8.1 -2.5 514.7 0.743 0.060 1.28 1.18 0.10
BD1.12.2 -2.6 512.2 0.792 0.057 1.22 1.24 0.09

BD1.2.2 -4.4 709.3 1.036 0.097 1.04 1.76 0.19
BD1.3.1 -4.7 807.6 1.089 0.085 1.01 1.93 0.18
BD1.1.2 -4.9 731.7 1.044 0.111 1.04 1.79 0.22
BD1.2.1 -5.3 834.9 1.106 0.110 0.99 1.98 0.23
BD1.1.1 -5.3 892.2 1.098 0.110 1.04 2.03 0.24

BD1.3.2 -9.9 823.1 1.349 0.149 0.48 2.13 0.31
BD1.4.2 -10.1 985.8 1.354 0.135 0.51 2.34 0.31
BD1.6.2 -10.3 908.3 1.378 0.131 0.44 2.26 0.29
BD1.5.1 -10.3 868.8 1.364 0.149 0.46 2.20 0.32
BD1.4.1 -10.5 827.2 1.357 0.154 0.46 2.14 0.32

BD1.7.1 -12.7 1026.0 1.460 0.134 0.27 2.43 0.31
BD1.11.2 -12.9 1267.8 1.457 0.169 0.31 2.68 0.44
BD1.7.2 -12.9 980.3 1.443 0.135 0.30 2.37 0.31
BD1.13.2 -12.9 1038.1 1.452 0.153 0.29 2.43 0.36
BD1.5.2 -13.0 1021.3 1.437 0.137 0.32 2.42 0.32

BD2.8.1 2.1 114.2 -0.725 -0.088 0.60 -0.53 -0.07
BD2.7.1 2.3 177.6 -0.911 -0.008 0.62 -0.80 -0.01
BD2.7.2 1.9 561.8 -1.217 -0.106 0.63 -1.70 -0.18

BD1.13.1 4.9 618.7 -1.299 -0.131 0.51 -1.83 -0.24
BD2.8.2 5.1 536.5 -1.297 -0.125 0.48 -1.70 -0.21
BD2.1.1 5.4 1008.4 -1.319 -0.119 0.60 -2.35 -0.27

BD2.4.2 9.5 1038.2 -1.552 -0.157 0.05 -2.45 -0.37

First, a description of various failure criteria from the literature is presented in Sec-

tion 4.7.1. In Section 4.7.2, two-dimensional criteria, based upon the in-plane stress inten-

sity factors K
(T )
1 and K

(T )
2 given in eqs. (1.82) and (1.83), respectively, as well as criteria

based upon the interface energy release rate Gic and the in-plane phase angle calculated in

eqs. (3.17) and (3.19), respectively, are proposed. In addition, the influence of the length

scale L̂ is discussed. A statistical analysis for the proposed two-dimensional criteria is

presented in Section 4.7.3. The two-dimensional criteria are extended to three-dimensions

and examined again using the BD test results in Section 4.7.4. The three-dimensional

criteria account for the results of K
(T )
III and the phase angle ϕ, calculated in eqs. (1.84)

and (3.20), respectively. Finally in this section, the statistical analysis described in Sec-

tion 4.7.3 is extended to the three-dimensional failure criteria.
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4.7.1 Introduction to failure criteria

In realistic situations, composite structures are exposed to axial or multiaxial service

loads. Therefore, when a composite structure contains a delamination, regardless of its

source, the delamination is subjected to opening, in-plane sliding and out-of-plane tearing

deformations which may cause propagation and possibly result in catastrophic failure.

Since the fracture toughness changes significantly as a function of the mode mixity, failure

envelopes, which provide critical fracture toughness values for each mode mixity, are

necessary for better structural design and should ensure safety. It has been shown that

for different materials, various failure responses occur (Reeder, 1993). Hence, in order to

model mixed mode delamination failure, a single criterion may be used only if it includes

parameters which are fit to test data for each material system.

A review of two and three-dimensional mixed mode failure criteria based on the critical

energy release rate for a delamination between UD plies may be found in Reeder (1993,

2013). Some criteria were initially written in terms of stress intensity factors and rewritten

based on energy release rates. An early linear criterion was generalized to become a power

law, given as (Wu, 1967) (
GI
GIc

)α
+

(
GII
GIIc

)β
= 1 . (4.9)

In eq. (4.9), the parameters GI and GII are the modes I and II energy release rates, and

GIc and GIIc are their critical values or fracture toughness, respectively. The fitting pa-

rameters α and β are used to obtain a best fit to experimental data for various materials.

This criterion has been used in the literature (Reeder, 1993; Donaldson, 1985; Mall and

Kochhar, 1986; Chow and Atluri, 1997) and was found to fit data well for several UD

composites. Another two-dimensional criterion referred to as the B-K criterion was intro-

duced in Benzeggagh and Kenane (1996) and reviewed in Reeder (2013). This criterion

is given as

GTc = GIc + (GIIc − GIc)

(
GII

GT

)η
(4.10)

where

GT = GI + GII (4.11)

is the total energy release rate, GTc is the total critical energy release rate or fracture

toughness and η is a fitting parameter.

The criteria described above were fit to experimental data obtained from double can-

tilever beam (DCB), end notch flexure (ENF) and mixed mode bending (MMB) specimens

(Reeder, 1993). Three different UD carbon fiber reinforced polymers (CFRPs) were tested,

namely AS4/3501-6, IM7/977-2 and AS4/PEEK. These criteria modeled the failure re-

sponse quite well for UD materials but were not examined for the case of a delamination

along an interface between two dissimilar plies.
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Figure 4.22: Schematic representation of two-dimensional criteria proposed for a crack
between two dissimilar materials (Wang, 1997): (a) eq. (4.12) and (b) eq. (4.14).

In Wang (1997), additional criteria which were previously used for homogeneous ma-

terials were examined for mixed mode experimental results obtained from a steel/epoxy

bimaterial with an interface crack. It was found that classical criteria such as the max-

imum tangential stress criterion (Erdogan and Sih, 1963), the maximum critical stress

intensity factors criterion (Hussain et al., 1974) and the minimum strain energy density

criterion (Sih, 1973) do not fit the experimental data.

For an interface crack between two dissimilar materials a different criterion is required.

In Wang (1997), two-dimensional mixed mode failure criteria were proposed. The first is

governed by

K̂1 = K̂1c (4.12)

where

K̂1c = avg
(
K̂1

)
(4.13)

for all values of K̂2, as shown schematically in Fig. 4.22a. The second criterion may be

written as

K̂1 = min

(
K̂1c,

K̂2 − K̂2c

β

)
(4.14)

where K̂2c is the normalized mode 2 critical stress intensity factor when K̂1 = 0, as shown

schematically in Fig. 4.22b, and β is the slope of the oblique line. Data is illustrated as

scatter about the criteria.

In Wang (1997), the criteria in eqs. (4.12) and (4.14) were fit to data obtained from

mixed mode fracture tests for two dissimilar linear elastic, homogeneous and isotropic

materials. Results for a brittle epoxy layer (Ciba Geigy type F922), sandwiched between

aluminium alloy substrates were presented in Akisanya and Fleck (1992) and examined in
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Wang (1997). These showed good correlation with the criterion in eq. (4.12). Results for

aluminum/epoxy, brass/epoxy, plexiglass/epoxy and steel/epoxy (Wang and Suo, 1990;

Wang, 1997) showed correlation with the criterion in eq. (4.14). Note that only positive

K̂2 values were examined.

Criteria for additional materials were examined in Banks-Sills and Ashkenazi (2000),

as well as in Banks-Sills et al. (2000, 2005b and 2006). In Banks-Sills et al. (1999, 2000),

BD specimens containing a crack along the interface between glass/epoxy and two ceramic

clays were tested, respectively, under various mixed mode deformations. It was shown

in Banks-Sills and Ashkenazi (2000) and Banks-Sills et al. (2000) that the criterion in

eqs. (4.12) and (4.13) correlated well with the results. In Banks-Sills et al. (2005b, 2006),

a delamination along an interface between two UD plies with fibers oriented in different

directions, namely, 0◦//90◦ and +45◦// − 45◦, respectively, was examined and all test

data also fit eq. (4.12) well.

The criteria in eqs. (4.12) and (4.14) may be rewritten in terms of the interface energy

release rate. The two-dimensional relation between the interface energy release rate Gi
and the in-plane stress intensity factors is given as

Gi =
1

H1

(
K2

1 +K2
2

)
, (4.15)

where the parameter H1 is defined in eq. (3.18)1. By manipulating eq. (4.15), a criterion

may be written in the (Gic, ψ̂)-plane as (Banks-Sills and Ashkenazi, 2000; Banks-Sills et

al., 2000, 2005b)

Gic = G1c

(
1 + tan2 ψ̂

)
(4.16)

where Gic is the critical interface energy release rate or fracture toughness and ψ̂ is the in-

plane mode mixity phase angle in eq. (3.19). In eq. (4.16), G1c was defined as (Banks-Sills

and Ashkenazi, 2000; Banks-Sills et al., 2000; Banks-Sills et al., 2005b)

G1c ≡
K̂2

1c

H1

(4.17)

and K̂1c is given in eq. (4.13). The criterion in eq. (4.16) is shown schematically in

Fig. 4.23a. Another criterion may be derived from eq. (4.15) and written as (Wang, 1997)

Gic = G1

(
1 + tan2 ψ̂

)
(4.18)

where

G1 ≡
K̂2

1

H1

(4.19)

and K̂1 is derived from eq. (4.14) to be

K̂1 = min

(
K̂1c,

K̂2c

tan ψ̂ − β

)
. (4.20)
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Figure 4.23: Schematic representation of two-dimensional criteria in the (Gic, ψ̂)-plane,
proposed for a crack between two dissimilar materials. The criterion in (a) eq. (4.16)
(Banks-Sills and Ashkenazi, 2000; Banks-Sills et al., 2000; Banks-Sills et al. 2005) and
(b) eq. (4.18) (Wang, 1997).

The criterion in eq. (4.18) is shown schematically in Fig. 4.23b.

For three-dimensions and the interfaces considered here, the energy release rate is

given as

Gi =
1

H1

(
K2

1 +K2
2

)
+

1

H2

K2
III (4.21)

where H2 is also a function of the mechanical properties of both materials on either side

of the interface and given in eq. (3.18)2. From here, a three-dimensional failure criterion

may be obtained as (Banks-Sills, 2010)

Gic = G1c

(
1 + tan2 ψ̂

) (
1 + tan2 ϕ

)
(4.22)

where ϕ is calculated in eq. (3.20). Note that in Banks-Sills et al. (2006), the three-

dimensional criterion in eq. (4.22) was proposed in which the out-of-plane stress intensity

factor was related to the square-root, oscillatory singularity and the in-plane sliding stress

intensity factor KII was the amplitude of the square-root singularity. In this investigation,

two and three-dimensional failure criteria are proposed and examined using the results

obtained from mixed mode BD fracture toughness tests.

4.7.2 Two-dimensional failure criteria

In this section, the criteria given in eqs. (4.14) and (4.18) are extended to include both

positive and negative K̂2 values. The proposed criteria are developed here using the results

from the twenty-seven mixed mode fracture toughness BD tests described in Sections 4.3,
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Figure 4.24: Two-dimensional ’separated’ criterion (L̂ = 100 µm): (a) in the (K̂1 − K̂2)-
plane using eq. (4.23); (b) in the (Gic, ψ̂)-plane using eq. (4.27) substituted into eq. (4.19)
and then into eq. (4.18).

4.4 and 4.6 with the superposed total stress intensity factors K
(T )
i (i = 1, 2) given in

the second and third columns of Tables C.1 through C.27. From these total values, the

normalized stress intensity factors K̂
(T )
i (i = 1, 2) were calculated by means of eq. (1.26)

with a fitting length scale parameter L̂ = 100 µm. In addition, the in-plane phase angle

ψ̂, as well as the in-plane critical energy release rates at failure Gic were obtained using

eqs. (3.19) and (4.15), respectively. Note that Gi = Gic in eq. (4.15) when K̂1, and K̂2 are

critical values.

Since the tests were performed for both positive and negative loading angles, both

negative and positive K̂2 values, respectively, were obtained. Guided by the criterion in

eq. (4.14), four ranges were obtained for K̂1, namely,

K̂1 =


min

(
K̂

(N)
1 ,

K̂2 − K̂
(N)
2c

β(N)

)
for K̂2 > 0

min

(
K̂

(P )
1 ,

K̂2 − K̂
(P )
2c

β(P )

)
for K̂2 < 0

(4.23)

where (N) and (P ) represent negative or positive loading angles, respectively. The

proposed criterion was examined using the stress intensity factors K̂1, K̂2 and KIII , given

in the fifth through seventh columns in Tables C.1 through C.27 which were calculated

with L̂ = 100 µm. The stress intensity factor values were projected onto the (K̂1, K̂2)-

plane as shown in Fig. 4.24a with KIII = 0. Note that for a different choice of the value of

L̂, the parameters governing the criterion, namely, K̂
(i)
1 , K̂

(i)
2c and β(i) (i = N,P ), result

in different values. The values of K̂
(i)
2c and β(i), for each material system, were obtained
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Table 4.22: Values of K̂
(i)
2c and β(i) (i = N,P ) for the ’separated’, ’3 branch’ and ’5 branch’

criteria in eqs. (4.23), (4.24) and (4.25) for L̂ = 100 µm.

K̂
(N)
2c (MPa

√
m) β(N) K̂

(P )
2c (MPa

√
m) β(P )

2.62 -0.67 -2.48 0.22

as the intercept and slope, as shown in Fig. 4.24a, respectively, of the oblique lines which

were fit to the K̂2 verses K̂1 values at failure from tested specimens at 20 locations along

the delamination front through the specimen thickness. Results from specimens loaded

with ω < −3◦ were used to calculate K̂
(N)
2c and β(N); specimens loaded with ω ≥ 5.4◦ were

used to determine K̂
(P )
2c and β(P ). The obtained values are presented in Table 4.22.

The value of K̂
(N)
1 shown in Fig. 4.24a was calculated as the average of all K̂1 values,

along the delamination front, which were obtained at failure for specimens loaded with

ω ≈ −2◦. In the same manner, K̂
(P )
1 was obtained from specimens which were loaded

with 1.9◦ < ω < 5.4◦. The obtained values are presented in Table 4.23. Other important

values related to K̂2 are shown in Table 4.23; these will be discussed in the sequel.

It may be observed that using the criterion in eq. (4.23) with L̂ = 100 µm, K̂
(N)
2c ̸=∣∣∣K̂(P )

2c

∣∣∣. Since the investigated interface is not symmetric, this result is not surprising. On

the other hand, as may be seen in Fig. 4.24a, K̂
(N)
1 ̸= K̂

(P )
1 , resulting in two different

values for K̂1c. This result is problematic since it would have been expected that one

K̂1c value would be found. This motivates consideration of another value of L̂ for which

K̂
(N)
1 = K̂

(P )
1 . It was found that for L̂ = 26.8 m, K̂1c = 0.89 MPa

√
m, as shown in

Fig. 4.25a. Indeed, this value of L̂ is a physically unrealistic length scale. Hence, a

different solution was proposed. It may be noted that for the interface studied here, the

experimental data in Fig. 4.25a fit the failure curve quite well. From a practical point of

view, it may have been simpler to proceed with this curve.

In order to obtain one value of K̂1c with L̂ = 100 µm, the criterion in eq. (4.23) was

modified and the ’3 branch’ criterion shown in Fig. 4.26a was proposed. This criterion

is composed of three branches, as shown in the figure where also data from the tests is

Table 4.23: Values of K̂
(i)
1 and the corresponding minimum and average K̂

(i)
2 (i = N,P )

for L̂ = 100 µm. All parameters have units of MPa
√
m.

K̂
(N)
1 K̂

(N)
2(min) K̂

(N)
2(avg) K̂

(P )
1 K̂

(P )
2(max) K̂

(P )
2(avg)

1.22 0.72 1.01 0.54 -0.52 -1.32
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Figure 4.25: Two-dimensional criterion (L̂ = 26.8 m): (a) in the (K̂1 − K̂2)-plane using
eq. (4.23), K̂1c = 0.89 MPa

√
m; (b) in the (Gic, ψ̂)-plane using eq. (4.27) substituted into

eq. (4.19) and then into eq. (4.18).

presented. The ’3 branch’ failure criterion is calculated by means of

K̂1 =


min

(
K̂2 − I

β(S)
,
K̂2 − K̂

(N)
2c

β(N)

)
for K̂2 > 0

min

(
K̂2 − I

β(S)
,
K̂2 − K̂

(P )
2c

β(P )

)
for K̂2 < 0

(4.24)
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Figure 4.26: Two-dimensional three branch criterion (L̂ = 100 µm) (a) in the (K̂1 − K̂2)-
plane using eq. (4.24) (b) in the (Gic, ψ̂)-plane using eq. (4.28) substituted into eq. (4.19)
and then into eq. (4.18)
.
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Table 4.24: The intercept I and slope β(S) of the line joining the points (K̂
(N)
1 ,K̂

(N)
2 ) and

(K̂
(P )
1 ,K̂

(P )
2 ), for L̂ = 100 µm, for the ’3 branch’ and ’5 branch’ criteria.

’3 branch’ criterion ’5 branch’ criterion

I (MPa
√
m) β(S) K̂1c (MPa

√
m) I (MPa

√
m) β(S) K̂1c (MPa

√
m)

-3.19 3.45 0.92 -1.51 1.83 0.82

where I and β(S) are the intercept and slope, respectively, of branch 2 in Fig 4.26a. This

line is obtained by joining (K̂
(N)
1 ,K̂

(N)
2(avg)) and (K̂

(P )
1 ,K̂

(P )
2(avg)). Values for K̂

(i)
1 (i = N,P ) for

L̂ = 100 µm are shown in the first and fourth columns of Table 4.23, respectively. Values

of K̂
(i)
2(avg) with L̂ = 100 µm , are presented in the third and sixth columns, respectively,

of that table. Recall that K̂
(i)
1 are shown in Fig. 4.24a and are calculated as the average

of all K̂1 values, along the delamination front, which are obtained at failure for specimens

with a dominant mode 1 deformation. The values of K̂
(i)
2(avg) are obtained as the average

value from all K̂2 values observed at failure for the specimens related to the calculation

of K
(i)
1 . The values obtained for I and β(S) are shown in the first and second columns of

Table 4.24 and referred to as the ’3 branch’ criterion.

To propose another option for a failure criterion, the criterion in eq. (4.24) is further

modified as

K̂1 =


min

[
min

(
K̂

(N)
1 ,

K̂2 − I

β(S)

)
,
K̂2 − K̂

(N)
2c

β(N)

]
for K̂2 > 0

min

[
max

(
K̂

(P )
1 ,

K̂2 − I

β(S)

)
,
K̂2 − K̂

(P )
2c

β(P )

]
for K̂2 < 0

(4.25)

to obtain a five branch criterion. In Fig. 4.27a, data from the tests, as well as the failure

curve obtained using eq. (4.25), with L̂ = 100 µm, is presented. It may be observed that

this criterion includes five branches, marked in Fig. 4.27a, where branches 1 and 5 are the

same as branches 1 and 3 of the ’3 branch’ criterion in Fig. 4.26a with intercept K̂
(i)
2c and

slope β(i) (i = N,P ), given in Table 4.22. Branch 3 is determined as a line with a different

intercept I and slope β(S) than those used for the ’3 branch’ criterion. Here, the intercept

and slope were determined from joining (K̂
(N)
1 ,K̂

(N)
2(min)) and (K̂

(P )
1 ,K̂

(P )
2(max)) shown in the

first, second, fourth and fifth columns of Table 4.23 for L̂ = 100 µm. The values of

K̂
(N)
2(min) and K̂

(P )
2(max) are the minimum and maximum values, respectively, from all K̂2

values observed at failure for the specimens related to the calculation of K
(i)
1 (i = N,P ).

The values obtained for I and β(S) are shown in the fourth and fifth columns of Table 4.24,

respectively, and referred to as the ’5 branch’ criterion. Branches 2 and 4 of this criterion

are constant values equal to K̂
(i)
1 (i = N,P ) which are given in Table 4.23. The values

of K̂1c obtained for K̂2 = 0 using the ’3 branch’ and ’5 branch’ criteria in eqs. (4.24)
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Figure 4.27: Two-dimensional five branch criterion (L̂ = 100 µm) (a) in the (K̂1 − K̂2)-
plane using eq. (4.25) (b) in the (Gic, ψ̂)-plane using eq. (4.30) substituted into eq. (4.19)
and then into eq. (4.18).

and (4.25), respectively, may be calculated as

K̂1c = − I

β(S)
(4.26)

and are presented in the third and sixth columns of Table 4.24, respectively.

It is common to describe two-dimensional failure criteria in the (Gic, ψ̂)-plane where

Gic is the critical in-plane interface energy release rate at fracture, calculated in eq. (4.15),

and ψ̂ is the in-plane mode mixity phase angle, given in eq. (3.19). In order to do so, an

expression for K̂1 in terms of ψ̂ is required. For the ’separated’ criterion in eq. (4.23) and

Fig. 4.24, this relation may be written as

K̂1 =


min

(
K̂

(N)
1 ,

K̂
(N)
2c

tan ψ̂ − β(N)

)
for ψ̂ > 0

min

(
K̂

(P )
1 ,

K̂
(P )
2c

tan ψ̂ − β(P )

)
for ψ̂ < 0


(4.27)

where i = N,P and (N) and (P ) represent negative or positive loading angles, respectively.

The values of K̂
(i)
1 are presented in the first and fourth columns in Table 4.23 and K̂

(i)
2c

and β(i) may be found in Table 4.22.

For the ’3 branch’ criterion in eq. (4.24) and Fig. 4.26a, the relation between K̂1 and
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Table 4.25: Values of ψ̂(i) and ψ̂∗(i) obtained from eq. (4.29) for the ’3 branch’ criterion and
from eq. (4.31) for the ’5 branch’ criterion. The starred quantities are from the statistical
analysis.

criterion ’3 branch’ ’5 branch’

i N P N P

ψ̂(i) 0.87 -1.48 0.54 -0.77

ψ̂∗(i) 0.93 -1.56 0.62 -0.92

ψ̂ may be derived as

K̂1 =



K̂
(N)
2c

tan ψ̂ − β(N)
for ψ̂ ≥ ψ̂(N)

I

tan ψ̂ − β(S)
for ψ̂(P ) ≤ ψ̂ ≤ ψ̂(N)

K̂
(P )
2c

tan ψ̂ − β(P )
for ψ̂ ≤ ψ̂(P )

(4.28)

where the values of K̂
(i)
2c and β(i) (i = N,P ) are given in Table 4.22 and the values of I

and β(S) are given in Table 4.24, under the ’3 branch’ criterion. The boundary of each

function, ψ̂(i) (i = N,P ), is defined as the value of ψ̂ at the intersection of two adjacent

branches, and given in the second and third columns in Table 4.25. These values may be

calculated as

ψ̂(i) = tan−1

(
Iβ(i) − K̂

(i)
2c β

(S)

I − K̂
(i)
2c

)
(4.29)

where i = N,P .

Similarly, for the ’5 branch’ criterion in eq. (4.25) and Fig. 4.27a, the relation between

K̂1 and ψ̂ is obtained as

K̂1 =



min

(
K̂

(N)
1 ,

K̂
(N)
2c

tan ψ̂ − β(N)

)
for ψ̂ ≥ ψ̂(N)

I

tan ψ̂ − β(S)
for ψ̂(P ) ≤ ψ̂ ≤ ψ̂(N)

min

(
K̂

(P )
1 ,

K̂
(P )
2c

tan ψ̂ − β(P )

)
for ψ̂ ≤ ψ̂(P )

(4.30)

where K̂
(i)
2c and β(i) (i = N,P ) are the same as those used for the ’3 branch’ criterion and

given in Table 4.22; I and β(S) are presented in Table 4.24 for the ’5 branch’ criterion;

values of K̂
(i)
1 are presented in the first and fourth columns in Table 4.23 and ψ̂(i) are

the values of ψ̂ at the intersection of branches 2 and 3 for i = N , and branches 3 and
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Table 4.26: Values of G1c for ψ = 0 for the ’3 branch’ and ’5 branch’ criteria in eqs. (4.28)
and (4.30) for ψ̂(P ) < ψ̂ < ψ̂(N) substituted into eq. (4.19) with L̂ = 100 µm.

G1c (N/m)

’3 branch’ ’5 branch’

143.7 114.4

4 for i = P . The ψ̂(i) values obtained are presented in the fourth and fifth columns in

Table 4.25, and were calculated as

ψ̂(i) = tan−1

(
I

K̂
(i)
1

+ β(S)

)
(4.31)

where i = N,P .

In order to obtain two-dimensional failure criteria in the (Gic, ψ̂)-plane, the expressions
in eqs. (4.27), (4.28) and (4.30) were substituted into eq. (4.19) to define expressions for

G1 in terms of ψ̂. The parameter H1 in eq. (4.19) is given in Table 4.9. Note that the

parameter G1c is the energy release rate for ψ̂ = 0. These relations are then substituted

into eq. (4.18) to obtain the two-dimensional ’separated’, ’3 branch’, and ’5 branch’ crite-

ria, shown in Figs. 4.24b, 4.26b and 4.27b, respectively, all calculated for L̂ = 100 µm. In

those figures, data obtained from the BD tests, as well as the failure curve determined in

the (Gic, ψ̂)-plane are presented.

It may be observed in Fig. 4.24b that the curve is not continuous for L̂ = 100 µm

since G(N)
1 ̸= G(P )

1 . This result is problematic since two values are obtained for the critical

mode 1 interface energy release rate G1c. This problem is the same as that found in

Fig. 4.24a from eq. (4.23) in the (K̂1, K̂2)-plane, where two values of K̂1c were observed

since K̂
(N)
1 ̸=

∣∣∣K̂(P )
1

∣∣∣. This was solved by choosing L̂ = 26.8 m, as was done for eq. (4.23)

in order to obtain K̂
(N)
1 = K̂

(P )
1 . With this value of L̂, G1c = 132.6 N/m. Data from the

tests, as well as the failure curve obtained for L̂ = 26.8 m are presented in Fig. 4.25b. Of

course, as mentioned earlier, this value of L̂ is not physically appropriate.

For the ’3 branch’ and ’5 branch’ criteria in the (Gic, ψ̂)-plane, values of G1c are obtained

for ψ̂ = 0 from eqs. (4.19) and (4.26), with L̂ = 100 µm. The results are presented in

Table 4.26. It may be noted that in Banks-Sills and Ashkenazi (2000), Banks-Sills et

al. (2000, 2005b) for values of ψ̂ = ±π/2, the value of Gic obtained from the criterion

in eq. (4.16) approaches infinity; whereas, for the ’3 branch’ and ’5 branch’ criteria in

eqs. (4.28) and (4.30), respectively, substituted into eq. (4.19) and then into eq. (4.18),

this is not the case. The expressions for branches 1 and 3 shown in Fig. 4.26b for the ’3

branch’ criterion and branches 1 and 5 shown in Fig. 4.27b for the ’5 branch’ criterion,

may be written as
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Gic =
1

H1

[
K̂

(i)
2c

tan ψ̂ − β(i)

]2 (
1 + tan2 ψ̂

)
(4.32)

where i = N,P . In eq. (4.32), the parameter H1 is given in Table 4.9 and K̂
(i)
2c and β(i)

(i = N,P ) are given in Table 4.22. In the limit as ψ̂ → ±π/2, values of Gic from eq. (4.32)

are found to be constant and are given by

lim
ψ̂→±π/2

Gic =
K̂

(i)2

2c

H1

. (4.33)

This implies that the values of ψ̂ using these criteria are not limited to −π/2 < ψ̂ < π/2.

For each of the proposed criteria, considering each specimen individually, three types

of predictions occur, namely, complete failure, initiation, and no failure. To employ these

failure curves, a structure containing a through the thickness delamination, between the

two plies studied here is analyzed to determine the stress intensity factors K̂1 and K̂2

or the interface energy release rate Gi and phase angle ψ̂ with L̂ = 100 µm. For the

criteria in the (K̂1, K̂2)-plane, the points (K̂1, K̂2) are plotted and compared to either,

the ’3 branch’ or the ’5 branch’ criterion from eqs. (4.24) or (4.25), respectively, shown in

Figs. 4.26a and 4.27a, respectively. If all of the points along the delamination front are

outside the criterion, failure is expected. If some points are within and some are outside

the curve, it is expected that those points which have failed will induce the remainder of

the points along the delamination front to propagate. For a specific specimen, if all points

are within the curve, then failure is not expected. In the same manner, for the criteria

in the (Gic, ψ̂)-plane, the points (Gic, ψ̂) are plotted in Figs. 4.26b and 4.27b, respectively,

for either the ’3 branch’ or the ’5 branch’ criteria where the failure curves in the figures

were obtained by means of eqs. (4.28) or (4.30), respectively, with eqs. (4.18) and (4.19).

If all of the points along the delamination front are above the curve, failure is expected.

If some points are above and some are below the curve, it is expected that those points

which have failed will induce the remainder of the points along the delamination front to

propagate. If all points are below the curve, then failure is not expected.

For each criterion proposed here, there is scatter about the predicted failure curves,

as may be seen in Figs. 4.26 and 4.27 in both the (K̂1, K̂2)-plane and in the (Gic, ψ̂)-
plane. Note that for other composite laminates scatter was also observed (Banks-Sills et

al., 2005b; 2006). In those cases, a statistical analysis was carried out to predict failure

(Banks-Sills, 2015). For the material system studied here, it was found that all points

through the thickness of four specimens are outside or above the failure curves obtained

from the ’3 branch’ and ’5 branch’ criteria in the (K̂1, K̂2)-plane and in the (Gic, ψ̂)-
plane, as may be observed in Figs. 4.26 and 4.27. This implies that complete failure is

expected through the thickness of these specimens. In addition, for both the ’3 branch’

and ’5 branch’ criteria, all points through the thickness of two specimens were found to
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be within the safe zone as predicted by the failure curves. This implies that failure is

not expected for these specimens. Yet, since it is known that these specimens failed, the

prediction is considered as scatter in the results. This will be taken into account using a

statistical analysis in Section 4.7.3.

It may be noted that in Zhao et al. (2017), a somewhat different approach was taken

to present the test data. The ordinate in Figs. 4.26b and 4.27b remain the same, but the

abscissa is taken to be an invariant length parameter

LI = L̂ exp

(
− ψ̂
ε

)
. (4.34)

It might appear at first sight that LI is a function of L̂. But the combination of the

quantities in eq. (4.34) result in an invariant value for LI . However, Banks-Sills (2020)

has shown that the invariant length parameter LI has values which are unrealistically

large and small, whereas L̂ is a physical length scale. Moreover, in that paper it was

shown that the choice of L̂ used to determine LI affects the quality of the fit of the failure

curve to the tested data in the (Gic, LI)-plane.

4.7.3 Statistical analysis

In this section, a statistical analysis is performed for the two-dimensional criteria pro-

posed in Section 4.7.2. In Banks-Sills (2015), a statistical analysis for 10% probability

of unexpected failure in the safe zone was applied to the two-dimensional criterion in

eq. (4.16) and the three-dimensional criterion in eq. (4.22). Two statistical models were

used, the z-variate for determination of probability with a confidence interval (Natrella,

1963) and the t-distribution for statistical intervals (Whitmore, 1986; Luko and Neubauer,

2011). Since the z-variate model allowed for a confidence interval, it is used here for the

two-dimensional criteria in eqs. (4.24) and (4.25) in the (K̂1, K̂2)-plane and for eqs. (4.28)

and (4.30) in the (Gic, ψ̂)-plane. The statistical analysis is performed in the (K̂1, K̂2)-

plane to obtain statistical values for the constant parameters K̂
(i)
1 , K̂

(i)
2c (i = N,P ) and I.

These statistical values are then used in eqs. (4.24) and (4.25) in the (K̂1, K̂2)-plane and

in eqs. (4.28) and (4.30) and then into eq. (4.19) and into eq. (4.18) in the (Gic, ψ̂)-plane
to obtain the reduced statistical failure criteria shown as dashed curves in Figs. 4.26 and

4.27.

For the z-variate approach, an average value of some parameter A is reduced by a

statistical factor K in a manner proportional to the standard deviation s of the data

which was used to calculate that average value, namely

A∗ = A−K · s . (4.35)
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1

2

Figure 4.28: An illustration of the rotated coordinate system (K̂ ′
1 − K̂ ′

2) for the criterion
in eq. (4.14).

The value of K is determined using the z-variate (Natrella, 1963) as

K =
|zP |+

√
z2P − a · b
a

. (4.36)

In eq. (4.36),

a = 1−
z2γ

2(n− 1)
and b = z2P −

z2γ
n

(4.37)

where n is the number of data points used to obtain the average value A, and zP and

zγ are the z-variate probability and confidence, respectively. Finally, A∗ in eq. (4.35) is

the statistically reduced value. For the case of a 10% probability of unexpected failure

with a confidence of 95%, P = 0.1 and γ = 0.95. Consequently, zP = z0.1 = −1.2816 and

zγ = z0.95 = 1.6449. Then, there is only a 10% probability with a 95% confidence that a

new data point will be smaller than A∗.

Unlike in Banks-Sills (2015) where the statistically reduced criteria for eqs. (4.16)

and (4.22) were obtained by applying the statistical model to G1c in eq. (1.34), here, the

criteria include several branches. As a result, the statistical approach used in Banks-Sills

(2015) is modified. The ’3 branch’ criterion in eq. (4.24) is composed of functions relating

K̂1 and K̂2. The ’5 branch’ criterion in eq. (4.25) is composed of the same functions, as

well as branches 2 and 4 in Fig. 4.27a which have constant values. For these branches

the statistical approach is similar to that in Banks-Sills (2015). Although there, the

reduction was performed for the averaged critical energy release rate G1c in eq. (1.34) in

the (Gic, ψ̂)-plane, whereas here the reduction is applied to the values K̂
(i)
1 (i = N,P ) in

the (K̂1, K̂2)-plane.

In Fig. 4.28, examples of two branch types are presented for K̂2 > 0 and i = N .

Branch 1 is governed by the average value of K̂
(N)
1 , whereas, branch 2 is an example of

a relation between K̂1 and K̂2 involving the constants K̂
(N)
2c and β(N). For branch 1, the

statistical analysis is performed in the same manner as that in Banks-Sills (2015) using
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eq. (4.35) with A∗ = K̂
∗(N)
1 , A = K̂

(N)
1 , and K calculated using eq. (4.36). The statistical

value K
∗(N)
1 is obtained from this analysis and used in the required criteria.

In the case where K̂2 is a function of K̂1 as for branch 2 in Fig. 4.28, a rotated

coordinate system, (K̂ ′
1, K̂

′
2), is used. In Fig. 4.28 this coordinate system, in blue, has

been found by a counterclockwise rotation of θ(N) where the slope

β(N) = − cot θ(N) . (4.38)

The required rotated coordinate system (K̂ ′
1, K̂

′
2) is obtained from{

K̂ ′
1

K̂ ′
2

}
=

[
cos θ(N) sin θ(N)

− sin θ(N) cos θ(N)

]{
K̂1

K̂2

}
. (4.39)

Using the relation in eq. (4.38), the rotation in eq. (4.39) may be rewritten in terms of

β(N) as {
K̂ ′

1

K̂ ′
2

}
=

1√
1 + β(N)2

[
−β(N) 1

−1 −β(N)

]{
K̂1

K̂2

}
. (4.40)

For branch 2, the statistical analysis is carried out in the rotated space. By means

of eq. (4.40), all data points (K̂1, K̂2) related to branch 2 in Fig. 4.28 are defined in

the (K̂ ′
1, K̂

′
2) coordinate system. The average of all K̂ ′

1 values is calculated as K̂
′(N)
1 , as

illustrated in blue in Fig. 4.28. The statistical reduction is then performed in the rotated

space using eq. (4.35) with A∗ = K̂
′∗(N)
1 , A = K̂

′(N)
1 , and the statistical factor K is

obtained from eq. (4.36). The resulting statistical value K̂
′∗(N)
1 is illustrated in blue in

Fig. 4.28. Once this statistical value is found in the rotated (K̂ ′
1, K̂

′
2)-space, the obtained

dashed line in Fig. 4.28, is rotated to the original (K̂1, K̂2)-space. Finally, the required

statistical value of K̂
∗(N)
2c , illustrated in Fig. 4.28, is obtained as the intersection of the

dashed line and the K̂2-axis. This value is used to describe the statistical relation between

K̂1 and K̂2 in the original coordinate system. It may be noted that the slope of branch 2

remains the same.

The statistical procedure described here was applied to the criteria presented in Sec-

tion 4.7.2. Recall that all of the statistical values found are based on the original results

in Tables 4.22 through 4.24 which were obtained for the case L̂ = 100 µm.

For the ’3 branch’ criterion in eq. (4.24) and in Fig. 4.26a, all three branches include

a relation between K̂1 and K̂2 which is similar to that discussed for the case of branch 2

in Fig. 4.28. However, for branches 2 and 3 of this criterion in Fig. 4.26a, the slopes β(S)

and β(P ), respectively, are positive and the coordinate rotation is clockwise. For these

branches, the transformation equations between the (K̂1, K̂2) and (K̂ ′
1, K̂

′
2)-axes are given

by {
K̂ ′

1

K̂ ′
2

}
=

1√
1 + β(i)2

[
β(i) −1

1 β(i)

]{
K̂1

K̂2

}
(4.41)
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Table 4.27: Statistical parameters related to branches 1, 2 and 3 of the ’3 branch’ criterion
and 1 and 5 of the ’5 branch’ criterion in Figs. 4.26a and 4.27a, respectively, including

the average K̂
′(i)
1 value, number of data points n used, statistical parameter K, standard

deviation s, statistically reduced K̂
′∗(i)
1 value in the rotated coordinate system, and the

intersection K̂
∗(i)
2c between the statistically obtained branch and the K̂2-axis in the original

coordinate system.

i K̂
′(i)
1 n K s K̂

′∗(i)
1 K̂

∗(i)
2c / I∗

(MPa
√
m) (MPa

√
m) (MPa

√
m)

N 2.18 300 1.42 0.12 2.01 2.42
P 2.42 40 1.69 0.02 2.38 -2.44

S (’3 branch’) 0.89 200 1.45 0.13 0.70 -2.53

where i = P, S and

β(P ) = cot θ(P ) β(S) = cot θ(S) . (4.42)

Recall that the values of β(i) for the ’3 branch’ criterion are given in Table 4.22 for i = N,P

and in Table 4.24 for i = S.

In the same manner as that for branch 2 in Fig. 4.28, the statistical model is applied

in the rotated space and then the statistical curves are transformed back to the original

(K̂1, K̂2)-space. The average values of the data related to each branch in the ’3 branch’

criterion were obtained in the rotated (K̂ ′
1, K̂

′
2) coordinate system and referred to as K̂

′(i)
1

(i = N,P, S). In Table 4.27, the obtained K̂
′(i)
1 values are presented in the second column,

along with the number of data points used n, the statistical factor K and standard

deviation s, given in columns three through five, respectively. These results were used

in eq. (4.35) to calculate the statistically reduced values of K̂
′∗(i)
1 (i = N,P, S), in the

rotated space which are presented in the sixth column in Table 4.27. Finally, the required

statistical intercepts K̂
∗(i)
2c (i = N,P ) and I∗ are obtained and presented in the seventh

column of Table 4.27. These parameters are defined as the intersection of the statistically

obtained branches, shown as dashed lines in Fig. 4.26a with the K̂2-axis. Their values

are used to describe the statistical relation between K̂1 and K̂2 in the original coordinate

system. It may be noted that since most of the data points related to branch 3 were

in the failure zone of the original branch, the statistical analysis had a negligible effect

on the statistical branch, namely K̂
(P )
2c = −2.48 MPa

√
m was calculated to be K̂

∗(P )
2c =

−2.44 MPa
√
m.

The statistical ’3 branch’ failure criterion was obtained with a 10% probability and a

95% confidence that all (K̂1, K̂2) data points from a new specimen will be in the safe zone

but will fail. In the (K̂1, K̂2)-plane, the statistical ’3 branch’ criterion was determined

using eq. (4.24) with the statistical parameters K̂
∗(i)
2c (i = N,P ) and I∗ in Table 4.27

in place of K̂
(i)
2c and I, respectively. Note that the values for β(i) (i = N,P, S) used for

the statistical criterion are the same as those used for the original criterion and given
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Table 4.28: Statistical parameters K and s, used in eq. (4.35) to obtain K̂
∗(i)
1 (i = N,P )

for branches 2 and 4 of the ’5 branch’ criterion in eqs. (4.25) and (4.30), with L̂ = 100 µm.

i K̂
∗(i)
1 (MPa

√
m) n K s (MPa

√
m)

N 1.00 100 1.52 0.14
P 0.40 100 1.52 0.09

in Tables 4.22 and 4.24 for i = N,P and i = S, respectively. The statistical ’3 branch’

criterion is presented as the dashed curve in Fig. 4.26a.

In order to obtain the ’3 branch’ statistical criterion in the (Gic, ψ̂)-plane, the statistical
parameters K̂

∗(i)
2c (i = N,P ) and I∗ in Table 4.27 replace K̂

(i)
2c and I, respectively, in

eq. (4.28) with β(i) (i = N,P, S) given in Table 4.22. The boundaries ψ̂∗(i) (i = N,P )

presented in Table 4.25 were used in the equation. These boundaries were determined by

means of eq. (4.29) with K̂
∗(i)
2c (i = N,P ) and I∗ replacing K̂

(i)
2c and I, respectively, together

with β(i) (i = N,P, S). This substitution is performed in order to obtain statistical

relations between K̂1 and ψ̂. These relations are substituted into eq. (4.19) to obtain

expressions for G1 in terms of ψ̂ which are then substituted into eq. (4.18) to obtain the

statistical criteria in the (Gic, ψ̂)-plane. This statistical ’3 branch’ criterion is shown as

the dashed curve in Fig. 4.26b.

For the statistical analysis of the ’5 branch’ criterion in eq. (4.25), branches 1 and 5

in Fig. 4.27a are the same as branches 1 and 3 for the ’3 branch’ criterion in Fig. 4.26a

and, therefore, make use of the same statistical parameters K̂
∗(i)
2c (i = N,P ) presented in

Table 4.27. For branches 2 and 4 of this criterion, values of K
∗(i)
1 (i = N,P ) were obtained

in the same manner as that described for branch 1 in Fig. 4.28. The statistical factor K in

eq. (4.36), and the standard deviation s related to K̂
(i)
1 and used in eq. (4.35), are given in

the fourth and fifth columns in Table 4.28. The statistical K̂
∗(i)
1 values (i = N,P ) obtained

are presented in the second column of Table 4.28. Since there is no data along branch 3 of

the ’5 branch’ criterion in Fig. 4.27a and only statistics on K̂
(i)
1 (i = N,P ) could be carried

out, the statistical values related to this branch, namely, the intercept I∗ and slope β∗(S),

were obtained by means of linear interpolation between the two points (K̂
∗(N)
1 , K̂

(N)
2(min))

and (K̂
∗(P )
1 , K̂

(P )
2(max)). Values of K̂

(N)
2(min) and K̂

(P )
2(max) are presented in Table 4.23. The

intercept I∗ which defines the intersection between the statistically obtained branch and

the K̂2-axis, as well as the slope β∗(S) of this statistical branch are given in Table 4.29.

Table 4.29: Statistical values for branch 3 of the ’5 branch’ criterion in Fig. 4.27a including
the intercept I∗ and the slope β∗(S).

I∗ β∗(S)

(MPa
√
m)

-1.34 2.06
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Note that I∗ and β∗(S) were obtained differently from those of the ’3 branch’ criterion.

Finally, the statistical ’5 branch’ failure criterion was obtained with a 10% probability

and a 95% confidence that all (K̂1, K̂2) data points from a new specimen will be in the

safe zone but will fail. In the (K̂1, K̂2)-plane, the statistical criterion was determined

using eq. (4.25) with the statistical parameters K̂
∗(i)
2c and K̂

∗(i)
1 (i = N,P ) in Tables 4.27

and 4.28, respectively, as well as I∗ and β∗(S) from Table 4.29, replacing the original values

of K̂
(i)
2c , K̂

(i)
1 , I and β(S), respectively. Note that the slopes β(i) (i = N,P ) in Table 4.22

from the original criterion, were used in branches 1 and 5 of the statistical criterion. The

statistical ’5 branch’ criterion in the (K̂1, K̂2)-plane is presented as the dashed curve in

Fig. 4.27a.

In order to obtain the statistical ’5 branch’ criterion in the (Gic, ψ̂)-plane, I∗ and β∗(S)

from Table 4.29 along with K̂
∗(i)
2c and K̂

∗(i)
1 (i = N,P ) in Tables 4.27 and 4.28, respectively,

are used in eq. (4.30) replacing I and β(S), as well as K̂
(i)
2c and K̂

(i)
1 (i = N,P ). The

boundary points ψ̂∗(i) (i = N,P ), presented in Table 4.25 for the ’5-branch’ criterion, were

used in the equation and calculated using eq. (4.31) with the statistical parameters K̂
∗(i)
1 ,

I∗ and β∗(S) in Tables 4.28 and 4.29, respectively, replacing K̂
(i)
1 , I and β(S), respectively.

The resulting relation was then substituted into eqs. (4.18) and (4.19). The statistical ’5

branch’ criterion in the (Gic, ψ̂)-plane is shown as the dashed curve in Fig. 4.27b.

The same predictions for complete failure or failure initiation obtained using the ’3

branch’ and ’5 branch’ statistical criteria in the (K̂1, K̂2)-plane were observed in the

(Gic, ψ̂)-plane. Using the statistical criteria, two types of predictions were observed,

namely, complete failure or failure initiation. By means of the ’3 branch’ criterion in

eq. (4.24) with the statistical parameters, all data points through the thickness of twenty-

four specimens were outside the curve, hence, complete failure would have been predicted

by the statistical curve for these specimens. For the remaining three specimens, some

points were within and some outside the dashed curve meaning that failure initiation

would have been predicted. With the ’5 branch’ criterion in eq. (4.25), using the statisti-

cal parameters, complete failure was observed for twenty-five specimens; whereas, failure

initiation would have been predicted for the remaining two specimens, respectively. These

results demonstrate the confidence level in using the proposed statistical criteria for failure

predictions.

The statistical K̂∗
1c values, found when K̂2 = 0, were obtained for each criterion and

material system, using eq. (4.26). For the ’3 branch’ criterion, the statistical value I∗ in

the seventh column of Table 4.27 and the original slope β(S) in Table 4.24, were used. For

the ’5 branch’ criterion, the statistical values I∗ and β∗(S) in Table 4.29, were used. The

results are given in the first and third columns in Table 4.30. The statistical G∗
1c values

obtained for ψ̂ = 0 from eqs. (4.19) and (4.26), are given in the second and fourth columns

in that table for the ’3 branch’ and ’5 branch’ criteria.
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Table 4.30: Critical values of G∗
ic for ψ̂ = 0 obtained from eq. (4.19) with K̂1 calculated

with eq. (4.28) and (4.30), for the ’3-branch’ and ’5-branch’ criteria, respectively. Critical
values of K̂∗

1c for K̂2 = 0 from eq. (4.26) with β(S) and I∗ from Tables 4.24 and 4.27,
respectively, for the ’3 branch’ criterion and with β∗(S) and I∗ in Table 4.29 for the ’5
branch’ criterion using L̂ = 100 µm.

’3 branch’ criterion ’5 branch’ criterion

K̂∗
1c G∗

1c K̂∗
1c G∗

1c

(MPa
√
m) (N/m) (MPa

√
m) (N/m)

0.73 90.6 0.65 71.5

4.7.4 Three-dimensional failure criteria

In this section, the two-dimensional criteria proposed in Section 4.7.2 are extended to

three dimensions. In Banks-Sills et al. (2006, 2010), the three-dimensional criterion in

eq. (4.22) was used. A similar criterion may be proposed here by extending the criterion

in eq. (4.18) to three dimensions as

Gic = G1

(
1 + tan2 ψ

) (
1 + tan2 ϕ

)
. (4.43)

In eq. (4.43), ϕ is the phase angle, defined in eq. (3.20), and G1 is defined in eq. (4.19) where

K̂1 may be obtained using the ’3 branch’ or ’5 branch’ criteria in eqs. (4.28) and (4.30),

respectively. The parametersH1 andH2 used in these equations are presented in Table 4.9.

With the three-dimensional criterion, mode III deformation is accounted for. For the BD

specimens, it was observed thatKIII was more significant at the free edges of the specimen.

In Figs. 4.29, four views of the ’3 branch’ surface, are presented. In Figs. 4.30, four

views of the ’5 branch’ surface, are presented. Videos of these surfaces may be viewed

by links of the ’3 branch’, ’5 branch’, respectively. It may be observed that the surfaces

in Figs. 4.29 and Figs. 4.30 are very similar. Both appear to show a clear separation

between three different surfaces. For the ’3 branch’ criterion, these are a result of the

three separate branches in eq. (4.28) in two dimensions. For the ’5 branch’ criterion,

branches 1 and 5 create the external surfaces observed. Branches 2 to 4 are difficult to

distinguish but produced a lower value of G1c than branch 2 of the ’3-branch’ criterion, as

shown in Table 4.26. The data points obtained from the BD tests are also shown in each

of these figures. It may be observed that some of the data points are above the surface,

in the failure zone, and some are below it, in the safe zone.

Similar to the two-dimensional criteria proposed in Section 4.7.2, for the three-dimen-

sional criteria, considering each specimen individually, the same three types of predictions

occurred, namely, complete failure, initiation, and no failure. The scatter of the results

found in the three-dimensional criteria is similar to that observed with the two-dimensional

criteria in Section 4.7.2. Using eqs. (4.19) and (4.43) for the ’3 branch’ or the ’5 branch’

three-dimensional criterion, all points along the delamination front for two specimens are
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Figure 4.29: Four views of the three-dimensional ’3 branch’ failure surface from
eqs. (4.19), (4.28) and (4.43) with L̂ = 100 µm using the parameters K̂

(i)
2c , β

(i) (i = N,P ),
I and β(S) in Tables 4.22 and 4.24 with the boundaries ψ(i) in Table 4.25. ’3 branch’.

in the safe zone. Since these specimens failed, the statistical approach described in Sec-

tion 4.7.3 was applied to the three-dimensional criteria. The statistical parameters K̂
∗(i)
2c

and I∗ in Table 4.27, and β(i) (i = N,P, S) in Tables 4.22 and 4.24, respectively, were used

in place of K̂
(i)
2c and I, for the ’3 branch’ criterion in eq. (4.28). For the ’5 branch’ criterion

in eq. (4.30), I∗ and β∗(S) in Table 4.29, were used in place of I and β(S), respectively,

and K̂
∗(i)
2c and K̂

∗(i)
1 (i = N,P ) in Tables 4.27 and 4.28, respectively, were used in place of

K̂
(i)
2c and K̂

(i)
1 (i = N,P ). In addition, the parameters β(i) (i = N,P ) in Table 4.22, were

used. The ’3 branch’ and ’5 branch’ three-dimensional statistical criteria and failure sur-

faces were obtained by substituting eqs. (4.28) and (4.30), respectively, with the related

statistical parameters into eq. (4.19), and then into eq. (4.43).

Several views of the obtained statistical surfaces are presented in Figs. 4.31 and

Figs. 4.32 for the ’3 branch’ and ’5 branch’ criteria, respectively. Videos of these sur-

faces may be viewed by links of the statistical ’3 branch’ and statistical ’5 branch’. It

may be observed in the figures that the obtained statistical surfaces are similar to those
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Figure 4.30: Four views of the three-dimensional ’5 branch’ failure surface from
eqs. (4.19), (4.30) and (4.43) with L̂ = 100 µm using the parameters K̂

(i)
2c , β

(i), K̂
(i)
1

(i = N,P ), I and β(S) in Tables 4.22 through 4.24 with the boundaries ψ(i) in Table 4.25.
’5 branch’.

in Figs. 4.29 and Figs. 4.30, respectively, but with lowered surfaces. Since they are sta-

tistically reduced, the statistical G∗
ic values are lower than those of the original criteria.

In addition, the statistical G∗
1c values, which are the same as those calculated using the

statistical two-dimensional ’3 branch’ and ’5 branch’ criteria and given in Table 4.30 are

also lower than the original G1c values in Table 4.26. It may be observed that for both

criteria, most of the data points are in the failure zone above the surface, whereas only a

few data points remain in the safe zone. As observed in the two-dimensional case, both

statistical surfaces predict complete failure or failure initiation for all specimens. There

are no specimens for which failure was not predicted. Hence, the three-dimensional sta-

tistical failure surfaces may be used for failure prediction of these material systems and

interface.
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Figure 4.31: Four views of the three-dimensional ’3 branch’ statistical failure surface for
the wet-layup material system from eqs. (4.19), (4.28) and (4.43) with the boundaries

ψ∗(i) (i = N,P ) in Table 4.25 and L̂ = 100 µm using the statistical parameters K̂
∗(i)
2c

(i = N,P ) and I∗ in Table 4.27, as well as β(i) (i = N,P, S) in Tables 4.22 and 4.24 for
i = N,P and i = S, respectively. statistical ’3 branch’.
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Figure 4.32: Four views of the three-dimensional ’5 branch’ statistical failure surface for
the wet-layup material system from eqs. (4.19), (4.30) and (4.43) with the boundaries

ψ∗(i) (i = N,P ) in Table 4.25 and L̂ = 100 µm using the statistical parameters K̂
∗(i)
2c and

K̂
∗(i)
1 (i = N,P ) in Tables 4.27 and 4.28, respectively, I∗ and β∗(S) from Table 4.29 and

β(i) (i = N,P ) in Table 4.22. statistical ’5 branch’.
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Chapter 5

Fracture toughness tests using beam
type specimens

In this investigation, beam type tests including the calibrated-end loaded split (C-ELS)

and mixed mode end loaded split (MMELS) specimens which may provide for stable

delamination propagation when tested in displacement control were tested quasi-statically.

In addition, results from Chocron and Banks-Sills (2019) for double cantilever beam

(DCB) tests, with nearly mode I deformation, were reanalyzed. From the three test

types, fracture resistance curves or R-curves were determined where the amount of energy

required for the delamination to propagate GR as a function of the delamination extension

∆a is presented.

The same material and interface tested in Section 4 was tested again here and in

Chocron and Banks-Sills (2019) using beam type specimens. A new plate was designed

for these specimens with a different layup than that described in Section 4.1 for the

BD specimens. The plate was manufactured by means of a wet-layup process. The

design, layup, specimen dimensions, and mechanical properties of each ply in the plate are

described in Section 5.1. In Section 5.2, the results obtained in Chocron and Banks-Sills

(2019) from nearly mode I DCB tests are presented. These results were used in Chocron

and Banks-Sills (2019) to calculate GIR values as a function of the delamination extension

∆a by means of FEAs in conjunction with the three dimensional M -integral described in

Section 3.2. The analyses performed in that study are summarized in Section 5.2. The

results from the quasi-static DCB tests in Chocron and Banks-Sills (2019) were used again

here to calculate the GIR values as a function of the delamination extension ∆a by means

of an additional method, namely, the experimental compliance method (ECM) presented

in the ISO-15114 Standard (2014) for the C-ELS test and adapted here for the DCB

test results. The R-curves obtained by means of the two methods, ECM here and the

M -integral in Chocron and Banks-Sills (2019), are presented and compared in Section 5.2.

Six C-ELS and five MMELS specimens were tested and analyzed to obtain stress

intensity factors K
(f)
m and K

(r)
m (m = 1, 2, III ) resulting from mechanical loading and
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(b)

Figure 5.1: (a) Schematic view of the designed plate for DCB, C-ELS and MMELS
specimens (each specimen in the plate is numbered as R.C.). Teflon film locations in the
plate are colored, blue - delamination and red - weight fraction; (b) specimen dimensions.

curing stresses, respectively, as well as the mode mixity phase angles ψ̂ and ϕ. Moreover,

the resistance energy release rates GiR as a function of the delamination extension ∆a

were determined. In Sections 5.3.1 and 5.4.1, test protocols for the C-ELS nearly mode

II tests and for the MMELS mixed mode tests, respectively, are presented. The analyses

and results from each test are presented in Sections 5.3 and 5.4, for the C-ELS and

MMELS tests, respectively.

5.1 Materials

In this study, six C-ELS and five MMELS specimens were tested quasi-statically. The

specimens were fabricated by means of a water-jet process from a MD carbon fiber rein-

forced (CFRP) laminate composed of the same material used for the BD tests in Section 4,

but with a different layup. Note that the specimens used in Chocron and Banks-Sills

(2019) for quasi-static and fatigue DCB tests were also fabricated from the same MD

CFRP plate. The geometry of the plate was designed for forty specimens as shown in

Fig. 5.1a. In Fig. 5.1b, an example of one beam specimen is presented. Dimensions

of this specimen were determined based on previous knowledge from the literature for

DCB, C-ELS and MMELS tests (ISO 15024:2001(E), 2001; ASTM D5528-13, 2014 ; ISO-

15114:2014(E),2014; Blackman et al., 2001). These dimensions are presented in Table. 5.1
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Table 5.1: Dimensions for DCB, C-ELS and MMELS tests (chosen based on recommenda-
tions in ISO 15024:2001(E) (2001), ASTM D5528-13 (2014), ISO-15114:2014(E) (2014),
Blackman et al. (2001))

l (mm) b (mm) 2h (mm) ai (mm)

200 20 ≈ 5 60-65

where l is the total specimen length, b is the specimen width, 2h is the specimen thickness

and ai is the total insert length.

The laminate was composed of 19 plies to create a maximum thickness of approxi-

mately 5 mm. The stacking sequence used was {[(+45◦/− 45◦), (0◦/90◦)]4, (+45◦/− 45◦),

0◦//(+45◦/− 45◦), [(0◦/90◦), (+45◦/− 45◦)]4}. Note that the double slash indicates the

initial delamination location which was introduced using a 13 µm thick PTFE film along

the interface investigated in this study. For a description of the materials see Section 2.1.

Note that the material properties in the plate are calculated based on the measured fiber

weight fraction of each ply. These properties differ from those in Section 2.1.

In Fig. 5.1a three PTFE film strips are shown. The PTFE film indicated in blue was

used to create the initial delamination. The red PTFE strip in Fig. 5.1a was used to

separate the nine woven lower plies so that weight fraction tests could be performed on

nine plies. The volume fraction of the carbon fibers in the woven fabric was then calculated

from the results of these tests. In addition, an accompanying specimen containing 10 UD

plies was fabricated together with the plate. This was done to measure the weight fraction

of the carbon fibers in the UD composite, as well as to measure the average thickness of

a ply.

The plate was manufactured by means of a wet-layup process. One thermo-couple

(TC) was inserted during plate fabrication as shown in Fig 5.1a to verify a uniform degree

of cure during the curing process. From the TC, a monotonically increasing temperature

was observed with a maximum of 90◦ C. Since no exothermic reactions were measured by

the thermocouple and the plate is relatively thin, it was concluded that a uniform degree

of cure was obtained within the composite plate. As a result of the temperature changes

applied during the curing process, residual stresses were induced within the laminate. The

fabricated plate thickness, width and length were measured to be approximately 4.8 mm

by 564 mm by 676 mm, respectively. The UD fabric ply thickness was measured from the

accompanying specimen to be approximately 0.145 mm thick. Hence, it may be concluded

that each woven ply is approximately 0.27 mm thick.

After the manufacturing process was completed, NDT was performed on the composite

plate to identify voids. Low porosity was observed from these results. Void content in

each ply was measured. The fiber and epoxy volume fractions, as well as the void content

of each ply were presented in Chocron and Banks-Sills (2019) and are shown here in
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Table 5.2: Volume fractions of the material contents in the UD and woven plies.

material T300 fibers (%) EPR-L20/EPH-960 (%) glass fibers (%) voids (%)

UD 51.8 40 4.3 3.9
weave 42.7 53.8 - 3.5

Table 5.2. Mechanical properties and CTEs of each ply were calculated by means of

HFGMC (Aboudi, 2004) and may also be found in Chocron and Banks-Sills (2019). These

properties are presented here in Table 5.3 for the UD fabric ply, and in Table 5.4 for the

woven plies with fibers oriented in the +45◦/− 45◦ and 0◦/90◦- directions.

5.2 Nearly mode I fracture toughness tests - DCB

specimens

In this section, DCB fracture toughness tests which were performed and described in

Chocron and Banks-Sills (2019) are presented. In that study, mechanical and thermal

FEAs were preformed for each tested specimen. The obtained displacement fields were

used with the mechanical and thermal M -integrals presented in Section 3.2 to obtain

stress intensity factors resulting from mechanical and residual curing stresses, respec-

tively. These were superposed to obtain the total stress intensity factors. In addition, GIR

values as a function of the delamination extension ∆a were obtained. These analyses are

described in detail in Chocron and Banks-Sills (2019). For completeness, a short summary

of these analyses, as well as the resulting R-curve are presented here.

Also in this section, the DCB test results obtained in Chocron and Banks-Sills (2019)

were used to obtain GIR values as a function of the delamination extension ∆a by means of

ECM (ISO-15114, 2014). Note that although the ECM was suggested in the standard for

mode II testing by means of the C-ELS specimen, it was chosen here to analyze the DCB

results. Finally, in this section, the R-curve obtained here by means of ECM is compared

to that obtained in Chocron and Banks-Sills (2019) by means of the M -integral.

In Chocron and Banks-Sills (2019), five DCB specimens were tested quasi-statically.

During each test, images of the specimen were obtained every 5 s by means of the LaVision

digital camera described in Section 4.3. In addition, the load P and actuator displacement

d were recorded throughout the test. These values were synchronized with the images by

means of the LaVision system. Load-displacement curves from each test may be found in

Table 5.3: UD fabric mechanical properties and CTEs.

EA ET GA GT νA νT αA αT

(GPa) (GPa) (GPa) (GPa) (10−6/◦C) (10−6/◦C)

104.4 8.7 6.6 3.2 0.30 0.36 2.3 49.7
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Table 5.4: Woven fabric mechanical properties and CTEs obtained from HFGMC models
for the 0◦/90◦ and +45◦/− 45◦ woven fabrics.

fiber orientation E11 = E33 E22 G13 G21 = G23 ν13 ν21 = ν23 α11 = α33 α22

(GPa) (GPa) (GPa) (GPa) (10−6/◦C) (10−6/◦C)

0◦/90◦ 43.9 4.9 2.3 1.8 0.034 0.046 4.3 72.1
+45◦/− 45◦ 8.4 4.9 21.2 1.8 0.82 0.046 4.3 72.1

Chocron and Banks-Sills (2019). After each test was completed, delamination lengths a,

as the delamination propagated, were measured from the images. For each measured value

of a, the load P which caused delamination propagation, as well as the associated actuator

displacement d were noted to be used in the analyses. In addition, the temperature at the

beginning of each test ϑi was recorded and may also be found in Chocron and Banks-Sills

(2019).

For each specimen, six mechanical FEAs and one thermal FEA were performed. In

the six mechanical FEAs, a different delamination length was modeled for every analysis,

namely, a = 50 mm, 65 mm, 80 mm, 95 mm, 110 mm and 120 mm. For all analyses, the

applied load was set to P = 1 N. The displacement fields obtained from these analyses

were used with the three-dimensional mechanical M -integral described in Section 3.2 to

obtain six data sets of K
(f)
m (m = 1, 2, III ) each related to a specific value of a. Each

data set is composed of forty K
(f)
m values along the delamination front. Hence, for each

specimen, data points in the three-dimensional space (K
(f)
m , a, x3) were obtained. Surfaces

were fit through these data sets for m = 1, 2, III. These fitting surfaces, are described

mathematically as

K(f)
m (a, x3) =

5∑
i=0

pi0x
i
3 +

4∑
j=0

pj1x
j
3a . (5.1)

In eq. (5.1), pi0 and pj1 (i = 0, 1, .., 5 and j = 0, 1, .., 4) are the surface fitting constants.

Specific values for these constants for each specimen may be found in Chocron and Banks-

Sills (2019).

One thermal analysis was performed for each specimen with an applied temperature

∆ϑi calculated as

∆ϑi = ϑi − 90◦ (5.2)

where ϑi was the temperature recorded at the beginning of each test and 90◦ the highest

temperature measured by means of the thermocouple during curing. Since the effect of the

delamination length on the thermal stress intensity factors was found to be negligible, as

was shown in Chocron and Banks-Sills (2019), only one delamination length a = 85 mm

was used for all thermal analyses. By means of the thermal M -integral, described in

Section 3.2, with the displacement field obtained from each thermal FEA, one set of

stress intensity factors K
(r)
m (m = 1, 2, III ), resulting from residual curing stresses, along
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Figure 5.2: Resistance curves: GIR versus ∆a = a − a0 obtained by means of the (a)
M -integral (Chocron and Banks-Sills, 2019) and (b) ECM with n = 3, and m and C0

from Table 5.5.

the delamination front were obtained. A fourteenth order polynomial curve fit between

K
(r)
m and x3 was obtained as

K(r)
m (x3) =

14∑
i=0

bix
i
3 . (5.3)

where bi are fifteen fitting parameters given specifically in Chocron and Banks-Sills (2019)

for each specimen.

Recall that the delamination lengths a, as the delamination extended, were measured

after each test from the images which were acquired throughout the test. For every

measured a, expressions of K
(f)
m and K

(r)
m were obtained as a function of x3 by means

of eqs. (5.1) and (5.3), respectively. These expressions were superposed to determine an

expression for the total stress intensity factors K
(T )
m as a function of x3, namely,

K(T )
m (a, x3) = PK(f)

m (a, x3) +K(r)
m (x3) . (5.4)

In eq. (5.4), the load P , associated with each measured delamination length a, as the

delamination extended, was used. For each measured delamination length a, the critical

energy release rate Gi as a function of x3 was expressed by means of eq. (3.17) with use

of eq. (5.4). Finally, these expressions were integrated as

Gi =
1

b

∫ b

0

Gi(a, x3)dx3 (5.5)

to obtain the average Gi value for each delamination length a.

In Chocron and Banks-Sills (2019), Gi and Gi in eqs. (3.17) and (5.5), respectively, were

identified as GI and GI , respectively. This was done since the contributions of K2 and

KIII were small compared to the contribution of K1. Hence, K2 and KIII were neglected

for the phase angle calculations in eqs. (3.19) and (3.20); whereas for the energy release

rate calculation in eq. (3.17), they were included. In Fig. 5.2a, the obtained GIR values are
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Table 5.5: Fitting parameters related to the relation between the compliance C and
delamination length a in eq. (5.8) with n = 3.

specimen m (10−6/(N ·mm2)) C0 (mm/N)

FT-WET-1-04 0.98 0.058
FT-WET-1-05 0.90 0.045
FT-WET-1-06 0.98 0.035
FT-WET-1-07 0.97 0.033
FT-WET-1-08 1.00 0.022

plotted as points for each specimen as a function of the delamination extension ∆a = a−a0
where a0 is the initial delamination length of each specimen, measured from the load-line.

Note that the overbar in eq. (5.5), representing the average through the width GIR value,

is omitted. An R-curve is shown as the black curve in Fig. 5.2a. The fracture toughness

Gic, identified as GIc, was determined as the average of the five GIc values found for each

tested specimen by means of eq. (5.5) at ∆a = 0 mm. Recall that the overbar in the

equation is omitted. The GIc value with its standard deviation is presented in the second

column of the second row in Table 5.6.

For the data points between 0 ≤ ∆a ≤ 30 mm, increasing GIR values are observed in

Fig. 5.2a as ∆a increases. These values were described by means of a power law of the

form

GiR = A1(∆a)
B + Gic . (5.6)

Recall that GiR and Gic were identified in Chocron and Banks-Sills (2019) as GIR and GIc.

The fitting parameters A1 and B, obtained from Chocron and Banks-Sills (2019), are

given in the fourth and fifth columns in the second row of Table 5.6. It may be noted

that in eq. (5.6), GiR and Gic have units of N/m, ∆a has units of mm and A1 has units

which are consistent with these. At ∆a = 30 mm, a steady state GIss value is reached.

This value was calculated as the average of all GIR values obtained from eq. (5.5) for the

different specimens for ∆a ≥ 30 mm. The resulting GIss value with its standard deviation

is presented in the third column in the second row of Table 5.6.

Several LEFM data reduction schemes may be found in the literature to obtain the

initial critical interface energy release rate Gic, as well as the resistance energy GiR for

Table 5.6: The parameters GIc, GIss , A1 and B in the nearly pure mode I R-curves obtained
by means of the M -integral (Chocron and Banks-Sills, 2019) and by means of ECM in
eq. (5.9) for DCB specimens.

Method for calculation GIc (N/m) GIss (N/m) A1 (N/m·mmB) B

M -integral 357.9 ± 71.1 727.7 ± 71.8 100.2 0.384
ECM 363.9 ± 75.1 780.4 ± 68.5 102.6 0.412
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Figure 5.3: Compliance versus delamination length to the power n = 3 for specimen
FT-WET-1-04.

mode I DCB tests (ASTM D 5528-13, 2014; ISO 15024:2001, 2001), for mode II C-ELS

tests (ISO-15114, 2014) or for mixed mode MMELS tests (Williams, 1988; Hashemi et al.,

1990; Blackman et al., 2001). Among these methods are corrected beam theory (CBT),

corrected beam theory using the effective crack length (CBTE), modified compliance

calibration (MCC), experimental compliance method (ECM) and simple beam theory

(SBT) which are all derived from the Irwin-Kies equation (Irwin and Kies, 1954) given as

Gic =
P 2

2b
· dC
da

. (5.7)

In eq. (5.7), P is the load, b is the specimen width, C is the compliance given in eq. (1.97)

and a is the delamination length. Values for these parameters may be found in Chocron

and Banks-Sills (2019) for each specimen. It may be noted that since the delamination

considered here is along an interface between two dissimilar plies in an MD laminate,

where the two specimen arms have different thicknesses and mechanical properties, some

of these methods are not applicable.

The ECM method described in the ISO-15114 (2014) standard for mode II, and in

Blackman et al. (2001) for mixed modes, is recommended for both initiation and propa-

gation tests to obtain Gc and GR values, respectively. It was chosen to be applied here to

the DCB specimens tested in Chocron and Banks-Sills (2019) in order compare local and

global methods for obtaining a resistance curve for nearly mode I deformation.

Calculations by means of this method begin with a relation between the compliance C

and the delamination length a, throughout the test. This relation is assumed to behave

as (ISO-15114, 2014)

C = C0 +ma3 (5.8)

where C0 and m represent the intercept and slope, respectively, of the line relating the

compliance C measured from the test versus a3. An example of C verses a3 for specimen

FT-WET-1-04 is shown as orange points in Fig. 5.3. The orange dotted line in the figure

represents the linear fit to the data points from which C0 and m are obtained. The
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obtained values are presented for each specimen in Table 5.5. In order to calculate the

energy release rate Gi, an expression of the derivative of eq. (5.8) is substituted into

eq. (5.7) to obtain

Gi =
3P 2a2m

2b
. (5.9)

Note that in the C-ELS ISO (2014) standard eq. (5.9) included multiplication with F/N

where F and N are correction factors which account for large displacements and the

loading blocks, respectively. Here these parameters were taken as unity. The values of

P, a and b for each specimen may be found in Chocron and Banks-Sills (2019) and m is

taken from Table 5.5.

In Fig. 5.2b, the GIR values obtained by means of eq. (5.9), with m in Table 5.5, are

plotted as points for each specimen as a function of the delamination extension ∆a. An R-

curve is shown as the black curve in the figure. The fracture toughness GIc was calculated
as the average of all GIc values obtained for the different specimens by means of eq. (5.9).

The resulting value with its standard deviation is presented in the second column in the

third row of Table 5.6. In addition, for ∆a ≥ 30 mm, the value of GIss is found from the

average of those data points. The resulting value with its standard deviation is presented

in the third column in the third row of Table 5.6.

A power law of the form in eq. (5.6) was fit to the points between 0 ≤ ∆a ≤ 30 mm.

To this end, A1 in eq. (5.6) is taken to be a fitting parameter. By means of the nonlinear

Generalized Reduced Gradient (GRG) method in Excel (2016), the best fit was found.

The calculation was made so that for the linear relation between the individual data

points of GIR for each specimen, shown in Fig. 5.2b, and ∆aB where B is related to

A1, the coefficient of determination R2 closest to unity is obtained. During the fitting

process, values of A1 are incremented, so that the value of R2 changes. Once the value

of R2 ceases to increase, the solver stops and produces the best fit for A1. Note that this

method produces a local maximum for R2 which is not necessarily the global maximum.

Hence, for different initial values of A1, a different fit may be obtained. The solver was

run multiple times with several initial values for A1. The parameter B was expressed in

the fitting as

B =

log

(
Giss − Gic

A1

)
log (∆aiss)

. (5.10)

Note that this relation was obtained by manipulation of eq. (5.6). In eq. (5.10), for the

results from the DCB tests used here, Giss ≈ GIss is shown in Table 5.6. The parameter

∆ass in eq. (5.10), is the initial delamination extension value related to steady state GIss ;

here, ∆ass = 30 mm. The parameters A1 and B obtained for eq. (5.6) are given in the

fourth and fifth columns of the third row of Table 5.6. The initial value used in the GRG

method to obtain these parameters was A1 = 100.
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Figure 5.4: Comparison of the nearly mode I resistance curves obtained by means of the
M -integral (Chocron and Banks-Sills, 2019) and by means of ECM in eq. (5.9).

The R-curves obtained by means of theM -integral in Chocron and Banks-Sills (2019),

as well as by means of ECM in eq. (5.9) are compared in Fig. 5.4. Although these R-curves

are similar, it is important to note that the R-curve obtained in Chocron and Banks-Sills

(2019) by means of theM -integral was found to be more conservative. Results for GIc and
GIss obtained by means of both methods are presented in Table 5.6. Relative differences

(RDs) in these results were calculated by means of eq. (3.31) where the superscript (1)

represents the value obtained with ECM, the superscript (2) is the value obtained in

Chocron and Banks-Sills (2019) by means of the M -integral, and i = I. From this

comparison, a small difference of 1.7% was obtained for GIc. For GIss , a larger difference

of 7.2% was calculated. From these results, it is possible to conclude that the M -integral

local approach provides results which correspond well with the global ECM method. It

may be noted that an approach using the relation in eq. (5.8) was applied, but with 3

replaced by the best fit for the power to the data from the test. Larger differences were

observed from these results with respect to those obtained in Chocron and Banks-Sills

(2019). Hence, they are not presented here.

5.3 Nearly mode II fracture toughness tests - C-ELS

specimens

In this investigation, six C-ELS specimens, with nearly mode II deformations, were tested

quasi-statically. In Section 5.3.1, the protocol for the C-ELS tests is presented. Results

from these tests are delineated in Section 5.3.2. Two-dimensional FEAs were performed

for each specimen and are described in Section 5.3.3. Stress intensity factors K
(f)
m (m =

1, 2) resulting from mechanical loading were calculated by means of the displacement

extrapolation (DE) method presented in Section 3.1, as well as with the virtual crack
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(a) (b)

Figure 5.5: Illustration of the C-ELS specimen: (a) isometric view with measurement
locations; (b) two-dimensional view of the C-ELS specimen, apparatus and applied load.

closure technique (VCCT) (Farkash and Banks-Sills, 2017). These were normalized using

the length scale L̂ = 100 µm and the mixed mode phase angle ψ̂ in eq. (3.19) was

determined, so that the in-plane mode mixity was calculated for each test. Results from

these calculations are presented in Section 5.3.4. Critical initiation energy release rate

values GIIc were obtained for each specimen by means of an area J-integral, DE and

VCCT. Also, the fracture resistance energy values GIIR were obtained as a function of the

delamination extension ∆a by means of ECM (ISO-15114:2014(E), 2014), as well as the

FE method with appropriate post-processors. These calculations, as well as the resulting

two R-curves are presented and compared in Section 5.3.4.

5.3.1 C-ELS test protocol

In this study, six quasi-static mode II dominant fracture toughness tests were carried

out guided by the ISO-15114 standard (2014) for determination of the mode II fracture

resistance for unidirectionally reinforced materials using the C-ELS specimen. In addition,

one calibration test was performed following the protocol described in the ISO-15114

standard (2014). The results were used for verification of the global FEA response by

means of a comparison between the test and the FEA compliances. In this section, a

protocol for the calibration test, as well as for the C-ELS fracture tests are presented.

The same specimen, shown in Fig. 5.5a, was used for both the calibration test, as well

as for the fracture tests. The specimen thickness 2h and width b were measured at six

and three locations, respectively, shown as white circles and dashed lines, respectively, in

Fig. 5.5a. These measurements were performed by means of a micrometer with a resolution

of 0.001 mm and by means of a caliper with a resolution of 0.01 mm, respectively. The

thickness 2h was measured on each side of the specimen at a distance of approximately

3 mm from the outer specimen edge. It is required in the ISO-15114 (2014) standard

that the maximum variation in the thickness 2h would not exceed 0.1 mm. No specific
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requirement is mentioned in the standard for a maximum variation in the width b. It

may be noted that the ISO-15114 (2014) standard requires only three measurements of

the thickness and width, at evenly spaced locations along the specimen length. Here, two

measurements of 2h were acquired, one on each side of the specimen. This was done in

order to insure that there is no significant tapering, as a result of possible misalignment

in the bonding procedure. The insert length ai shown in Fig. 5.1b was measured on the

front and back sides of the specimen, aif and aib, respectively, using the optical mode

of the confocal microscope described in Section 4.3. Note that it is recommended in the

ISO-15114 (2014) standard that the initial delamination length a0, measured from the

load-line to the edge of the PTFE film, shall be greater than 50 mm so that the influence

of the load block may be neglected. This requirement implies that the measured ai values

shall be greater than 60 mm. It is also required in the standard that the differences in

length between the two sides aif and aib would be less than 2 mm. The length of the

specimen l in Figs. 5.5, was measured with a ruler. According to the ISO-15114 (2014)

standard, it is required that l ≥ ai + 110 mm.

After all measurements were completed, both edges of each specimen were coated

with a thin layer of white water based acrylic paint. Before the paint was applied, in

order to create a borderline for the paint at the insert tip, the end of the insert was

determined by means of the optical mode of the confocal microscope. Clear tape was

then attached on both sides of the specimen at the insert tip. After the coating layer was

dry, straight vertical lines across the specimen edge were marked at regular increments of

2 mm, starting at the insert tip and extending to approximately a = 100 mm, measured

from the load-line.

For the C-ELS fracture specimens, as recommended in the ISO-15114 (2014) standard,

the free length was calculated as

Lf =
4a0f
3

(5.11)

where a0f is the insert length on the front side of the specimen, measured from the load-

line to the delamination tip as illustrated with the parameter a0 in Figs. 5.5. For each

specimen, the calculated Lf value was marked. For the calibration specimen, the free

length Lf shown in Fig. 5.5b was marked at Lf = 50, 60, 70, 80, 90, 100 and 110 mm.

Finally, each specimen was conditioned at a temperature of 23◦ ± 1◦ C and a relative

humidity (RH) of 50% ± 3% for at least one week in a conditioning chamber (M.R.C.

BTH80/-20, Holon, Israel) which is well within the tolerance of the ASTM Standard

D5229/D5229M (2011).

A schematic illustration of the test apparatus used in the fracture tests, as well as

for the calibration procedure is shown in Fig. 5.5b. There was a difference between the

setup for the fracture test and calibration procedure. For the former, the load block was

attached as shown in Fig. 5.5b so that the applied displacement is expected to result with

K2 ≥ 0 for the case of the investigated interface. Note that the upper ply is the UD
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Figure 5.6: Illustration of a load-displacement curve and the fit to a linear portion of the
curve.

fabric as shown in Fig. 2.1. For the latter, the load block was attached to the side of

the specimen which does not contain the delamination. In this way, the specimen was

attached to the fixture so that the side of the specimen with the initial delamination was

clamped, opposite to the configuration shown in Fig. 5.5b. Thus, the specimen behaved

as one cantilever beam. The load was applied to the specimen through a load block by

means of the same Instron loading machine described in Section 4.3, with a 250 N load

cell. The load block was pulled vertically through a pin, as shown in Fig. 5.5b. The

clamping fixture creates free horizontal sliding of the specimen by means of bearings, but

restricts vertical motion and rotation as may be observed in Fig. 5.5b. A LaVision system

composed of one monochrome camera, described in Section 4.3, was employed during

the test. Also, a programmable timing unit (PTU) controlled by DaVis (2015) computer

software was used. During each test, images of the specimen were acquired at a rate of

2 Hz. Both fracture and calibration tests were conducted in displacement control.

The calibration procedure was carried out following the protocol given in the C-ELS

ISO-15114 (2014) standard. The specimen was initially fixed so that Lf = 110 mm. When

mounting a specimen, a torque wrench was used to tighten the retaining bolts to 8 Nm.

This torque was chosen according to the suggestion of the ISO-15114 (2014) standard.

The displacement was increased with a constant rate of 1 mm/min up to 250 N. At this

point, the displacement was decreased at a rate of 5 mm/min. The same procedure was

repeated for six additional free lengths of 50 ≤ Lf ≤ 100 with Lf in decreasing increments.

Load-displacement curves were obtained for each free length. The curve was translated so

that the extrapolated linear loading portion would emanate from the origin as presented

in Fig. 5.6 with the dotted line. Each specimen compliance C was calculated as

C =
d2 − d1
P2 − P1

(5.12)

where (di, Pi) (i = 1, 2) are two selected points along the linear part of the dotted curve
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shown in Fig. 5.6. Two-dimensional FEAs were carried out for each Lf . The differences

between the global response of the calibration specimen and that of the FEA was examined

by comparing the compliance calculated by means of eq. (5.12) with that obtained from

each FEA.

The fracture resistance tests were performed in two stages. In the first stage, the

delamination propagates from the insert, referred to as the artificial crack or AC stage. In

the second stage, the delamination propagates from the precrack (PC) which was achieved

during the first stage. For the AC stage, the specimen was positioned in the clamping

fixture, as shown in Fig. 5.5b at the Lf which was calculated using eq. (5.11). During this

stage, the specimen was loaded in displacement control with a constant displacement rate

of 1 mm/min until delamination propagation of between 2 and 5 mm was observed. At

this point, the test was interrupted and the specimen was fully unloaded at a displacement

rate of 5 mm/min.

For each specimen, load-displacement curves for the AC stage were plotted. The

initiation load at failure P was determined in three ways: non-linear (NL), visual (VIS),

and 5% offset or maximum load, as recommended in the C-ELS-15114 (2014) standard.

With the NL method, PNL was obtained from the load-displacement curve at the point in

which non-linearity began. Visually, the value of PVIS was found from an image captured

by the LaVision system during the test for which delamination propagation was first

observed. For the 5% offset or maximum load, a line was drawn at a 5% offset from the

calculated compliance. The value of P(5%) was determined at the intersection between the

original load-displacement curve and the offset line. This value was compared with the

maximum load Pmax obtained for d ≤ d5%. The maximum value of these two was chosen

as P(5%/max). For all three values of P , the corresponding actuator displacement d, and

delamination length a were obtained from the synchronized images.

Two-dimensional FE mechanical analyses were performed for each specimen for the

AC test stage. Two analyses were carried out for each specimen. The first, with the

load P(5%/max) applied, and the second with the load PVIS applied. The results from

each analysis were used to calculate the stress intensity factors by means of the DE

method described in Section 3.1 and by means of VCCT (Farkash and Banks-Sills, 2017).

Normalized K̂1 and K̂2 values were then calculated by means eq. (1.26) with the length

parameter L̂ = 100 µm. From the results, the in-plane phase angle ψ̂ was calculated for

each specimen using eq. (3.19). Note that for a C-ELS test, dominant K̂2 values were

expected. Hence, for an interface delamination with dominant in-plane shear deformation,

it was assumed here that Gi ≈ GII .

The initiation energy release rate GIIc values for ∆a = 0 for each specimen were

determined using eq. (3.17) with the calculated values of K̂1 and K̂2 instead of K1 and

K2, respectively, and KIII = 0. In addition, from the FEAs with the load P(5%/max)

applied, values of J at ∆a = 0 were obtained by means of the FEA results by means of
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the area J-integral of Abaqus (2017). The integral was calculated for increasing applied

loads up to the final applied load P(5%/max). The resulting values of J were plotted verses

the load P and a polynomial parabolic fit of the form

J (i)(P ) = A
(i)
0 + A

(i)
1 P + A

(i)
2 P

2 (5.13)

was used to describe the behavior of J for each specimen i as a function of the load P .

In eq. (5.13), A
(i)
0 , A

(i)
1 and A

(i)
2 are fitting parameters. The values of J related to the

final displacement and corresponding load applied in each analysis were calculated using

eq. (5.13) and compared with the GIIc values which were determined with eq. (3.17) based

on the VCCT results. Note that these results are expected to be approximately the same

in order to validate the calculated energy release rate values obtained. Values of J which

corresponded to the NL, visual and 5% offset or maximum initiation loads were calculated

by means of eq. (5.13) to obtain three initial energy release rate values. Also, a thermal

FEA was carried out, to obtain the stress intensity factors resulting from residual curing

stresses.

At the end of the AC stage, after the specimen was completely unloaded, the specimen

was dismounted. By means of the optical mode of the confocal microscope, the precracked

delamination lengths afPC and abPC , front and back, respectively, were measured from the

load-line to the delamination tip. A range of values for Lf was calculated as (ISO-15114,

2014)

afPC/0.75 ≤ Lf ≤ afPC/0.55 . (5.14)

A new Lf value within the calculated range was chosen and marked on the specimen.

Note that increasing the value of Lf causes less stable propagation. The specimen was

remounted in the C-ELS apparatus and loaded at a displacement rate of 0.5 mm/min

until the delamination tip was within 10 mm of the clamp. At this point, the test was

stopped and the specimen was fully unloaded at a displacement rate of 5 mm/min.

Load-displacement curves were plotted for the PC stage for all specimens. The delam-

ination lengths a, as the delamination extended, were measured after each test from the

images which were acquired throughout the test. For every measured value of a, the corre-

sponding P and d values were obtained from the synchronized images. These values were

used to obtain R-curves for each specimen using two methods: ECM and the J-integral.

The ECM, described in Section 5.2, is recommended to be used for both AC and PC

stages in the C-ELS tests. However, since for the AC stage, only a small number of visual

data points exist, a value of m in eqs. (5.8) and (5.9), could not be accurately determined.

Hence, this method was only used for the PC stage. Moreover, it is important to note

that with the ECM, the delamination length, which is known to be difficult to measure for

mode II testing (Blackman, et al, 2005; Blackman, et al, 2006; Pérez-Galmés, et al, 2018),

was used and may result in some inaccuracies. By means of eq. (5.9), GIIR values were

calculated as a function of the delamination extension ∆a. The value m was obtained
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from eq. (5.8) with the compliance C calculated using eq. (5.12). The resulting GIIR values

were plotted verses the delamination extension ∆a and a fracture resistance curve was

obtained for each specimen.

The second method used was based on FEAs along with the J-integral, VCCT and

the DE method. For each specimen, four two-dimensional analyses were carried out with

a = 50, 60, 70 and 80 mm. For all analyses and each specimen, the relevant measured

specimen thickness 2h was used, as well as the value of Lf from the PC stage of the test.

The same arbitrary actuator displacement value d = 10 mm was applied in all analyses.

Values of JFE/(bPFE)
2 at d = 10 mm were obtained for each delamination length a. Note

that PFE in the denominator has units of force per unit width. Hence, in order to use

the total load applied to the specimen, it was multiplied by the specimen width b. A

parabolic fit between these points was then used to obtain a relation of the form

J (i)(P, a) = P 2
(
C

(i)
0 + C

(i)
1 a+ C

(i)
2 a2

)
(5.15)

where P is the load associated with the delamination lengths a, measured for the PC stage

of each test as the delamination propagated, and C
(i)
0 , C

(i)
1 , and C

(i)
2 are the obtained fitting

parameters for specimen (i). By means of this relation and the measured values of a and

P obtained from the images of the test, a fracture resistance curve was determined.

In addition, values of K1 and K2 were obtained by means of the VCCT (Farkash

and Banks-Sills, 2017) and the DE method described in Section 3.1. In order to avoid

complex units, the results were normalized using eq. (1.26) with the length parameter

L̂ = 100 µm. Since the DE method is considered less accurate than VCCT, it was only

used for validation of the results obtained by means of the VCCT. A relation between

K̂m and a was found as

K̂(i)
m (a) = P (B

(i)
0 +B

(i)
1 a) (5.16)

where m = 1, 2, P is the load associated with each delamination length a, measured from

the test, and B
(i)
0 and B

(i)
1 are fitting parameters for specimen (i). These parameters were

obtained from a linear fit to K̂mFE/(bPFE) obtained from the VCCT at d = 10 mm verses

a = 50, 60, 70 and 80 mm. The measured values of a and P obtained from the images

of each test were used in eq. (5.16) to calculate K̂m as a function of the delamination

extension a. With these results, the phase angle ψ̂ was also calculated by means of

eq. (3.19) as a function of the delamination extension a.

5.3.2 C-ELS test results

Six C-ELS specimens were tested quasi-statically and one calibration test was performed,

both guided by the protocol described in Section 5.3.1. Each specimen is denoted as Test

type-R-C where ’Test type’ represents the C-ELS fracture test (CELS) or the calibration
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Table 5.7: C-ELS and calibration specimens measurements: thickness 2h and width b
shown in Fig. 5.5a. Delamination lengths for C-ELS specimens for AC stage of the
fracture test.

specimen no. 2h1a 2h1b 2h2a 2h2b 2h3a 2h3b 2h SD
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

CELS-2-2 4.78 4.81 4.79 4.76 4.58 4.53 4.71 0.123
CELS-2-3 4.89 4.88 4.90 4.87 4.70 4.66 4.81 0.107
CELS-2-4 4.88 4.87 4.92 4.86 4.80 4.81 4.85 0.046
CELS-2-5 4.80 4.75 4.82 4.85 4.78 4.77 4.80 0.036
CELS-2-6 4.83 4.87 4.90 4.92 4.76 4.79 4.84 0.063
CELS-2-7 4.77 4.76 4.80 4.84 4.71 4.70 4.76 0.051
CAL-2-9 4.79 4.96 4.97 4.86 4.92 4.80 4.88 0.078

specimen no. b1 (mm) b2 (mm) b3 (mm) b (mm) SD

CELS-2-2 19.82 19.86 19.71 19.80 0.062
CELS-2-3 19.85 19.89 19.75 19.83 0.061
CELS-2-4 19.78 19.83 19.78 19.80 0.024
CELS-2-5 19.81 19.88 20.03 19.91 0.092
CELS-2-6 19.89 19.87 19.85 19.87 0.016
CELS-2-7 19.86 19.79 20.00 19.88 0.087
CAL-2-9 19.71 19.72 19.80 19.74 0.040

specimen no. a0f (mm) a0b (mm) ∆a0 (mm) a0 (mm)

CELS-2-2 51.81 52.46 -0.65 52.13
CELS-2-3 52.64 53.52 -0.88 53.08
CELS-2-4 52.64 52.73 -0.09 52.69
CELS-2-5 53.10 52.44 0.67 52.77
CELS-2-6 52.93 53.46 -0.52 53.19
CELS-2-7 52.89 52.80 0.08 52.85

procedure (CAL). The parameters R and C, shown in Fig. 5.1, denote the row and column

location of the specimen in the plate, respectively.

As described in Section 5.3.1, prior to testing, each specimen width b and thickness 2h

were measured at the locations marked in Fig. 5.5a. Results from these measurements, as

well as the average values and standard deviations (SDs) are presented in Table 5.7. Spec-

imen CELS-2-5 fulfills the ISO-15114 (2014) standard requirement. For the remainder

of the specimens, it may be observed that the maximum variation in the thickness mea-

surements are in the range 0.12 mm to 0.28 mm which may be a result of the wet-layup

manufacturing process. These variations do not fulfill the ISO-15114 (2014) standard re-

quirements. In addition, it may be observed that the variations in the width b are rather

small.

In addition, for each specimen, the delamination length aif and aib were measured as

described in Section 5.3.1 from the specimen edge to the end of the delamination front,
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Figure 5.7: Load-displacement curves for the calibration procedure of specimen CAL-2-9.

on both sides of the specimen. The length of each load block, between the load block

edge and the load-line was also measured. The obtained value was subtracted from aif

and aib to obtain a0f and a0b, respectively. The resulting a0f and a0b values are presented

in Table 5.7. The difference ∆a0 between a0f and a0b, as well as the average of the two

values a0, are also presented in this table. It may be observed that the differences between

the two sides for all specimens are less than 2 mm which meets the recommendations in

the C-ELS ISO-15114 standard (2014). In addition, the length of the specimens l shown

in Fig. 5.5 was measured as 200 mm for all specimens which also meets the ISO-15114

(2014) standard requirements.

The load-displacement curves obtained for the calibration specimen CAL-2-9 are pre-

sented in Fig. 5.7. It may be observed from the figure that for Lf = 110 mm, the specimen

compliance suddenly changed at P ≈ 222 N. This was caused by large bending deforma-

tion which resulted in contact between the specimen and the load block hinge. At this

point, before reaching P = 250 N, the test was interrupted. In addition, the last part of

the curve was omitted in the analyses.

The compliance C for each value of Lf was calculated from the linear loading part

of each curve by means of eq. (5.12). The obtained results are presented in the second

column of Table 5.8, as well as with blue points in Fig. 5.8 as a function of Lf . For every

value of Lf used in the calibration test, an FEA was performed . The compliance of each

FEA was calculated as

CFE =
d

P
(5.17)

where P is the maximum load applied in each analysis and d is the displacement obtained

for this load. The obtained CFE values are presented in the third column of Table 5.8.

These values are plotted with orange triangles as a function of Lf in Fig. 5.8. It may

be observed from the figure that for increasing values of Lf , the specimen compliance
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Table 5.8: Calibration test for specimen CAL-2-9: compliance from eq. (5.12) verses that
from the FEA results.

Lf (mm) C (×10−3 mm/N) CFE (×10−3 mm/N) RD(C) (%)

110 106.57 100.69 -5.5
100 79.92 77.51 -3.0
90 59.80 58.21 -2.7
80 43.79 42.44 -3.1
70 29.38 29.83 1.5
60 20.59 20.03 -2.7
50 12.60 12.69 0.7

C, as well as the FEA compliance CFE increase. Relative differences (RDs) between the

obtained C and CFE values were calculated by means of eq. (3.31) where the superscript

(1) represents CFE obtained from the FEA results with eq. (5.17) and (2) is C obtained

from the test results using eq. (5.12). Since the RDs for all Lf values used in the tests

were found to be ∆C ≤ 6%, it may be concluded that the global response obtained by

means of the numerical analysis is well correlated with the test results and that the fixture

and mechanical properties in the analyses are modeled correctly. However, from Table 5.8

it may be observed that ∆C ≤ 0 for five specimens implying that the FEAs are stiffer

than the tested specimens. This could have been resolved by adding springs to the fixture

in the FEAs and calibrating the compliance of the fixture to the global results obtained

from the tests.

Load-displacement curves for the AC stage of all six C-ELS specimens tested are

presented in Fig. 5.9a. In addition, in the second column in Table 5.9, the stiffness KAC

of each specimen which was calculated as the slope of the loading portion of each curve in

Fig. 5.9a, is presented. It may be observed from Fig. 5.9a, as well as from the calculated

Figure 5.8: For specimen CAL-2-9, compliance from the calibration test C verses that
from the FEA results CFE as a function of Lf .
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(a) (b)

Figure 5.9: Load-displacement curves for the C-ELS tests: (a) AC stage and (b) PC stage.

stiffnesses KAC in Table 5.9 that specimens CELS-2-4-AC and CELS-2-5-AC are less stiff

than the other specimens. Since the investigated material was manufactured by means of

a wet-layup process, perhaps differences in the stiffness occurred. In the third column in

Table 5.9, the initial delamination length a0AC which is the average a0 in the last column

in Table 5.7, is presented. The free length LfAC , obtained from eq. (5.11) for the AC

stage of each test, and measured in the test with a ruler is shown in the fourth column of

this table. Values of PNL, PVIS and P5%/max , as well as the related dNL, dVIS and d5%/max

are presented in the fifth through tenth columns in Table 5.9, respectively. These are

also indicated on each curve in Fig. 5.9a. Average values, standard errors (SEs) and the

coefficient of variation (CV) are presented at the last three rows in this table.

In Fig 5.9b, load-displacement curves for the PC (second) stage of all six C-ELS

specimens tested are presented. In the third column of Table 5.10, average values of

a0PC , which were measured by means of the optical mode of the confocal microscope

Table 5.9: The stiffness of the loading portionKAC , the delamination length a0AC and free
length LfAC of the AC stage of each C-ELS test, as well as, the loads and displacements
obtained for each specimen before the initial artificial delamination propagated, along
with average values, SEs and CVs.

specimen no. KAC a0AC LfAC PNL PVIS P5%/max dNL dVIS d5%/max

(N/mm) (mm) (mm) (N) (N) (N) (mm) (mm) (mm)

CELS-2-2 17.2 52.1 69 139.6 164.6 171.6 8.1 10.5 10.5
CELS-2-3 17.6 53.1 70 156.9 189.4 192.5 9.0 11.1 11.5
CELS-2-4 14.9 52.7 70 160.3 174.5 179.1 10.9 11.8 12.4
CELS-2-5 13.5 52.8 71 141.4 158.8 164.0 10.7 12.7 12.7
CELS-2-6 16.8 53.2 71 140.2 160.3 169.9 8.4 9.8 10.7
CELS-2-7 15.2 52.9 71 152.3 157.4 10.1 10.6

Average 148.5 169.5 172.4 9.5 11.2 11.4
SE 3.8 5.7 5.0 0.5 0.5 0.4

CV(%) 6.2 7.5 7.1 12.2 10.0 8.4
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Table 5.10: The stiffness of the loading portion of the PC stage KPC , the delamination
length a0PC measured before the PC stage of the test by means of the confocal microscope
and the delamination length a0PC−VIS measured after the test from the images acquired
by the LaVision system by means of ImageJ (2015) software, as well as the free length
LPC used in the PC stage of each C-ELS test.

specimen no. KPC a0PC a0PC−VIS LfPC

(N/mm) (mm) (mm) (mm)

CELS-2-2 9.8 58.5 59.2 92
CELS-2-3 10.9 55.9 58.0 90
CELS-2-4 11.1 55.2 57.0 88
CELS-2-5 9.3 56.4 58.1 93
CELS-2-6 10.4 55.7 57.7 90
CELS-2-7 9.8 56.0 57.9 89

after the AC test stage ended and before the PC stage began, are presented. In addition,

in the fourth column of this table, a0PC−VIS , are shown. These values were measured

from the images obtained by means of the LaVision system during the PC stage of the

test and measured with ImageJ software (2015), just before the delamination propagated.

Values of a0PC and a0PC−VIS should be the same, however, since the measurement of a0PC

was performed when the specimen arms are closed and the specimen is dismounted, this

measurement resulted in less accurate values which differed from a0PC−VIS which were

obtained by means of the LaVision system. In the fifth column of Table 5.10, the LfPC

values which were measured with a ruler for each test are presented. It may be observed

that generally, as the value of LfPC increases, the stiffness KPC of the specimen, measured

as the slope of the linear loading portion of each curve and presented in the second column

in Table 5.10, decreases. In Table 5.11, values of PNL, PVIS and P5%/max measured from

the PC stage of each test, as well as the related dNL, dVIS and d5%/max values, are shown.

Table 5.11: The loads and displacements obtained for each specimen from the PC stage
of each test, at initiation, along with average values, SEs and CVs.

specimen no. PNL PVIS P5%/max dNL dVIS d5%/max

(N) (N) (N) (mm) (mm) (mm)

CELS-2-2 144.0 150.8 158.4 14.8 15.7 17.0
CELS-2-3 157.1 175.3 175.8 14.5 16.5 16.7
CELS-2-4 158.6 165.5 169.9 14.3 15.3 16.0
CELS-2-5 144.4 149.4 154.7 15.7 16.6 17.6
CELS-2-6 162.1 164.5 166.0 15.7 16.0 16.3
CELS-2-7 143.9 154.5 154.8 14.7 16.5 16.6

Average 151.7 160.0 163.3 16.7 16.1 14.9
SE 3.5 4.1 3.5 0.5 0.5 0.6

CV (%) 2.5 3.4 2.9 5.0 4.4 3.4
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Table 5.12: Values of m and C0 used in eq. (5.8) and (5.9) for each C-ELS test based on
a linear fit to the data of a3 verses C in Tables D.1 through D.6.

specimen no. C0 (×10−2 mm/N) m (×10−7/(mm2N))

CELS-2-2 7.47 1.44
CELS-2-3 6.73 1.48
CELS-2-4 6.52 1.53
CELS-2-5 7.89 1.67
CELS-2-6 6.84 1.53
CELS-2-7 8.04 1.34

It may be noted that the choice of Lf = LfPC in the PC stage was made arbitrarily in the

range given in eq. (5.14). Perhaps, choosing a constant relation between Lf and a in the

required range and using it for all tested specimens in the PC stage would have resulted

with less variations in the stiffnesses of the specimens.

It may be observed from Figs. 5.9 that the loading portion of the load-displacement

curves of the PC stage appear to be linear; whereas, those of the AC stage exhibit a

small curvature. This may indicate that during the first loading stage (AC), a process

zone was evolving near the insert front which was fully evolved once the delamination

initiated. Thus, when the specimen was reloaded in the PC stage, the process zone was

already present and the specimen behaved linearly. It is also interesting to note that the

average values of PVIS and P5%/max in Table 5.9 for the AC stage are higher than those

in Table 5.11 for the PC stage. Whereas, the PNL average value obtained in the AC stage

is lower than that of the PC stage. This may be a result of the non-linearity of the AC

loading curves which made it difficult to determine a clear point at which non-linearity

began. Moreover, it may be observed from Tables 5.9 and 5.11 that smaller values of CV

were obtained for the PC stage as compared to those of the AC stage.

Values of a were measured from the load-line to the delamination tip as the delamina-

tion propagated by means of ImageJ (2015) software from the images captured using the

LaVision system during the PC stage of each test. From each measured image, the re-

lated synchronized load P and actuator displacement d were also obtained. In Tables D.1

through D.6, the measured values of a, P and d are presented for each specimen. In addi-

tion, for each specimen, for every measured delamination length, the compliance values C

were calculated using eq. (5.12). These C values are also presented in Tables D.1 through

D.6. Using the data points (C, a3), the slope and intercept m and C0, respectively, in

eq. (5.8), were obtained for each specimen as described in Section 5.3.1. The obtained

values for each specimen are presented in Table 5.12.
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Figure 5.10: Illustration of the C-ELS fine FE model including boundary conditions and
a focused view of the ply distribution.

5.3.3 C-ELS FE model convergence

In this section, mesh convergence for the C-ELS mechanical FEA is presented. The chosen

mesh is then used for specimen CELS-2-2 with several delamination length values from

Table D.1 to evaluate the accuracy of the results from the analyses compared to those

obtained from the test. A displacement d was applied to the specimen. The load PFE

obtained for each delamination length is compared with the load P measured from the

test. In addition, a thermal analysis was performed to account for the residual curing

stresses. Since the results from the thermal analysis were negligible with respect to those

obtained from the mechanical models, they were not included in the specimen analyses.

This will be shown in the sequel.

Two-dimensional mechanical FEAs were performed with Abaqus (2017). Convergence

was examined by means of three meshes. The dimensions b and 2h of specimen CELS-2-2,

given in Table 5.7, were used in the model with a0 = 50 mm and Lf = 92 mm. From these

analyses, stress and displacement fields were obtained and used in the VCCT (Farkash

and Banks-Sills, 2017) and in the DE method presented in Section 3.1, to determine stress

intensity factors. Convergence of these results for the three meshes was examined.

In Fig. 5.10, the two-dimensional finite element model (FEM) of the C-ELS specimen

is presented. Recall that the laminate is composed of 19 plies with the stacking sequence

{[(+45◦/− 45◦), (0◦/90◦)]4, (+45◦/− 45◦), 0◦//(+45◦/− 45◦), [(0◦/90◦), (+45◦/− 45◦)]4}.
Four plies above the interface and three plies below it were modeled using the effective

material properties in Tables 5.3 and 5.4 for the UD fabric and the +45◦/ − 45◦ and

0◦/90◦ woven fabrics, respectively. A focused view of the modeled plies is presented in a
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Table 5.13: Effective mechanical properties of alternating +45◦/− 45◦ and 0◦/90◦ woven
fabrics.

E11 = E33 (GPa) E22 (GPa) G13 (GPa) G21 = G23 (GPa) ν13 ν21 = ν23

30.9 4.9 11.7 1.8 0.32 0.046

red frame in Fig. 5.10 with the UD fabric illustrated in green and the +45◦/ − 45◦ and

0◦/90◦ woven fabrics illustrated in red and white, respectively. The six outer upper and

outer lower plies were modeled as one effective homogenous, anisotropic material, shown

in blue in Fig. 5.10. Since these plies are relatively far from the delamination/interface,

it was assumed that it was not necessary to model each ply individually. Material

properties for this effective material were obtained by means of HFGMC (Aboudi, 2004)

and given in Table 5.13.

Three different meshes were used in the convergence study, namely, coarse, fine and

finest. A description of each mesh is presented in Table 5.14. Eight-noded, quadratic,

quadrilateral, plane strain elements of type CPE8 were used. For each mesh, two analy-

ses were performed, with and without quarter-point elements near the delamination tip.

Results from the analyses without quarter-point elements were used for VCCT; whereas

the results from the analyses with quarter-point elements were used for the DE method

and the J-integral of Abaqus (2017). A denser mesh was used near the delamination

front, to model the square-root, oscillatory singularity. In addition, along the delamina-

tion front, elements with an in-plane aspect ratio of 1 × 1 were used for each mesh. In

order to obtain such elements, the woven ply was partitioned into two layers, as shown in

the focused view in the blue frame in Fig. 5.10, with the same properties from Table 5.4

used for both. The thickness of the upper layer was determined to be h
(1)
45 = h

(1)
0 and

equal to 0.145 mm, the thickness of the UD fabric. In this way, the upper UD ply and

the upper layer of the lower woven ply near the delamination are composed of the same

thickness and are meshed with elements of the same size.

As shown in Fig. 5.10, two steel plates were added to the model, acting as the clamp

of the C-ELS apparatus. The top and bottom edges of the steel plates were constrained

so that all nodes along the two edges have the same displacement in the x1- direction.

Two spring elements were added, as shown in Fig 5.10, to compensate for the apparatus

compliance. Each one connects the top and bottom steel plates. For the convergence

study, the stiffness of the springs K was chosen to be 100 N/mm. Surface-to-surface

Table 5.14: Three meshes which were used in a convergence study of the C-ELS specimen.

no. of elements no. of nodes element size near delamination tip (mm2)

coarse 6,394 19,993 0.024× 0.024
fine 17,672 54,611 0.012× 0.012
finest 63,986 195,117 0.006× 0.006
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Table 5.15: The normalized in-plane stress intensity factors K̂1 and K̂2 with L̂ = 100 µm,
as well as the phase angle ψ̂, Gi from eq. (3.17) with KIII = 0 and J from the area
J-integral in Abaqus (2017) for each C-ELS mesh.

K̂1 (MPa
√
m) K̂2 (MPa

√
m) ψ̂ (rad) (L̂ = 100 µm) Gi (N/m) J (N/m)

coarse 0.223 1.742 1.444 391.9 391.9
fine 0.220 1.744 1.445 392.6 392.6
finest 0.216 1.745 1.448 392.6 392.6

contact interaction was implemented along approximately half of the delamination line, far

from the delamination tip, to prevent interpenetration. Note that, near the delamination

tip, delamination face opening was obtained. Also, between the specimen edges and the

steel plates, contact interaction was used. A specific displacement d = 10 mm was applied

in the model and at the deflection point, the degree of freedom in the x1- direction was

fixed, as illustrated in Fig 5.10.

By means of VCCT (Farkash and Banks-Sills, 2017) mechanical stress intensity factors

were obtained for the three meshes. In addition, the DE method described in Section 3.1

was used for verification of the obtained values. The stress intensity factors found by

means of VCCT were normalized using eq. (1.26) with L̂ = 100 µm. The obtained values

are presented in Table 5.15. In the fourth column of Table 5.15, values of the phase angle

ψ̂, calculated by means of eq. (3.19) with L̂ = 100 µm, are presented for each mesh. It

may be observed that the obtained values of ψ̂ are rather close. In addition, the in-plane

energy release rate values Gi were calculated by means of eq. (3.17) with K1 and K2

replaced with the normalized K̂1 and K̂2 values, and KIII = 0. Also, values of J were

obtained for each mesh from the FEAs using the area J-integral of Abaqus (2017). In the

fifth and sixth columns in Table 5.15, the results obtained for Gi and J for each mesh are

presented, respectively. It may be observed that Gi ≈ J .

For all meshes, relative differences (RDs) between the normalized K̂m (m = 1, 2) values

obtained by means of VCCT and those obtained with the DE method were calculated

using eq. (3.31) with the superscript (1) representing K̂m obtained from the DE method

and (2) representing the K̂m values obtained with VCCT. For K̂1 and K̂2, the RDs were

found to be lower than 5% and 1%, respectively. Recall that the value of K̂1 is small with

respect to the value of K̂2 so that the differences in these values are less substantial for

the calculation of ψ̂ or Gi. In addition, the in-plane phase angle ψ̂ and the energy release

rate Gi were calculated using the K̂m values obtained from both methods. The obtained

normalized stress intensity factors were used in eqs. (3.19) and (3.17) to obtain ψ̂ and Gi,
respectively. Note that in eq. (3.17), the parameters K1 and K2 were replaced with K̂1

and K̂2, and KIII = 0. The obtained RDs for both parameters were found to be less than

0.5%. The small RD values for the results obtained with the VCCT and those obtained

by means of the DE method give confidence that the obtained stress intensity factors are

reliable.
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Table 5.16: Relative differences (RDs) calculated using eq. (3.31) between different C-
ELS meshes of the mechanical stress intensity factors, as well as Gi from eq. (3.17) with
KIII = 0 and the calculated J .

RD(K1) RD(K2) RD(ψ̂) RD(Gi) RD(J)

coarse vs fine 1.4% -0.1% -0.1% -0.2% -0.2%
fine vs finest 1.7% 0.0% -0.1% 0.0% 0.0%

Relative differences for the parameters in Table 5.15 between each pair of meshes were

calculated using eq. (3.31) where the superscript (1) represents the coarser mesh used in

the comparison and the superscript (2), the finer mesh. The subscriptm = 1, 2, represents

the mode of the stress intensity factor. The obtained differences for the coarse and fine,

as well as, the fine and finest meshes are presented in Table 5.16. Note that the RDs were

obtained for a higher precision than that presented in Table 5.15. It may be observed

that convergence was achieved for K̂2 , ψ̂, Gi and J . However, for K̂1 the obtained RDs

increase as the mesh becomes finer. Based on this result it may seem that this parameter

has not fully converged. But, it is important to note that since K̂1 is rather small, the

RDs are highly influenced by small differences in the calculated values obtained for this

parameter. Despite the small increase in RD for K̂1, the fine mesh was chosen to be used

for the analyses of the tested C-ELS specimens.

After the convergence study was completed, the FEA for applied loads with the fine

mesh, described in Table 5.14, was examined using five of the measured delamination

lengths a in Table D.1. The chosen a values, measured between the load-line and the

delamination tip, are presented in the first column in Table 5.17. The related synchronized

actuator displacement d and load P are also presented in this table. In Fig. 5.11, the

load-displacement curve obtained from the PC stage of the test for specimen CELS-2-2

is presented with a black curve. Also in this figure, the displacements d and loads P

related to the five values of the visual delamination lengths measured for this specimen

and given in Table 5.17 are marked with red crosses. For each delamination length a

in Table 5.17, the related actuator displacement d was applied in the FEA. The load-

displacement curve obtained from each FEA is displayed in Fig. 5.11, with a different

Table 5.17: Delamination length a, actuator displacement d and load P obtained from the
PC stage of the C-ELS test for specimen C-ELS-2-2, as well as the resulting PFE values
obtained from the analyses and RDs between the measured and calculated loads.

a (mm) d (mm) P (N) PFE (N) ∆P (%)

59.2 15.7 150.8 151.1 0.31
65.0 17.9 158.8 158.2 -0.79
70.3 18.7 150.1 150.2 0.15
74.6 19.1 138.9 141.0 2.06
78.6 19.3 129.0 132.1 3.11
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aVIS

P-d curve, test

FEA, a = 59.6 mm

FEA, a = 65.4 mm

FEA, a = 70.6 mm

FEA, a = 75.0 mm

FEA, a = 78.9 mm

x

Figure 5.11: Load-displacement curves from the PC stage of the C-ELS test, as well as
from the FEAs for the delamination lengths in Table 5.17 for specimen CELS-2-2.

color used for each delamination length a. Since the end point of the load-displacement

curves obtained from the FEAs is rather close to the red crosses which represent the

values measured from the test, it may be concluded that the global response obtained by

means of the FEAs is similar to that obtained from the PC stage of the test. In addition,

the load PFE, obtained from each FEA for the applied displacement d is presented in the

fourth column of Table 5.17. Relative differences between the loads P measured in the

test and those obtained from the FEAs were calculated by means of eq. (3.31) where the

parameter with the superscript (1) represents PFE and the parameter with superscript (2)

represents P . The results are presented in the fifth column of Table 5.17. From the results

shown in Fig. 5.11 and in Table 5.17, it may be concluded that the test configuration and

specimen are well modeled in the FEA.

In addition to the mechanical FEAs, three thermal two-dimensional analyses were

performed for three chosen values of a from the first column of Table 5.17. These chosen

values are presented in the first column in Table 5.18. In the thermal models, the total

delamination length, a + 10 mm between the specimen edge and the delamination tip,

Table 5.18: Comparison between the in-plane thermal and total stress intensity factors
and energy release rate.

a ∆ϑi K
(r)
1 K

(r)
2 K

(f)
1 K

(f)
2 K

(T )
1 K

(T )
2 G(r) G(T ) K

(r)
1 /K

(T )
1 K

(r)
2 /K

(T )
2 G(r)/G(T )

(mm) (◦C)
(
MPa

√
mm(mm)

−iε
)

(N/m) (N/m) ×10−4

59.57

-64

0.11 0.56 2.14 85.09 2.25 85.65 0.04 932.7 0.048 0.007 0.4
70.61 0.11 0.56 2.87 99.86 2.98 100.42 0.04 1282.3 0.036 0.006 0.3
78.92 0.11 0.56 3.07 98.59 3.18 99.15 0.04 1250.4 0.034 0.006 0.3
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was modeled. The mesh in Fig. 5.10 was employed in the analyses without the fixture.

The dimensions b and 2h of specimen C-ELS-2-2, given in Table 5.1, were used in the

models. The fine mesh with the smallest element size presented in Table 5.14 was chosen.

This mesh consisted of 44,817 nodes and 14,544 quadratic quadrilateral elements of type

CPE8. Recall that the same specimen mesh with modeling of the steel plates consisted of

54,607 nodes and 17,672 elements. A temperature difference was imposed with eq. (5.2).

∆ϑi = ϑi − 90◦ (5.18)

where ϑi is the temperature measured at the beginning of each test and 90◦ is the maxi-

mum temperature measured during curing. In the thermal FEAs, ϑi = 26◦ C, resulting

with an applied temperature change of ∆ϑi = −64◦ C.

By means of VCCT (Farkash and Banks-Sills, 2017) mechanical and thermal stress

intensity factors were obtained for the three delamination length values a in Table 5.18

for both the mechanical and thermal FEAs, respectively. In addition, the DE method

described in Section 3.1 was used to verify the obtained values. The thermal stress

intensity factors, resulting from residual curing stresses and found by means of VCCT,

are presented in the third and fourth columns in Table 5.18. It may be observed that

these stress intensity factors are not a function of the delamination length. The mechanical

stress intensity factors resulting from the applied load for the same delamination lengths

are presented in columns five and six of this table. Note that these values are functions

of the delamination length a, applied in each analysis, as well as the load PFE obtained

from each analysis, both presented in Table 5.17. It may be observed that for a = 78.92,

the value of PFE is lower than that obtained for a = 70.61. As a result, a slight decrease

in the calculated K
(f)
2 value, in Table 5.18, was obtained. Superposition of the thermal

and mechanical values was performed to obtain the total stress intensity factors which

are presented in the seventh and eighth columns of Table 5.18. In columns eleven and

twelve, K
(r)
m /K

(T )
m (m = 1, 2) are presented. It may be observed that the contributions of

the thermal K
(r)
1 and K

(r)
2 values are rather small, respectively, and may be considered

negligible.

The energy release rates resulting from both mechanical and thermal residual curing

stresses G(T ), as well as those obtained only from thermal residual curing stresses G(r),

were calculated by means of eq. (3.17) with KIII = 0. The results are presented in the

ninth and tenth columns of Table 5.18. In the last column of this table, the contribution

of G(r) to G(T ), is examined. From the results, it may be observed that the influence

of the thermal residual curing energy release rate is negligible. It may be pointed out

that the analyses shown in Fig. 5.11 also demonstrate that the thermal residual curing

stresses are negligible in the global behavior of the specimen. It may be concluded that

the results obtained by means of the thermal analyses may be neglected with respect to

the mechanical results. Hence, thermal analyses were not carried out in the analyses of

the tested specimens.
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5.3.4 C-ELS test analyses and GIIR-curve

For each C-ELS specimen tested, six mechanical FEAs were performed using the fine

mesh presented in Table 5.16. In all C-ELS FEAs, the model presented in Fig. 5.10 was

used with 2h and b given for each specimen in Table 5.7. In this section, the dimensions

in Tables 5.7, 5.9 and 5.10, as well as the boundary conditions applied to each FEA are

described. For each specimen, the VCCT and the DE method were employed with the

FEAs to obtain the in-plane stress intensity factors which are also presented here. The

obtained values were normalized according to eq. (1.26) with L̂ = 100 µm and used to

calculate the in-plane phase angle ψ̂ in eq. (3.19). The resulting values are shown in this

section as a function of the delamination extension. From the resulting values it was

possible to conclude that nearly mode II deformation is obtained during the entire C-ELS

test implying that the contribution of K1 is rather small compared to that of K2. Hence,

Gi ≈ GII .

For each specimen, the J values obtained with the area J-integral of Abaqus (2017)

for each FEA were used to obtain an expression for J in terms of the load P and the

delamination length a. The relation obtained for each specimen is presented in this section.

This relation was used with the results from each test to determine the fracture resistance

energy release rate GIIR as a function of the delamination extension ∆a. By means of the

data points obtained for all specimens, an R-curve for nearly mode II deformation was

determined and is presented here. An additional R-curve was calculated by means of the

global ECM and is also presented here. Finally, the two R-curves are compared.

First, analyses for the PC (second) stage of each test were carried out in order to

calibrate the stiffness K of the springs in the C-ELS fixture, shown in Fig. 5.10. Values

of a0PC−VIS , the visually detected delamination length at initiation, and LfPC shown in

Fig. 5.5b, which were modeled in the PC stage FEA of each specimen, are presented in

the fourth and fifth columns in Table 5.10. The displacement dVIS related to the visual

load PVIS in Table 5.11, obtained from the PC stage of the test, was applied to each

model.

In order to calibrate the spring stiffness K, the stiffnesses KPC and KFE−PC obtained

from the linear loading portion of the load-displacement curve of the PC stage of each test

and from the related FEA, respectively, were compared. For each specimen, the relative

difference (RD) between the two stiffnesses was calculated by means of eq. (3.31) with

the superscript (1) representing KFE−PC and (2) representing KPC . The value of K was

chosen so that RD(KPC ) ≤ |2|%. The chosen spring stiffness values are presented in the

second column of Table 5.19. For each specimen, each of these K values was used in each

FEA related to a specific specimen. In Table 5.19, KPC and KFE−PC are presented in

columns six and seven, respectively, for each specimen. The value ofKFE−PC was obtained

from the FEAs with the chosen spring stiffness K. It may be observed in column eight
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Table 5.19: Comparison between the stiffness obtained from the AC and PC stages of
each C-ELS test and that obtained from the FEA.

stage AC PC

specimen no. K KAC KFE−AC RD(KAC) KPC KFE−PC RD(KPC)
(N/mm) (N/mm) (N/mm) (%) (N/mm) (N/mm) (%)

CELS-2-2 100 17.2 17.6 1.9 9.8 9.6 -1.6
CELS-2-3 100 17.6 17.5 -0.5 10.9 10.9 -0.4
CELS-2-4 50 14.9 16.5 10.2 11.1 10.9 -1.9
CELS-2-5 30 13.5 16.5 22.4 9.3 9.3 0.6
CELS-2-6 50 16.8 16.4 -2.0 10.4 10.3 -0.5
CELS-2-7 50 15.2 15.6 2.4 9.8 9.9 0.5

of this table that all calculated RDs related to the PC stage satisfy the requirement that

RD(KPC) ≤ |2|%. Note that the RDs related to the FEAs of the (first) AC stage are

also presented in this table and will be discussed next.

In order to obtain the initial critical energy release rate values Gic ≈ GIIc, FEAs of

the AC stage of each test were carried out. The values of a0AC and LfAC , measured for

each specimen and presented in the third and fourth columns in Table 5.9 were used in

each FEA. The 5%/max load P5%/max , obtained from the AC stage, also presented in

this table, was calculated per unit width and applied to the FEAs as PFE = P5%/max/b.

The stiffness obtained from each FEA was compared to that obtained from the test. The

stiffnesses KAC and KFE−AC , as well as the calculated RDs are presented in the third

through fifth columns in Table 5.19. It may be noted that except for specimens CELS-2-4

and CELS-2-5, the RDs between the stiffness values obtained from the FEAs verses those

from the tests were found to be RD(KAC) ≤ |2.5|%. Recall that lower stiffnesses, with

respect to the other tested specimens, were observed for specimens CELS-2-4 and CELS-

2-5 and presented in Fig 5.9a. As a result, the differences between KAC and KFE−AC are

rather large for these two specimens and may cause inaccuracies of the results related to

the AC stage FEAs for these specimens. It was thought that it is better to incur this

inaccuracy than to adjust the stiffness of the spring constants K in Table 5.19 to obtain

a better correlation between the slopes of the load-displacement curves.

For each analysis in the AC (first) test stage, for increasing incremental applied loads

per unit width, PFE, up to the final applied load PFE = P5%/max/b where P5%/max is

given in Table 5.9, the area J-integral of Abaqus (2017) was calculated. The resulting

J values in the fourth, fifth and sixth domains, shown in Fig. 1.8, were averaged. The

loads per unit width, PFE (N/mm), which were applied in each analysis were multiplied

by the width of the specimen b, given in Table 5.7 for each specimen, to determine the

total load P for a specimen of width b. In Fig. 5.12, the obtained J values for specimen

CELS-2-2 are plotted verses these P = bPFE values, resulting from the FEAs, with blue

points. As described in Section 5.3.1, a parabolic curve of the form in eq. (5.13) was

fit to the obtained data points. By means of the obtained relation, values of J may be
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Figure 5.12: Plot of discrete J = JFE values verses the loads P = b·PFE obtained from the
FEA AC stage of specimen CELS-2-2 for incrementally increased applied displacement
values d. The obtained fitting curve relating J and P is also plotted.

calculated as a function of the load P . The resulting fit for specimen CELS-2-2 is shown

in Fig. 5.12 with a dotted blue curve. The obtained fitting parameters A
(i)
0 , A

(i)
1 and A

(i)
2

in eq. (5.13) are presented for each specimen in Table 5.20.

For each specimen i, three J-integral values, JNL, JVIS and J5%/max , were calculated

with eq. (5.13) using PNL, PVIS and P5%/max , respectively, given in Table 5.9. The ob-

tained J values for each specimen, as well as the average and CV values are presented

in Table 5.21. Recall that the delamination length of each specimen a0AC in Table 5.9

is accounted for since it is used in the FEAs. It may be noted that since it was difficult

to clearly identify PVIS for specimen CELS-2-7, JVIS was not calculated for this speci-

men. For all specimens, PNL < PVIS < P5%/max resulting with JNL < JVIS < J5%/max .

Moreover, the average JNL value was found to be 23.3% lower than JVIS , whereas the

average JVIS value was found to be only 3.5% lower than J5%/max implying that a damage

zone is initiated before the delamination propagates, causing nonlinearities in the load-

displacement curve. In addition, pronounced scatter exists for all J values. This scatter

is related to the scatter in the measured PNL, PVIS and P5%/max values. It is interesting

Table 5.20: Fitting parameters for eq. (5.13) relating J from the AC (first) stage FEA to
P , for each specimen.

specimen i A
(i)
0 (×10−4 N/m) A

(i)
1 (×10−6 /m) A

(i)
2 (×10−2/(Nm))

CELS-2-2 -0.6 -5.4 3.10
CELS-2-3 -13.9 79.5 3.19
CELS-2-4 -4.7 27.7 2.92
CELS-2-5 -0.0 -3.3 2.84
CELS-2-6 -2.3 14.6 2.97
CELS-2-7 -6.3 50.1 3.07
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Table 5.21: Results for the nearly mode II energy release rates J ≈ GIIc calculated by
means of the area J-integral in Abaqus (2017) for PNL, PVIS and P5%/max for all C-ELS
AC specimens, as well as the average and CV values.

specimen JNL (N/m) JVIS (N/m) J5%/max (N/m)

CELS-2-2 604.5 839.4 913.1
CELS-2-3 784.4 1142.9 1180.9
CELS-2-4 750.7 888.6 936.7
CELS-2-5 567.6 716.6 763.7
CELS-2-6 582.7 761.6 855.5
CELS-2-7 711.4 - 759.2

average 666.9 869.8 901.5
CV (%) 5.7 8.6 7.0

to note that scatter of JNL is the lowest, whereas the most scatter was obtained for JVIS .

A reason for this may be that PNL and P5%/max are calculated from the load-displacement

curve, whereas PVIS is obtained based on visual interpretation of the delamination length

measured from the images. Hence, it is user dependent.

Additional FEAs were performed for the AC (first) test stage with the load PFE =

PVIS/b applied and PVIS given in Table 5.9. For each specimen, analyses with and without

quarter-point elements were performed. Results from the former analyses were used in

the DE method, whereas results from the latter were used with the VCCT to determine

the in-plane stress intensity factors K1 and K2. Note that the DE method was used for

verification of the VCCT. The obtained values were normalized by means of eq. (1.26) with

L̂ = 100 µm. Relative differences between the values obtained by means of VCCT verses

those determined by means of the DE method were calculated and found to be lower than

5% and 1%, for K̂1 and K̂2, respectively. Note that the ratio K̂1/K̂2 is approximately 0.13.

These differences confirmed the validity of the calculations made by means of VCCT.

In Table 5.22, the resulting K̂1 and K̂2 values obtained for each specimen by means

of VCCT, are presented. Values of Gic ≈ GIIc were obtained by means of eq. (3.17) with

K̂1 and K̂2 instead of K1 and K2, and KIII = 0. In the fourth column of Table 5.22, the

calculated GIIc values for each specimen, are shown. Relative differences between JVIS

in Table 5.21 and the calculated GIIc value for the same analysis were determined with

eq. (3.31) with (1) representing the former and (2) the latter values. The obtained RDs

were found to be less than 0.05% implying that the calculation of GIIc, is valid.

For each specimen, the in-plane phase angle ψ̂ was calculated by means of eq. (3.19).

The results are presented in the last column of Table 5.22. The average mode mixity for

all specimens was found to be ψ̂ = 1.45 rad. Note that for a case of K1 = 0 for any value

of K2, the in-plane phase angle ψ̂ with L̂ = 100 µm would be calculated to be 1.47 rad.

Since the ψ̂ values obtained from the analyses of the C-ELS tests are rather close to this
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Table 5.22: Stress intensity factors obtained by means of VCCT for PVIS from the AC
(first) stage of each test and used to calculate the critical energy release rate GIIc and
in-plane phase angle ψ̂ by means of eqs. (3.17) and (3.19), respectively. The average and
CV values are also presented.

K̂1 (MPa
√
m) K̂2 (MPa

√
m) GIIc (N/m) ψ̂ (rad)

CELS-2-2 0.323 2.551 839.8 1.44
CELS-2-3 0.377 2.975 1142.4 1.45
CELS-2-4 0.327 2.625 888.8 1.45
CELS-2-5 0.260 2.361 716.9 1.46
CELS-2-6 0.303 2.429 761.6 1.45
CELS-2-7 0.298 2.348 711.4 1.44

average 0.31 2.55 843.5 1.45
CV(%) 5.0 3.8 7.9 0.18

”maximum” ψ̂ value, it may be concluded that the assumption that Gic ≈ GIIc is valid and

that, as expected, the contribution of K̂1 to the mode mixity in this problem is negligible.

An attempt was made to obtain the GIIc values for each specimen from the AC stage

of the tests by means of the ECM, presented in Section 5.2. However, since the AC stage

is performed in order to create a natural crack with propagation between 2 and 5 mm,

only a small number of data points of the delamination length a, the load P and actuator

displacement d, were obtained visually to be used in eq. (5.9). It was concluded that

ECM is not suitable for C-ELS AC tests.

In order to determine an R-curve for nearly mode II deformation, as described in

Section 5.3.1, the energy release rate GIIR values were obtained as a function of the

delamination extension ∆a by means of the J-integral of Abaqus (2017), as well as by

means of ECM. For each specimen, for both the J-integral, as well as for the ECM, for

∆a = 0, the values of JVIS from Table 5.21, related to the AC (first) stage of the test,

were chosen as the initial critical energy release rate GIIc. The reason for choosing these

values was that the J and GIIR values related to the PC stage of the test were calculated

based on visually measured values. Hence, in order to be consistent, the initial energy

release rate values related to visually measured delamination extension and to the load

PVIS were chosen to be used.

With the J-integral, the relation in eq. (5.15) was used to determine J as a function

of the load P and delamination length a. The fitting parameters C
(i)
0 , C

(i)
1 and C

(i)
2 in

eq. (5.15) were determined as described in Section 5.3.1 based on the results from four

FEAS for each specimen. The C-ELS model in Fig. 5.10 was used for these FEAs with

a = 50, 60, 70, 80 mm, 2h and b in Table 5.7, LfPC in Table 5.10 and the spring stiffness

K from Table 5.19. The obtained values are presented in Table 5.23. Values of P and

a from Tables D.1 through D.6 were substituted into eq. (5.15) to obtain J(P, a). The

resulting J(P, a) values are presented in the seventh column of Tables D.1 through D.6 as
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Table 5.23: The fitting parameters C
(i)
0 , C

(i)
1 and C

(i)
2 in eq. (5.15) for the C-ELS tests.

C
(i)
0 ×10−6/(Nm) C

(i)
1 ×10−3/(Nm2) C

(i)
2 1/(Nm3)

CELS-2-2 58.2 26.7 10.87
CELS-2-3 15.7 27.0 10.20
CELS-2-4 -86.3 30.1 9.96
CELS-2-5 30.4 26.3 10.18
CELS-2-6 6.4 26.7 10.00
CELS-2-7 -12.7 28.2 10.45

GIIR (J-int), as well as plotted with points for each specimen in Fig. 5.13a as a function

of the delamination extension ∆a = a− a0 where a0 is the initial delamination length of

each specimen, measured from the load-line and presented in Table 5.7.

For the ECM, the values of m in Table 5.12 were substituted into eq. (5.9) to obtain

a relation between GIIR, P and a for each specimen. The measured values a and P in

Tables D.1 through D.6 were substituted into the equation to obtain values of GIIR as

a function of P and a. The resulting GIIR values are presented in the eighth column of

Tables D.1 through D.6, as well as plotted in Fig. 5.13b as points for each specimen as a

function of the delamination extension ∆a.

It may be observed for the resulting data from both methods in Figs. 5.13 that as

∆a increases, GIIR increases until reaching a steady state value GIIss at approximately

∆ass = 15 mm. A power law of the form in eq. (5.6) between 0 ≤ ∆a ≤ 15 mm was fit

to the points obtained by means of the J-integral, as well as the ECM. For ∆a ≥ 15 mm,

GIIss is the steady state energy release rate presented for each method in Table 5.24.

The obtained R-curves are shown as the black curves in Figs. 5.13. The fracture

toughness Gic, identified as GIIc, was determined in both cases as the average of the six

(a) (b)

Figure 5.13: Resistance curves: GIIR versus ∆a = a − a0 obtained by means of (a) J-
integral and eq. (5.15) with the fitting parameters in Table 5.23 and (b) ECM from
eq. (5.9) with m from Table 5.12.
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Table 5.24: The parameters GIIc and GIIss , as well as A1 and B from the power law in
eq. (5.6) for the nearly mode II R-curves obtained by means of the J-integral in eq. (5.15)
and by means of ECM in eq. (5.9) for the C-ELS specimens. The RMSE are also presented.

method GIIc (N/m) GIIss (N/m) A1 (N/m·mmB) B RMSE (N/m)

J-integral 843.1 1139.8 37.7 0.76 102.0
ECM 843.1 1229.1 63.7 0.66 119.3

JVIS values found for each tested specimen. The obtained average value is presented in

Table 5.24. Recall that the initial values applied to the R-curve related to ECM were

also obtained by means of the J-integral. Hence, for both methods, the initial values are

the same. The fitting parameter A1 in eq. (5.6) was obtained for each set of data points,

related to each method, by means of the nonlinear Generalized Reduced Gradient (GRG)

method in Excel (2016). The calculation was performed so that for the linear relation

between the individual data points of GIIR for each specimen, shown in Fig. 5.13, and

∆aB where B is related to A1, a minimum value, for the root mean square error (RMSE),

is obtained. During the fitting process, values of A1 are incremented, so that the value of

the RMSE changes. Once the value of the RMSE ceases to decrease, the solver stops and

produces the best fit for A1. Note that this method produces a local minimum for the

RMSE which is not necessarily the global one. Hence, for different initial values of A1, a

different fit may be obtained. The parameter B was expressed in the fitting by means of

eq. (5.10) where Giss ≈ GIIss are given in Table 5.24 for each method. The values of GIIss

were calculated as the average value of all J or GIIc data points obtained for ∆a ≥ 15 mm.

The parameters A1 and B related to the J-integral and to the ECM are also given in

this table. The initial value used in the GRG method to obtain these parameters was

A1 = 100.

From the two plots in Fig. 5.13 it may be observed that for the ECM larger scatter

in the results was found. In Fig. 5.14, the two R-curves obtained by the two methods

are plotted and may be compared. It may be clearly observed that the J-integral local

approach resulted in more conservative energy release rate values with a more moderate

power law increase until steady state. The RD between the GIIss steady state energy release

rate values given in Table 5.24 obtained by means of the two methods was calculated using

eq. (3.31) with (1) being the ECM result and (2) the J-integral. The RD was found to

be 7.8% which implies that the results obtained from the global and local analyses are

rather similar.

In addition to the R-curves, K̂m (m = 1, 2) values were obtained as a function of the

delamination extension ∆a, as described in Section 5.3.1. The relation in eq. (5.16) was

used to determine K̂m as a function of the load P and delamination length a. The fitting

parameters B
(i)
0 and B

(i)
1 which are the intercept and slope of the line, respectively, in

eq. (5.16) for each specimen i were determined as described in Section 5.3.1, based on the
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Figure 5.14: Comparison of the nearly mode II resistance curves obtained by means of
the J-integral and by means of ECM in eq. (5.9) with m from Table 5.12.

results from the four FEAs with a = 50, 60, 70, 80 mm for each specimen, along with the

VCCT. The obtained values for B
(i)
0 and B

(i)
1 for m = 1, 2 are presented in Table 5.25.

Values of P and a from Tables D.1 through D.6 were substituted into eq. (5.16) to obtain

specific K̂m(P, a) values.

The resulting K̂m(P, a) are presented in the fifth and sixth columns of Tables D.1

through D.6, as well as plotted for each specimen as a function of the delamination

extension ∆a = a − a0 where a0 is the initial delamination length of each specimen,

measured from the load-line and presented in Table 5.7. The resulting plots are presented

as points in Figs. 5.15a and 5.15b for m = 1 and m = 2, respectively. Note that the initial

K̂m values at ∆a = 0 were obtained from Table 5.22. From both plots it may be observed

that both K̂1 and K̂2 increase slightly as the delamination extends. Note that the scales

of the ordinate differ in Figs. 5.15a and 5.15b.

The in-plane phase angle ψ̂ was calculated by means of eq. (3.19) using the obtained

Table 5.25: The fitting parameters B
(i)
0 and B

(i)
1 in eq. (5.16) for (m = 1, 2) for the C-ELS

tests.

m=1 m=2

B
(i)
0 (×102 m−3/2) B

(i)
1 (×104 m−5/2) B

(i)
0 (×102 m−3/2) B

(i)
1 (×105 m−5/2)

CELS-2-2 -3.75 4.49 4.28 2.89
CELS-2-3 -3.78 4.32 4.26 2.80
CELS-2-4 -3.92 4.28 4.29 2.77
CELS-2-5 -3.59 4.29 4.21 2.80
CELS-2-6 -3.71 4.24 4.21 2.77
CELS-2-7 -1.43 3.98 4.23 2.84
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(a) (b)

Figure 5.15: Values of K̂m obtained by means of eq. (5.16) where P and a are shown in
Tables D.1 through D.6, as a function of the delamination extension ∆a (a) m = 1 and
(b) m = 2.

K̂m(P, a) (m = 1, 2) values. The resulting ψ̂ values are presented in the last column of

Tables D.1 through D.6, as well as plotted as a function of the delamination extension ∆a,

as points, in Fig. 5.16. Note that the scale of the vertical ψ̂ axis in this figure is between

1.44 rad and 1.46 rad. From this figure it may be concluded that although a moderate

decrease in the ψ̂ values was obtained as the delamination extends, the change in the

calculated values is very slight and throughout the entire test nearly mode II deformation

is dominant.

Figure 5.16: Values of ψ̂ as a function of the delamination extension ∆a; these values were
obtained by means of eq. (3.19) with K̂m (m = 1, 2), shown in Figs. 5.15 and obtained
from eq. (5.16) with P and a taken from Tables D.1 through D.6.
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5.4 Mixed mode fracture toughness tests - MMELS

specimens

Five mixed mode end loaded split (MMELS) specimens were tested quasi-statically with

approximately one mixed mode ratio I/II. The test protocol for the MMELS tests is

presented in Section 5.4.1. In Section 5.4.2, results from these tests are delineated. Me-

chanical and thermal three-dimensional FEAs related to the applied load and to the

temperature change that the laminate was subjected to during curing were performed for

each specimen. These FEAs are described in Section 5.4.3. Also in this section, conver-

gence studies for the mechanical and thermal FEAs are presented. In addition, domain

independence was examined for the mechanical and thermal M -integrals.

Stress intensity factors K
(f)
m and K

(r)
m (m = 1, 2, III ) were obtained from the FEAs

related to each test by means of the DE method described in Section 3.1, as well as by

means of the mechanical and thermal M -integrals presented in Section 3.2. The resulting

values were normalized by means of eq. (1.26) with the length scale L̂ = 100 µm. The

normalized values of K̂
(f)
m and K̂

(r)
m (m = 1, 2, III ) were used to determine the mixed

mode phase angles ψ̂ and ϕ in eqs. (3.19) and (3.20), respectively, through the specimen

thickness. By means of these phase angles, the mode mixity of the problem at hand

was evaluated. Results from these calculations are presented in Section 5.4.4. Also in

this section, the average through the width, along the delamination front, of the critical

initiation energy release rate values Gic, as well as the fracture resistance energy values

GiR were obtained and are presented as a function of the delamination extension ∆a.

These values were determined by means of ECM (ISO-15114:2014(E), 2014), as well as

by means of FEA with appropriate post-processors. These calculations, as well as the

resulting R-curves determined by means of the two methods are presented and compared

in Section 5.4.4.

5.4.1 MMELS test protocol

A test protocol for the MMELS specimen is summarised below based on Blackman et

al. (2001). By means of the MMELS test, initiation and propagation resistance energy

release rate values from a non-adhesive insert, as well as from a precrack obtained by

mixed mode loading, respectively, are to be determined. During the test, the MMELS

specimen, shown in Fig. 5.17a, is subjected to mixed mode I/II deformation with a fixed

ratio. The ratio for a UD material would be GI/GII ≈ 4/3. Note that the delamination

growth during the test is expected to be stable.

Prior to testing, the MMELS specimen thickness 2h and width b illustrated in Fig. 5.17

were measured in the same manner as that described in Section 5.3.1 with higher precision

than to the nearest 0.02 mm as recommended by Blackmen et al. (2001). The thickness 2h
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(a) (b)

Figure 5.17: Illustration of (a) the MMELS specimen and (b) clamping fixture.

was measured at ten locations and the width b at five locations along the specimen length,

as shown in Fig. 5.17a with white circles and white lines, respectively. The thickness 2h

was measured on each side of the specimen at a distance of approximately 3 mm from

the outer specimen edge. It is also recommended in Blackman et al. (2001) that the

average values and standard deviations from these measurements would be recorded and

not exceed 0.1 mm.

The total length l of the specimens was measured using a ruler to the nearest mm.

The recommended specimen total length, shown in Figs. 5.17, is recommended to be

l ≥ 170 mm and l ≥ ai+110 mm (Blackman et al., 2001). The free length Lf illustrated in

Fig. 5.17b is typically 100 mm. It may be noted that stability is promoted for Lf ≤ 2.44a.

With the MMELS specimen, two types of tests are conducted. One is from a PTFE

starter film of length a0, measured from the load-line to the delamination front as shown

in Figs. 5.17, the second is a precrack obtained from a mixed mode test. The former

stage of the test is referred to here as the artificial crack or AC stage and the latter is the

precrack or PC stage. The starter film is 13 µm thick, as recommended. The insert length

ai was measured in the same manner as that described in Section 5.3.1 on the front and

back sides of the specimen, aif and aib, respectively. The length between the load-line and

the delamination front a0, shown in Figs. 5.17 was calculated as the measured aif and aib

values minus half the load block length. The obtained values were averaged to determine

the initial insert length a0 which is also referred to here as a0AC . It is recommended in

Blackman et al. (2001) that the differences in length between the two sides aif and aib

would be less than 2 mm. Moreover, it is required that the length between the load-line

and the delamination front a0, shown in Figs. 5.17, would be at least 50 mm implying

that ai ≥ 60 mm.

After all measurements were completed, in the same manner as performed for the C-

ELS specimens and described in Section 5.3.1, both edges of each specimen were coated
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with a thin layer of white water based acrylic paint in order to facilitate the detection of

delamination growth. After the coating layer was dry, straight vertical lines across the

specimen edge were marked every 1 mm for the first 5 mm from the artificial insert tip,

then every 5 mm up to 35 mm, and finally, every 1 mm up to 40 mm. For one specimen

black spray was applied to the painted surfaces to create speckles to be used for digital

image correlation (DIC). One load block with the same width as that of the specimen

was attached as illustrated in Fig. 5.17b. It may be noted that the applied displacement

is expected to result with K2 ≥ 0 for the case of the investigated interface. Note that the

UD fabric ply is the upper ply as shown in Fig. 2.1. After all preparations were completed,

the same conditioning process as that used for the C-ELS specimens at a temperature of

23◦±1◦ C and a relative humidity (RH) of 50%±3% for at least one week was performed.

In Fig. 5.17b, a schematic illustration of the test apparatus used in the MMELS

fracture tests is presented. The same Instron loading machine described in Section 4.3,

with a 250 N load cell was used in the tests. Note that for unidirectional (UD) specimens,

the load is typically expected to be in the range of 100-200 N (Blackman et al., 2001). The

clamping fixture, shown in Fig. 5.17b, is again similar to that in Fig. 5.5b for the C-ELS

tests with all relevant descriptions given in Section 5.3.1. The load is applied vertically in

displacement control to a pin inserted into the load block as illustrated in Fig. 5.17b. The

LaVision system described in Section 4.3, with two cameras, was used. During each test,

images of the specimen were acquired from both sides of the specimen, front and back,

simultaneously, at a rate of 2 Hz. The synchronized actuator displacement d and load P

measured by means of the Instron loading machine were noted on each related image.

The MMELS tests were performed at a temperature of 23◦ ± 3◦C and 50%±10%

relative humidity (RH). These conditions are similar to those used for the DCB tests in

Chocron and Banks-Sills (2019), as well as in the C-ELS tests described in Section 5.3. It

may be noted that in Blackman et al. (2001) it is recommended to perform the tests in

accordance with ISO 291 (2008), namely, 23◦±2◦C and 50%±5% RH. Before the AC test

stage, the specimen was positioned in the clamping fixture, as shown in Fig. 5.17b so that

Lf = 100 mm. Quasi-static loading in displacement control was applied to the specimen

at a constant cross-head displacement rate of 1 mm/min, until the artificial delamination

propagated between 2 and 5 mm. At this point, the test was interrupted and the specimen

was unloaded at a displacement rate of 5 mm/min until P ≈ 3 N. After unloading, the AC

(first) stage was complete and the PC (second) stage began. The specimen was reloaded

at a displacement rate of 1 mm/min. The precrack initiated and continued to propagate

until it arrived within a distance of 10 mm from the clamped end. Then, the specimen

was completely unloaded at a constant cross-head rate of 5 mm/min. After the specimen

was fully unloaded it was released from the loading machine.

For both stages of the test, load-displacement curves were obtained. In the same

manner described in Section 5.3.1, the nonlinear, visual and 5%/max initiation loads at
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Delamination tip

(a) (b)

Figure 5.18: An image captured by the LaVision digital camera during the PC (second)
stage of the test for specimen MMELS-1-9: (a) front and (b) back sides.

failure, namely, PNL, PVIS and P(5%/max), were determined for the AC and PC stages of

each test.

From the images acquired by means of the LaVision system during the AC (first) stage

of the test, the load PAC−VIS and actuator displacement dAC−VIS related to a0AC were

determined at initiation. In addition, from this set of images, during the AC stage of

the test, just before unloading, the precrack length a0PC−VIS was measured. From the

images acquired during the PC (second) stage of the test, the synchronized load PPC−VIS

and actuator displacement dAC−VIS related to the measured a0PC−VIS , were determined

at initiation of the natural precrack. In addition, from the LaVision images captured

during the PC stage of the test, just before unloading, af which is the final delamination

length was measured. Since two cameras were used, the delamination length values were

measured on the front (f) and back (b) sides of the specimen. If the difference between

these delamination length values was larger than 2 mm for a0PC−VIS or af , the tested

specimen should be dismissed, as recommended in Blackman et al. (2001).

In addition, from the images acquired by means of the LaVision system during the PC

test stage, the delamination length values a, as the delamination extended, were measured

and the synchronized load P and actuator displacement d were noted. An example of

images captured by the LaVision digital cameras during the PC (second) stage of the test

for specimen MMELS-1-9 are presented in Figs. 5.18a and 5.18b from the front and back

sides of the specimen, respectively. The delamination extension ∆a, defined as

∆a = a− a0AC (5.19)

was measured from such images by means of the ImageJ software (2015) between the

right end of the PTFE film and the extended delamination tip, on both specimen sides.

In eq. (5.19), a is the total extended delamination length measured from the load-line

and a0AC is the initial insert length which was measured before the AC stage by means
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Figure 5.19: Images captured by the LaVision digital camera during the PC (second)
stage of the test for specimen MMELS-1-18 with the strain distribution determined with
DIC and used to detect the delamination tip: (a) front and (b) back sides of the specimen.

of the confocal microscope. To determine a as the delamination extended, the measured

∆a value was added to the initial delamination length a0AC .

In Figs. 5.19a and 5.19b, images of the front and back sides of specimen MMELS-1-18

are shown, respectively. To this specimen, prior to testing, speckles were spread over the

front and back sides of the painted surfaces of the specimen. By means of DaVis (2015)

software, the digital image correlation (DIC) method was employed to enable detection of

the delamination tip from the images of the specimen acquired during the test. Note that

the displacement and strain fields obtained by means of DIC were not analyzed quantita-

tively. It may also be noted that since it was possible to detect the delamination tip from

the images without use of DIC, and since it was found that determining the delamination

tip using this method takes a longer time but is not necessarily more accurate, DIC was

only employed for specimen MMELS-1-18. In Figs. 5.19, the strain field in the x2- direc-

tion, is presented for the front and back sides of the specimen. For this specimen, the

delamination length values a0PC−VIS and a, were determined from the images with the

DIC results. The values a0PC−VIS and a measured from the front and back sides of the

specimen were averaged and used with the related synchronized PVIS and dVIS values to

obtain stress intensity factors, phase angles, as well as the critical and resistance energy

release rate values as a function of the delamination extension ∆a.

Three-dimensional FE mechanical and thermal analyses related to the AC (first) stage

of the test were performed for each specimen. For this stage, the load PAC−VIS obtained vi-

sually from the related a0AC , was applied in each analysis. Note that the critical initiation

values related to the nonlinear and 5%/max loads, PNL and P(5%/max), respectively, were

obtained as will be explained in the sequel. The global response of the load-displacement

curve obtained by means of the mechanical FEAs was compared to that measured from

the test in order to evaluate the correspondence between the two. The FEA results were
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then used to calculate the stress intensity factors K
(f)
1 , K

(f)
2 and K

(f)
III , resulting from

the applied load, as well as K
(r)
1 , K

(r)
2 and K

(r)
III , resulting from residual stresses which

were obtained during the curing process, where the composite was subjected to a thermal

change. The mechanical and residual stress intensity factors were determined through the

width of each specimen by means of the DE method, described in Section 3.1, as well as

by means of the mechanical and thermal M -integrals, described in Section 3.2. Note that

the DE method was used for verification of the results obtained by the mechanical and

thermal M -integrals. The resulting mechanical and residual stress intensity factors were

superposed to obtain the total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III . These were

normalized by means of eq. (1.26) with the length parameter L̂ = 100 µm to obtain real

instead of complex units.

Based on the obtained K̂
(T )
1 , K̂

(T )
2 and K

(T )
III values, the phase angles ψ̂ and ϕ were

calculated through the width of each specimen by means of eqs. (3.19) and (3.20), respec-

tively. These phase angles are related to the in-plane and out-of-plane to in-plane mode

mixities. In addition, the initiation critical energy release rate Gic values at ∆a = 0 for

each specimen through the specimen width were determined by means of eq. (3.17). For all

calculated parameters, namely, K̂
(T )
m (m = 1, 2 and III ), ψ̂, ϕ and Gic, the trend through

the specimen width was observed and discussed. In addition, an integrated average for

each of these parameters was evaluated.

In order to determine the resistance energy release rate GiR as a function of the delami-

nation extension ∆a, in the same manner described in Section 5.2 for the DCB specimens,

two analysis methods were employed. The first, similar to that used in Chocron and

Banks-Sills (2019), was based on theM -integral, and the second, was based on ECM (ISO-

15114:2014(E), 2014). With the M -integral, for each specimen, six mechanical FEAs and

one thermal FEA were performed. In the six mechanical FEAs, a different delamination

length was used for each analysis, namely, a = 40 mm, 50 mm, 60 mm, 70 mm, 80 mm

and 90 mm. For all analyses, the applied load was set to P = 1 N. The displacement fields

obtained from these analyses were used with the three-dimensional mechanicalM -integral

described in Section 3.2 to obtain six data sets of K
(f)
m (m = 1, 2, III ), each related to a

specific value of a. Each data set is composed of forty K
(f)
m values along the delamination

front. Hence, for each specimen, data points in the three-dimensional space (K
(f)
m , a, x3)

were obtained. Surfaces of the form given in eq. (5.1) were fit through these data sets

for m = 1, 2, III and the fitting parameters pi0 and pj1 (i = 0, 1, .., 5 and j = 0, 1, .., 4)

were obtained. The values of the delamination length a, measured from the test, were

substituted into eq. (5.1) to obtain expressions of K
(f)
m as a function of x3.

One thermal analysis was performed for each specimen with an applied temperature

∆ϑi calculated by means of eq. (5.2). Since the effect of the delamination length on

the thermal stress intensity factors was found to be negligible, as was shown in Chocron

and Banks-Sills (2019), and will be shown again in the sequel, only one delamination

185



length a = 70 mm was used for all thermal analyses. By means of the thermalM -integral,

described in Section 3.2, with the displacement field obtained from each thermal FEA, one

set of stress intensity factors K
(r)
m (m = 1, 2, III ), resulting from residual curing stresses,

along the delamination front were obtained. A fourteenth order polynomial curve fit of the

form shown in eq. (5.3) was obtained and the fifteen fitting parameters bi (i = 0, 1, ..., 14)

were determined for each specimen.

The expressions obtained from eq. (5.1) for specific measured values of a for K
(f)
m as

a function of x3, and the expressions obtained from eq. (5.3) as a function of x3 were

superposed to determine an expression of the form in eq. (5.4). This expression relates

the total stress intensity factors K
(T )
m , for all delamination lengths a, to x3 where x3 is

a point along the width of the specimen. In eq. (5.4), the load P , associated with each

measured delamination length a, was used. For each measured delamination length a, the

resistance energy release rate GiR as a function of x3 was expressed by means of eq. (3.17)

with use of eq. (5.4). Finally, the expression for GiR was integrated through the width

of the specimen, as shown in eq. (5.5), to obtain the average GiR value related to each

delamination length a. In addition, the initiation critical energy release rate values Gic,

related to the nonlinear, visual and 5%/max initiation loads at failure, PNL, PVIS and

P(5%/max), respectively, of the AC (first) test stage were obtained by means of eq. (5.5)

with a = a0AC . The Gic values obtained from eq. (5.5) for PVIS were compared and

validated with the values obtained previously from the AC FEAs and the mechanical

and thermal M -integrals. This validation gave confidence in the results obtained for all

measured delamination length values a.

The ECM method (ISO-15114 standard, 2014, Blackman et al., 2001) described and

applied in Section 5.2 for the DCB specimens and applied in Section 5.3 to the C-ELS

specimens, was chosen to be used here for the MMELS test results in order compare local

and global methods for obtaining a resistance curve for one mixed mode deformation ratio.

The load P and actuator displacement d associated with the measured delamination length

a were used in eq. (5.12) to calculate the specimen compliance. The resulting values of

C, as well as the related measured delamination length values a were substituted into

eq. (5.8) to obtain the fitting parameters m and C0. The obtained value of m, as well as

the measured values of a, P and d for each test were then substituted into eq. (5.9) to

obtain GiR values as a function of the delamination extension ∆a.

For the values obtained by means of each method, a power law fit of the form given

in eq. (5.6) between the initial critical interface energy release rate Gic and the steady

state value Giss for ∆a = ∆aiss , was used to determine two R-curves. Note that ∆aiss

is the initial delamination extension value related to steady state Giss ; this latter value

was calculated as the average of all J or GiR values obtained for ∆a ≥ ∆aiss . The fitting

parameter A1 in eq. (5.6) was obtained for each set of data points, related to each method,

in the same manner as described in Section 5.3.1. This was performed by means of the
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Table 5.26: MMELS specimen measurements: thickness 2h, width b and artificial delam-
ination length a0, shown in Fig. 5.17a.

specimen no. 2h1a 2h1b 2h2a 2h2b 2h3a 2h3b 2h4a 2h4b 2h5a 2h5b 2h SD
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

MMELS-1-9 4.88 4.92 4.84 4.82 4.88 4.82 4.78 4.75 4.60 4.62 4.79 0.108
MMELS-1-11 4.87 4.83 4.68 4.82 4.83 4.75 4.84 4.88 4.64 4.63 4.78 0.093
MMELS-1-12 4.94 4.91 4.80 4.83 4.93 4.85 4.74 4.79 4.67 4.64 4.81 0.105
MMELS-1-17 4.92 4.93 4.73 4.79 4.70 4.76 4.67 4.75 4.67 4.67 4.76 0.098
MMELS-1-18 5.00 4.96 4.81 4.80 4.88 4.75 4.88 4.82 4.64 4.67 4.82 0.116

specimen no. b1 (mm) b2 (mm) b3 (mm) b4 (mm) b5 (mm) b (mm) SD

MMELS-1-9 19.87 19.88 19.93 19.72 19.90 19.86 0.071
MMELS-1-11 19.97 19.92 19.90 19.98 19.93 19.94 0.031
MMELS-1-12 19.77 19.91 19.90 19.97 19.82 19.87 0.072
MMELS-1-17 19.85 19.87 19.80 20.10 20.32 19.99 0.196
MMELS-1-18 19.71 19.73 19.71 19.82 19.89 19.77 0.072

specimen no. a0f (mm) a0b (mm) ∆a0 (mm) a0AC (mm)

MMELS-1-9 52.12 52.27 -0.15 52.20
MMELS-1-11 51.34 51.89 -0.55 51.62
MMELS-1-12 51.66 51.29 0.37 51.47
MMELS-1-17 50.74 50.47 0.27 50.60
MMELS-1-18 50.41 50.53 -0.12 50.47

GRG software of Excel (2016) with the parameter B expressed in the fitting by means of

eq. (5.10). For a minimum value of the RMSE, the value of A1 was determined.

In addition, the phase angle ψ̂ as a function of the delamination extension, through the

specimen width, was also calculated. The values of K
(T )
m from eq. (5.4) for every measured

delamination length were normalized by means of eq. (1.26) with L̂ = 100 µm and sub-

stituted into eq. (3.19). From the results, values of ψ̂ as a function of the delamination

extension ∆a were obtained. Note that since the phase angle ϕ was found to be anti-

symmetric through the specimen width, an integrated average of this parameter results

in zero. Hence, the value of the integrated average ϕ as a function of the delamination

extension was not examined.

5.4.2 MMELS test results

Five MMELS specimens were tested quasi-statically. The protocol in Section 5.4.1 was

used in all tests. Each specimen is denoted as MMELS-R-C where the parameters R and

C, shown in Fig. 5.1, denote the row and column location of the specimen in the plate,

respectively.

As described in Section 5.4.1, prior to testing, each specimen width b and thickness 2h

were measured at the locations marked in Fig. 5.17a. Results from these measurements, as

well as the average values and standard deviations (SDs) are presented in Table 5.26. Note

187



Table 5.27: Average temperature ϑi and relative humidity (RH) measured during the
MMELS tests for specimen i.

specimen no. ϑi
◦C RH (%)

MMELS-1-9 24.0 43.2
MMELS-1-11 24.3 41.3
MMELS-1-12 24.6 40.6
MMELS-1-17 22.4 41.6
MMELS-1-18 22.4 49.6

that for all MMELS specimens tested, it may be observed that the maximum difference

between the thickness measurements are in the range 0.25 mm to 0.36 mm which may

be a result of the wet-layup manufacturing process. These variations are greater than

0.1 mm; hence they do not fulfill the requirements recommended in Blackman (2001) and

described in Section 5.4.1. In addition, it may be noted that the variation in the width

b is between 0.08 mm and 0.52 mm.

For each specimen, the delamination length values aif and aib were measured. The

measurements were performed as described in Section 5.4.1 between the specimen edge

and the delamination front, on both sides of the specimen. In addition, the length of

each load block was also measured. Half of the obtained value was subtracted from

aif and aib to obtain a0f and a0b, respectively. The resulting a0f and a0b values are

presented in Table 5.26. The difference ∆a0 between a0f and a0b, as well as the average

of the two values a0AC , are also presented in this table. It may be observed that the

differences between the two sides for all specimens are less than 2 mm which meets the

recommendations in Blackman et al. (2001). In addition, the length of the specimens

l shown in Fig. 5.17 was measured as 200 mm for all specimens. This value also meets

the recommendation in Blackman et al. (2001). For each specimen the temperature ϑi

and relative humidity (RH) were measured every 5 minutes throughout the test. The

measured values were averaged and are presented in Table 5.27. It may be observed that

all tests were performed at 23◦ ± 3◦C and 50%±10% relative humidity (RH) which meet

the recommendations discussed in Section 5.4.1.

Load-displacement curves for the AC and PC stages of all five MMELS specimens

tested are presented in Figs. 5.20a and 5.20b, respectively. In addition, in the sixth and

seventh columns in Table 5.28, the stiffnesses KAC and KPC related to the AC and PC

stages of each test for each specimen, respectively, are presented. These values were

determined as the slope of the loading portion of each curve in Figs. 5.20a and 5.20b.

Also in Table 5.28, the average values 2h, b and a0AC from Table 5.26 are presented

in the second through fourth columns. Values of a0PC−VIS which were measured from

the LaVision images, as described in Section 5.4.1, are presented in column five of this

table. Note that L̂f was chosen to be 100 µm in both stages for all tested specimens.
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(a) (b)

Figure 5.20: Load-displacement curves for the MMELS tests: (a) AC stage and (b) PC
stage.

The stiffnesses obtained from both stages of the test was compared. Recall that such

a comparison was not possible for the case of the tested C-ELS specimens described in

Section 5.3 since there a different value of Lf was chosen for each specimen and test

stage. It may be observed that for all specimens the stiffness measured in the PC stage

of the test is slightly lower than that observed in the AC stage. This decrease in the

measured stiffness is related to the increase of the initial delamination length in the PC

stage as compared to that of the AC stage, namely a0PC−VIS > a0AC . Also, it may

be observed from Figs. 5.20a and 5.20b, as well as from the calculated stiffnesses KAC

and KPC in Table 5.28 that specimens MMELS-1-9 and MMELS-1-11 are less stiff than

the other specimens in both test stages. A possible reason for these differences may

be inhomogeneities of the material which were caused by the wet-layup manufacturing

process.

Table 5.28: Measured dimensions of the five MMELS tested specimens including the
averaged thickness 2h and width b, the delamination length at initiation of the AC (first)
and PC (second) stages, a0AC and a0PC−VIS , respectively, as well as the stiffness KAC and
KPC of the linear loading portion of the load-displacement curves measured from the test
and presented in Figs. 5.20.

Specimen no. 2h b a0AC a0PC−VIS KAC KPC

(mm) (mm) (mm) (mm) (N/mm) (N/mm)

MMELS-1-9 4.79 19.9 52.2 55.5 7.7 7.3
MMELS-1-11 4.78 19.9 51.6 58.1 7.9 7.2
MMELS-1-12 4.81 19.9 51.5 55.2 8.5 8.0
MMELS-1-17 4.76 20.0 50.6 54.3 8.4 7.9
MMELS-1-18 4.82 19.8 50.5 56.5 8.8 8.1
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Table 5.29: Initiation non-linear, visual and 5/%max loads PNL, PVIS and P5%/max , re-
spectively, and the related actuator displacements dNL, dVIS and d5%/max , respectively,
obtained from the AC (first) and PC (second) stages of the MMELS tests.

AC test stage PC test stage
specimen no. PNL PVIS P5%/max dNL dVIS d5%/max PNL PVIS P5%/max dNL dVIS d5%/max

(N) (N) (N) (mm) (mm) (mm) (N) (N) (N) (mm) (mm) (mm)

MMELS-1-9 78.2 87.8 91.0 10.2 11.8 12.6 71.5 89.5 92.7 9.7 12.0 13.3
MMELS-1-11 74.3 91.8 95.4 9.5 12.0 13.0 72.1 96.9 97.0 10.0 13.7 13.8
MMELS-1-12 82.4 89.6 89.6 9.7 10.8 10.8 86.8 86.5 89.4 10.9 10.8 11.8
MMELS-1-17 78.8 92.2 93.4 9.4 11.2 11.4 80.1 91.9 93.9 10.1 11.9 12.6
MMELS-1-18 78.4 95.3 95.4 8.9 11.7 11.8 71.3 94.7 99.5 8.8 11.7 12.4

average 78.4 91.4 93.0 9.6 11.5 11.9 76.4 91.9 94.5 9.9 12.0 12.8
SE 1.28 1.27 1.17 0.21 0.22 0.39 3.08 1.84 1.75 0.35 0.48 0.35
CV (%) 1.6% 1.4% 1.3% 2.2% 1.9% 3.3% 4.0% 2.0% 1.9% 3.5% 3.9% 2.7%

Values of PNL, PVIS and P5%/max , as well as the related values of dNL, dVIS and d5%/max

from the AC and PC stages of the MMELS tests are presented for each specimen in

Table 5.29. These values are also indicated on each curve in Figs. 5.20a and 5.20b. The

average values of all specimens, as well as the standard errors (SEs) and coefficients of

variation (CV) are presented at the last three rows in this table.

It may be observed from Figs. 5.20a and 5.20b that the loading portion of the load-

displacement curves of the AC stage exhibit a small curvature. This phenomenon does

not appear in the corresponding plots of the PC stage of the test. Recall that similar

behavior was observed in the load-displacement curves related to the C-ELS tests shown

in Fig. 5.9. This behavior may indicate that during the AC (first) loading stage, a process

zone was evolving near the insert front. Once the delamination initiated, this process

zone was fully evolved. As a result, during the PC (second) loading stage, linearity was

obtained. It may be noted that the values of PNL, PVIS and P5%/max for the AC stage

in Table 5.29 are similar to those of the PC stage, resulting with similar average values

for both stages. The average values obtained for PVIS and P5%/max are slightly lower for

the AC stage than for the PC stage; whereas, the average PNL value obtained for the AC

stage is slightly higher than that for the PC stage. It is interesting to note that opposite

behavior was obtained for the initial loads in the AC and PC stages of the C-ELS tests,

given in Tables 5.9 and 5.11, respectively, with larger and more pronounced differences.

In addition, it may be observed from Table 5.29 that for all parameters presented, namely,

PNL, PVIS and P5%/max , as well as dNL, dVIS and d5%/max , the CV values obtained are

quite similar and less than 5%.

As the delamination propagated, values of a were measured from the load-line to

the delamination tip by means of ImageJ (2015) software, as described in Section 5.4.1,

from images captured using the LaVision system during the PC test stage. From each

measured image, the related synchronized load P and actuator displacement d were also

obtained. In Tables E.1 through E.5, the measured values of a, P and d are presented
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Table 5.30: Values of m and C0 used in eq. (5.8) and (5.9) for each MMELS test based
on a linear fit to the data of a3 verses C in Tables E.1 through E.5.

specimen no. C0 (×10−2 mm/N) m (×10−7/(mm2N))

MMELS-1-9 8.47 3.11
MMELS-1-11 8.54 3.04
MMELS-1-12 8.09 2.89
MMELS-1-17 7.43 2.76
MMELS-1-18 7.26 3.08

for each specimen. In addition, for each specimen and for every measured delamination

length, the compliance values C were calculated using eq. (5.12). The obtained values of

C, related to each measured delamination length are also presented in these tables. Using

the data points (C, a3), the slope and intercept m and C0, respectively, in eq. (5.8), were

obtained for each specimen, as described in Section 5.3.1. The obtained values for each

specimen are presented in Table 5.30. In order to capture the delamination extension

which was out of the frame, the two cameras on both sides of specimen MMELS-1-18

were shifted during the test. Recall that the delamination length values a were measured

for this specimen using DIC, whereas for the rest of the specimens these values were

measured by means of ImageJ (2015) software. During the shifting, some data was lost.

An attempt was made to measure the delamination length values after the cameras were

shifted, but the value of m which was obtained when accounting for these values was

high with respect to the value of m measured for the other specimens. In order to avoid

inaccuracies resulting from this measurement, only values measured up to ∆a = 15.6 mm,

before the cameras were shifted, were used to determine m for this specimen.

5.4.3 MMELS FE model, convergence and domain indepen-
dence

In this section, mesh convergence for the MMELS mechanical and thermal FEAs is pre-

sented. In addition, domain independence for the mechanical and thermal M -integrals

is examined. Thermal analyses were performed for three delamination length values to

account for the residual curing stresses. This was done to examine the variation of K
(r)
m

for different delamination lengths.

Three-dimensional FEAs were performed with Abaqus (2017) and convergence of the

two different problems, mechanical and thermal, was examined. In the former, a load

was applied to the MMELS specimen, and in the latter, a change in temperature was

considered. In Figs. 5.21a and 5.21b, three-dimensional and two-dimensional views of

the mechanical three-dimensional FE model are presented, respectively. For the mechan-

ical FEA, a load of 91.9 N was applied perpendicular to the delamination, as shown in

Fig. 5.21b, and distributed along the specimen width b. The load was applied to nodes
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Figure 5.21: (a) Three-dimensional illustration of the MMELS fine FE model and (b)
two-dimensional illustration of the MMELS fine FE model including boundary conditions
with a focused view of the ply distribution in the red frame and a focused view of the
elements near the delamination front in the blue frame.

along the upper surface of the upper arm of the MMELS specimen, deforming them up-

ward at a distance a from the delamination front, as shown in Fig. 5.21b. Note that the

free edge of the specimen which is attached to the posterior half of the load block has

been removed from the model. In addition, 10 mm of the clamp, shown in Fig. 5.17b,

was modeled instead of 50 mm. This was to lower the number of elements used. The

degrees of freedom in the region of the clamp in the x2 and x3- directions were fixed,

and the specimen was free to slide in the x1-direction, as illustrated in Fig 5.21b. To

verify that omission of this part in the model does not affect the results, an additional

model with the total clamp length was also analyzed. It was found that the stress and dis-

placement fields obtained in the delamination front region from both analyses are nearly

the same. It may be noted that the total length l = Lf + 10 mm of the model shown

in Fig. 5.21 is not the total measured length l of the specimen in Fig. 5.17, since the

posterior half of the load block, as well as part of the clamping fixture were omitted.

For the thermal FEAs, a temperature difference was imposed as calculated in eq. (5.2),

where ϑi = 22.5◦C, which is within the range of values presented in Table 5.27, was used,

resulting with ∆ϑi = −67.5◦C.

The dimensions of the model in the mechanical and thermal analyses were the same.

The width b and thickness 2h of specimen MMELS-1-17, given in Table 5.28, were used

in the model with a = 59 mm and Lf = 100 mm. Each ply was modeled separately with

ten plies above the interface and nine plies below it, as shown in Fig. 5.21b. The effective

material properties in Tables 5.3 and 5.4 for the UD fabric and for the +45◦/− 45◦ and

0◦/90◦ woven fabrics, respectively, were employed. Since the MMELS specimens were

manufactured from the same plate used in Chocron and Banks-Sills (2019) for the DCB
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Table 5.31: Three meshes which were used in a convergence study of the MMELS speci-
men.

no. of elements no. of nodes element size near delamination tip (mm2)

coarse 169,920 718,369 0.0483× 0.0483× 0.5
fine 277,200 1,163,221 0.02417× 0.02417× 0.5
finest 569,520 2,369,797 0.01208× 0.01208× 0.5

specimens, the thickness of the UD ply in the MMELS model was set to h
(1)
0 = 0.145 mm

which is the same as that modeled for the DCB specimens in that study. The thickness

of each of the remaining eighteen woven plies was calculated as

h45 =
2h− h

(1)
0

18
. (5.20)

A focused view of the modeled plies is presented in the red frame in Fig. 5.21b with the

UD fabric illustrated in green and the +45◦/ − 45◦ and 0◦/90◦ woven fabrics illustrated

in red and white, respectively.

Three different meshes were used in the mechanical and thermal convergence studies,

namely, coarse, fine and finest. For all three meshes, along the width b of the specimen, in

the x3- direction, the mesh was composed of forty elements. A description of each mesh,

including the amount of elements, nodes and smallest element dimensions, is presented

in Table 5.31. Both the mechanical and thermal models were composed of twenty-noded,

isoparametric, quadratic brick elements of type C3D20. Near the delamination front,

quarter-point elements were used, as well as a denser mesh, to model the square-root,

oscillatory singularity. In addition, along the delamination front, elements with an in-

plane aspect ratio of 1 × 1 were used for each mesh. In the same manner performed

for the C-ELS specimen described in Section 5.3.3, in order to obtain such elements, the

woven ply was partitioned into two layers, as shown in the focused view in the blue frame

in Fig. 5.21b. The properties of both layers were described by means of the properties for

the +45◦/ − 45◦ woven fabric in Table 5.4. The thickness of the upper layer was chosen

to be h
(1)
45 = h

(1)
0 . In this way, the UD ply and the upper layer of the lower woven ply near

the delamination have the same thickness and meshed with elements of the same size.

From the mechanical and thermal FEAs, the displacement fields were obtained and

used in the mechanical and thermal M -integrals, respectively, described in Section 3.2,

to determine stress intensity factors resulting from applied mechanical loads, as well as

from residual thermal curing stresses. It may be noted that in the case of the MMELS

specimens, the stress intensity factors resulting from residual curing stresses at mid-width

of the specimen were found to be significantly lower than those resulting from mechanical

applied load, whereas, the differences obtained near the specimen edges were larger. Hence,

unlike the case of the C-ELS specimens, here the residual curing stresses were accounted

for in the analyses of the test results. Convergence of the obtained mechanical and residual
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Table 5.32: Largest relative difference (LRD), in absolute value, between stress intensity
factors obtained by means of mechanical and thermalM -integrals along the delamination
front with 0.0375 ≤ x3/b ≤ 0.9625, for pairs of meshes for mechanical and thermal
MMELS FEA results.

mechanical model LRD (%) thermal model LRD (%)

meshes coarse and fine fine and finest coarse and fine fine and finest

domain K
(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III K

(r)
1 K

(r)
2 K

(r)
III K

(r)
1 K

(r)
2 K

(r)
III

1 2.0% 1.4% 0.4% 1.6% 0.8% 0.2% 4.3% 17.7% 0.3% 3.5% 12.8% 0.2%
2 0.0% 0.2% 0.2% 0.1% 0.1% 0.2% 0.3% 12.1% 0.1% 0.4% 7.6% 0.2%
3 0.0% 0.1% 0.2% 0.0% 0.1% 0.2% 0.3% 7.4% 0.1% 0.1% 3.7% 0.1%
4 - - - 0.0% 0.1% 0.1% - - - 0.4% 3.3% 0.1%
5 - - - 0.0% 0.1% 0.1% - - - 0.5% 3.2% 0.1%
6 - - - 0.0% 0.1% 0.1% - - - 0.6% 3.3% 0.1%

stress intensity factors was examined for the three meshes. Between x3/b = 0.0375 and

x3/b = 0.9625, the relative differences between the stress intensity factors, for each pair of

meshes and for each problem type, were calculated by means of eq. (3.31) with (1) being

the results for the coarser mesh and (2) for the finer. In Table 5.32, the largest relative

differences (LRD), in absolute value, calculated between the stress intensity factors are

presented. For both the mechanical and thermal cases, convergence is observed as the

meshes become finer. As a result of the singularity, the results obtained for the first domain

are less accurate as compared to the other domains. This may be observed in Table 5.32

where a significant decrease in the LRDs is observed for the rest of the domains. It may

be observed that for the thermal results, the LRDs, in absolute value, are larger than

in the mechanical case. In addition, it is pointed out that even though convergence was

reached, since the obtained K
(r)
2 values are quite small, the calculated relative differences

between the fine and finest meshes for this parameter are approximately 3% in domains

three through six for thermal case. Based on the convergence results obtained, for both

the mechanical and thermal cases, it appears that convergence has been reached for the

fine mesh. Hence, it was chosen to be used in the remainder of this investigation. The

model shown in Figs. 5.21a and 5.21b was used for all specimens and the data of the mesh

is presented in the third line of Table 5.31.

In addition to the convergence study, domain independence was examined for the

chosen fine mesh for both the mechanical and thermal M -integrals. In Table 5.33, the

largest relative differences (LRD), in absolute value, calculated by means of eq. (3.31)

with (1) indicating the stress intensity factors obtained for the smaller domain and (2) the

stress intensity factors obtained for the larger one. Since the largest relative differences

calculated between domains three through six for the mechanical cases are lower than

0.5%, it may be concluded from this comparison that domain independence was achieved.

For the thermal case, it is more difficult to show domain independence since the obtained

values are relatively small. However for the in-plane stress intensity factors, differences of
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Table 5.33: Largest relative difference (LRD), in absolute value, calculated by means of
eq. (3.31) between the stress intensity factors obtained for adjacent domains of the fine
mesh by means of mechanical and thermal M -integrals along the delamination front at
0.0375 ≤ x3/b ≤ 0.9625.

mechanical LRD (%) thermal LRD (%)

domains RD(K
(f)
1 ) RD(K

(f)
2 ) RD(K

(f)
III ) RD(K

(r)
1 ) RD(K

(r)
2 ) RD(K

(r)
III )

1 and 2 4.5% 12.8% 5.8% 6.9% 10.8% 5.9%
2 and 3 1.1% 0.3% 0.1% 2.4% 4.0% 0.2%
3 and 4 0.3% 0.1% 0.0% 1.9% 0.6% 0.1%
4 and 5 0.1% 0.0% 0.0% 0.7% 1.1% 0.0%
5 and 6 0.0% 0.0% 0.0% 0.4% 1.0% 0.0%

less than 2% were found, whereas for the out-of-plane stress intensity factor the differences

in the results from domains three to six are approximately 0%. From these results it may

be concluded that domain independence was also achieved for the thermal case, as well.

After the convergence study and domain independence were completed, three thermal

analyses were performed for a = 40 mm, 70 mm and 90 mm. The model in Fig. 5.21 with

b and 2h of specimen MMELS-1-17, given in Table 5.26 was used in the analyses with the

chosen fine mesh, described in the third row in Table 5.31. A temperature difference of

∆ϑ = −67.5◦C was employed. By means of the thermal M -integral in Section 3.2, stress

intensity factors resulting from residual curing stresses were obtained for each delamina-

tion length a. Relative differences (RDs) between the stress intensity factors obtained

along the delamination front at 0.0375 ≤ x3/b ≤ 0.9625 from the thermal FEAs with

a = 70 versus a = 90, as well as with a = 40 versus a = 90m were calculated using

eq. (3.31) with (1) representing the former delamination length in the comparison and

(2) the latter. The LRDs, in absolute value, related to each stress intensity factor are

presented in Table 5.34. From the results, it may be concluded that the stress intensity

factors resulting from residual curing stresses are approximately the same for all delami-

nation length values. Hence, only one thermal analysis was performed for each specimen

with a delamination length of a = 70 mm. The results from this analysis were used for

Table 5.34: Largest relative difference (LRD), in absolute value, calculated by means of
eq. (3.31) for two cases, namely, a = 70 versus a = 90 and a = 40 versus a = 90, with
(1) and (2) implying on the stress intensity factors obtained by means of the thermal
M -integral along the delamination front at 0.0375 ≤ x3/b ≤ 0.9625 based on the thermal
FEAs, respectively.

a K
(r)
1 K

(r)
2 K

(r)
III Gi

70 mm vs 90 mm 0.04% 0.45% 0.01% 0.02%
40 mm vs 90 mm 1.16% 0.29% 0.02% 0.29%
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Table 5.35: Comparison between the stiffness obtained from the AC and PC stages of
each MMELS test and that obtained from the FEA.

specimen no. KFE−AC KFE−PC RD(KAC ) RD(KPC )
(N/mm) (N/mm) (%) (%)

MMELS-1-9 7.8 7.3 1.9 -0.9
MMELS-1-11 7.9 6.9 0.2 -4.4
MMELS-1-12 8.0 7.4 -5.6 -7.3
MMELS-1-17 8.0 7.4 -4.6 -5.8
MMELS-1-18 8.6 7.7 -3.2 -5.7

all measured delamination length values as will be described next.

5.4.4 MMELS test analyses and GiR-curve

In this section, the analyses performed for the MMELS tests will be described and the

results will be presented. For each MMELS specimen, mechanical FEAs related to the

AC (first) and PC (second) stages of the test, were performed. The accuracy of the global

response of the mechanical FEAs related to both stages was evaluated by comparing the

stiffness values obtained from the initial loading portion of each test with those obtained

from the analyses. In addition, one thermal FEA was performed for each specimen with

a = 70 mm. Results from these analyses were used to determine the stress intensity factors

resulting from applied loads K
(f)
m , as well as from residual curing stresses K

(r)
m , through

the specimen thickness. These resulting values were normalized, superposed and used to

determine the initiation energy release rate Gic in eq. (3.17), through the specimen width,

as well as the phase angles ψ̂ and ϕ in eqs. (3.19) and (3.20), respectively. Variations of

each parameter through the specimen width are discussed in this section. In addition, an

integrated average was calculated for each parameter.

The mechanical FEAs for the initial AC and PC stages of each test were carried

out with a0AC and a0PC−VIS from Table 5.28 employed, respectively. The visual loads

PVIS related to each test stage and given in Table 5.29 were employed in the models.

For each specimen and test stage, the resulting FEA stiffnesses KFE−AC and KFE−PC

were calculated. The obtained values are presented in the second and third columns

in Table 5.35, respectively. Note that these stiffnesses do not account for the residual

curing stresses. Relative differences (RDs) were calculated by means of eq. (3.31) where

(1) indicates the stiffness obtained from the FEA and (2) the stiffness calculated from

the test and presented in Table 5.28. In the fourth and fifth columns of Table 5.35,

the obtained RDs for the AC and PC stages of the test are presented, respectively. It is

interesting to note that for specimens MMELS-1-9 and MMELS-1-11 the RDs, in absolute

value, are smaller than that for all other specimens. Recall that lower stiffness for both

the AC and PC stages of the test were observed for these two specimens in Figs. 5.20a
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(a) (b) (c)

Figure 5.22: Stress intensity factors for the AC (first) stage of the MMELS fracture tests
as a function of the normalized specimen width x3/b through the delamination front: (a)

K̂
(T )
1 ; (b) K̂

(T )
2 and (c) K

(T )
III .

and 5.20b, as well as in Table 5.28. In addition, it may be observed that except for

specimens MMELS-1-9 and MMELS-1-11 in the AC stage, for all specimens, in both test

stages, RD ≤ 0 implying that KFE ≤ Ktest. It may be concluded that the stiffness of the

specimens is somewhat higher in the tests than that obtained from the FEAs. Since the

differences in the calculated stiffness are less than 7.5% in absolute value for all specimens,

it may be assumed that the analyses simulate the tests quite well and that the results may

be used for further analyses and prediction of the resistance energy release rate required

for delamination extension.

Next, using the mechanical analyses related to the AC (first) test stage and described

above, as well as one thermal analysis for each specimen, the total stress intensity factors

along the delamination front through the specimen width b as a function of x3, were

obtained and normalized by means of eq. (1.26) with L̂ = 100 µm. The values of K
(T )
m

are calculated by means of eq. (5.4). It may be noted that the in-plane stress intensity

factors K̂
(r)
1 and K̂

(r)
2 , related to the residual curing stresses, were found to be less than

1% of the total stress intensity factors K̂
(T )
1 and K̂

(T )
2 , respectively, within the range

0.875 ≤ x3/b ≤ 0.9125 which is negligible. The out-of-plane K
(r)
III value was found to be

approximately 10% of K
(T )
III . The resulting normalized stress intensity factors K̂

(T )
1 and

K̂
(T )
2 , as well as K

(T )
III are plotted as a function of the normalized specimen width x3/b

in Figs. 5.22a, 5.22b and 5.22c, respectively. It may be observed from these figures

that for all MMELS specimens tested the behavior obtained through the specimen width

is similar. The obtained in-plane stress intensity factors K̂
(T )
1 and K̂

(T )
2 in Figs. 5.22a

and 5.22b, respectively, are symmetric with respect to specimen mid-width (x3/b = 0.5),

whereas the out-of-plane stress intensity factor shown in Fig. 5.22c is anti-symmetric. The

change of K̂
(T )
1 along the specimen width is between approximately 0.4 and 1.9 MPa

√
m

which is apparent and should be noted. From Fig. 5.22b, it may be observed that except

for the value obtained at the outer specimen edges, K̂
(f)
2 is nearly constant throughout

the specimen width for all specimens. A difference of less than 1%, in absolute value,

was obtained within the range 0.3125 ≤ x3/b ≤ 0.6875 and less than 4%, in absolute
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(a) (b) (c)

Figure 5.23: Results for the AC (first) stage of the MMELS fracture tests as a function of
the normalized specimen width x3/b through the delamination front: (a) critical initiation
energy release rate Gic; (b) ψ̂ and (c) ϕ.

value, within 0.0375 ≤ x3/b ≤ 0.9625. The value of K
(T )
III ranges between approximately

-1.1 MPa
√
m ≥ K

(f)
III ≥ 1.1 MPa

√
m throughout each specimen width. Note that except

for the outer specimen edges, K
(f)
III is relatively small compared to the in-plane stress

intensity factors.

For the AC test stage, values of Gic, ψ̂ and ϕ were calculated through the width of

each specimen by means of eqs. (3.17), (3.19) and (3.20), respectively. The results are

plotted in Figs. 5.23a, 5.23b and 5.23c, respectively. It may be observed that through

the width of the specimen, the critical initial interface energy release Gic ranges between

328 N/m and 709 N/m for all specimens where the lowest, most conservative energy

release rate value, was obtained at the specimen outer edges and increased towards mid-

width. From Figs. 5.23b and 5.23c, it may be observed that the obtained ψ̂ values are

symmetric with respect to specimen mid-width (x3/b = 0.5), whereas the obtained ϕ

values are anti-symmetric. The obtained ψ̂ values range approximately between 0.5 rad

at mid-width to approximately 1.3 rad at the specimen outer edges. The values obtained

for the out-of-plane to in-plane phase angle ϕ range between approximately -0.7 rad to

0.7 rad.

Numerically integrated average values of Gic and ψ̂ through the width of each specimen

were calculated. The resulting values are presented in the second and third columns in

Table 5.36. In the last two rows of this table, average values and CVs for each parameter

are presented. Note that since ϕ is anti-symmetric through the specimen width, the

integrated average is zero, hence, it is not discussed here. It may be observed that the

ψ̂ value obtained for all specimens is approximately the same for L̂ = 100 µm with a

negligible difference between the different specimens. In addition, the greatest difference

in the numerically averaged values of Gic is about 9.8% with a range between 536.4 N/m

and 588.1 N/m.

An attempt was made to obtain the Gic values for each specimen from the AC stage

of the tests by means of the ECM, presented in Section 5.2. However, since the AC stage
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Table 5.36: Integrated average values of Gic and ψ̂ obtained from the AC (first) test stage
through the width of each MMELS specimen with P = PAC−VIS given in Table 5.29.

specimen no. Gic (N/m) ψ̂ (rad)

MMELS-1-9 535.5 0.63
MMELS-1-11 569.3 0.63
MMELS-1-12 536.4 0.62
MMELS-1-17 556.9 0.62
MMELS-1-8 588.1 0.62

average 557.2 0.62
CV (%) 0.80% 0.01%

is performed in order to create a natural crack with propagation between 2 and 5 mm,

only a small number of data points of the delamination length a, the load P and actuator

displacement d, were obtained visually to be used in eq. (5.9). It was concluded that

ECM is not suitable for MMELS AC tests.

In order to determine an R-curve for the specific in-plane mixed mode ratio tested

here, as described in Section 5.4.1, the energy release rate GiR values for the PC (second)

test stage were obtained as a function of the delamination extension ∆a by means of two

methods, namely, based on the mechanical and thermal M -integrals, as well as by means

of ECM.

With the M -integral approach for determination of the resistance energy release rate,

for each specimen, six mechanical FEAs were performed as described in Section 5.4.1 to

obtain six data sets of K
(f)
m (m = 1, 2, III ), each related to a specific value of a. From the

results, for each specimen, data points in the three-dimensional space (K
(f)
m , a, x3) were

obtained. An example of such data points obtained from the FEAs and theM -integral for

specimen MMELS-1-17 are presented as blue points in Fig. 5.24. Surfaces of the form given

in eq. (5.1) were fit through these data sets for m = 1, 2, III and the fitting parameters pi0

(mm)

N N N

(a) (b) (c)

(mm)

Figure 5.24: The relation between (K
(f)
m , a, x3) in eq. (5.1) with the coefficients pij in

Tables E.6 through E.8 for specimen MMELS-1-17 (a) m = 1 (b) m = 2 and (c) m = III .
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and pj1 (i = 0, 1, .., 5 and j = 0, 1, .., 4) were obtained. The resulting fitting parameters

for each specimen, related to K
(f)
1 , K

(f)
2 and K

(f)
III , are given in Tables E.6 through E.8,

respectively. In Fig. 5.24, an example of the surfaces presented in eq. (5.1) with the fitting

parameters related to specimen MMELS-1-17, are shown. To verify the values of K
(f)
m

calculated by means of eq. (5.1), the initial delamination length a0AC from Table 5.28

and the visual initiation load PVIS from Table 5.29 were substituted into the equation

to obtain K
(f)
m values through the specimen width. Relative differences (RDs) between

the obtained values and those obtained by means of the mechanical M -integral for the

FEAs related to the AC (first) test stage, were calculated. The LRDs, in absolute value,

obtained for K
(f)
m (m = 1, 2, III ) were approximately 3.5%, 3% and 3.2%, respectively.

In addition, from the thermal analysis for each specimen with a = 70 mm as described

earlier, one set of stress intensity factorsK
(r)
m (m = 1, 2, III ), resulting from residual curing

stresses, along the delamination front were obtained and a fourteenth order polynomial

curve fit of the form shown in eq. (5.3) was determined. The fifteen fitting parameters

bi found for each specimen, related to K
(r)
1 , K

(r)
2 and K

(r)
III are presented in Tables E.9

through E.11, respectively. Note that since the specimens were tested in a small range

of temperatures given in Table 5.27, the resulting fitting coefficients are similar for all

specimens for each stress intensity factor. To verify the values of K
(r)
m calculated by means

of eq. (5.3), relative differences (RDs) between the obtained values and those obtained

by means of the thermal M -integral for the FEAs related to the AC (first) test stage

were calculated. The LRDs, in absolute value, obtained for K
(r)
m (m = 1, 2, III ) were

approximately 0.8%, 0.5% and 0.5%, respectively.

Next, an expression for the in-plane mixed mode phase angle ψ̂ as a function of a and x3

was obtained. The expressions of K
(T )
m in eq. (5.4) were normalized by means of eq. (1.26).

These expressions were then substituted into eq. (3.19) to determine expressions for ψ̂.

The delamination length a, synchronized load P and actuator displacement d, presented

in the first through third columns in Tables E.1 through E.5, were substituted into the

obtained expressions. Then, a single value of ψ̂ was determined for each delamination

length a, for each specimen by means of numerical integration through the specimen

width b which was performed using Lobatto–Kronrod segmented quadrature (Shampine,

2008) in a MATLAB (2019) code. The obtained ψ̂ values are presented in the last column

in Tables E.1 through E.5, as well as plotted as a function of the delamination extension

∆a in Fig. 5.25. It may be observed that the in-plane mode mixity remains approximately

constant with a slight increase as the delamination extends. It varies between 0.656 rad

and 0.668 rad.

Note that in Table 5.36 the values of ψ̂ at ∆a = 0 were also calculated from the FEAs

related to the AC (first) test stage by means of numerical integration. It may be noted

that the values of ψ̂ at ∆a = 0 which are shown in Fig. 5.25 and were obtained based

on numerical integration in MATLAB (2019) are approximately 5% higher than those in
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Figure 5.25: Values of ψ̂ (L̂ = 100 µm) as a function of the delamination extension
∆a; these values were obtained by means of eq. (3.19) with the expressions in eq. (5.4)
normalized by eq. (1.26), integrated through the specimen width b with P and a taken
from Tables E.1 through E.5, for ∆a = 0, a0AC and PVIS from Tables 5.28 and 5.29.

Table 5.36. This difference is probably a result of the differences in the evaluated K
(f)
m

and K
(r)
m (m = 1, 2, III ) values from eqs. (5.1) and (5.3) versus those obtained by means

of the mechanical and thermal M -integrals, respectively, for the FEAs related to the AC

test stage. It was mentioned previously, that these differences could be as much as 3.5%.

Next, the resistance interface energy release rate GiR as a function of x3 was expressed

for each measured delamination length a by means of eq. (3.17) with use of the expres-

sions in eq. (5.4). These expressions were integrated analytically by MATLAB (2019)

with respect to x3, through the specimen width b, by means of eq. (5.5), to obtain the

average GiR value for each delamination length a. In addition, the critical initiation Gic

values related to ∆a = 0 were also determined by means of eq. (5.5) for the initiation

loads PAC−NL, PAC−VIS and PAC−max/5% in Table 5.29. The obtained Gic−NL,Gic−VIS and

Gic−5%/max values, respectively, are presented in columns two through four in Table 5.37.

The average values and CVs are presented for each parameter in the last two rows of this

table. The Gic−VIS values, related to PVIS in Table 5.37 were compared with the values of

Gic presented in Table 5.36 which were obtained from the FEAs related to the AC (first)

test stage. It was found that the obtained values in Table 5.37 and those in Table 5.36

differ by approximately 1%. This small difference validated the use of eq. (5.4) to approx-

imate the stress intensity factors. The obtained average GiR values for each delamination

length a are presented in the fifth column in Tables E.1 through E.5.

In addition, the resistance energy release rate values were obtained by means of the

ECM, as described in Section 5.4.1. For each test, the values of a, P and d in Tables E.1

through E.5, as well as the fitting parameter m from Table 5.30, were substituted into

eq. (5.9) to obtain GiR values as a function of the delamination extension ∆a. The obtained
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Table 5.37: Initial interface energy release rate Gic values related to the AC (first) test
stage with the NL, visual and 5%/max loads in Table 5.29

specimen no. Gic−NL Gic−VIS Gic−5%/max

(N/m) (N/m) (N/m)

MMELS-1-9 432.3 544.4 583.7
MMELS-1-11 382.2 578.8 626.3
MMELS-1-12 461.5 544.5 545.4
MMELS-1-17 415.5 571.8 581.2
MMELS-1-18 406.8 597.7 598.6

average 419.7 567.4 587.0
CV (%) 3.2 1.8 2.2

GiR values for each delamination length a are presented in the sixth column in Tables E.1

through E.5.

In Figs. 5.26a and 5.26b, the GiR values obtained based on the M -integral, as well as

based on the ECM, respectively, are plotted as points as a function of the delamination

extension ∆a. Note that the bar indicting the integrated average in eq. (5.5) is omitted.

Moreover, for each specimen, for both theM -integral, as well as for the ECM, for ∆a = 0,

the values of Gic from Table 5.36, related to PAC−V IS in Table 5.29 for a0AC , were used.

Recall that for specimen MMELS-1-18 the delamination extension ∆a was measured up

to ∆a = 15.6 mm. Hence, values of GiR were determined and plotted for this specimen

only up to this value.

A power law fit of the form given in eq. (5.6) between the initial critical interface energy

release rate Gic and the steady state value Giss for ∆a = ∆aiss , was used to determine two

R-curves. The initial interface fracture toughness Gic in both cases was calculated as the

(a) (b)

Figure 5.26: Fracture resistance curves: GiR versus ∆a = a− a0 obtained by means of (a)
M -integral and eq. (5.5) with eq. (5.4) and the fitting parameters in Tables E.6 through
E.11 and (b) ECM from eq. (5.9) with m from Table 5.30.
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Table 5.38: The parameters Gic and Giss , as well as A1 and B from the power law in
eq. (5.6) for the mixed mode I/II R-curves obtained by means of the M -integral with
eqs. (5.4), (5.5) and the fitting parameters in Tables E.6 through E.11 and by means of
the ECM in eq. (5.9) with m from Table 5.30. The RMSE are also presented.

method Gic (N/m) Giss (N/m) A1 (N/m·mmB) B RMSE (N/m)

M -integral 557.2 ±22.4 850.2 ±53.8 42.0 0.72 62.6
ECM – 762.3 ±42.5 27.8 0.74 60.2

average of the five Gic values found for each tested specimen by means of the M -integral.

This average value and standard deviation are presented the second column in Table 5.38.

Recall that the initial values used in the R-curve for ECM were those obtained by means

of the M -integral. Hence, for both methods, the initial values are the same. A steady

state energy release rate value Giss was reached at approximately ∆aiss = 15mm, as may

be observed in Figs. 5.26. This steady state energy release rate value was calculated as

the average of all GiR values obtained for ∆a ≥ ∆aiss for each method. The Giss values

obtained for each method are presented in the third column in Table 5.38. The standard

deviation of all GiR values obtained for ∆a ≥ ∆aiss for each method were added to or

subtracted from the average value and presented as dashed black lines in Figs. 5.26 .

The obtained values for these standard deviations are given in Table. 5.38. It may be

observed that the difference between the two Giss values is large. The RD between the

two Giss values was calculated using eq. (3.31) with (1) being the ECM result and (2) to

the M -integral. The RD was found to be -10.3% which implies that the results obtained

from the global and local analyses methods are not as similar as was found in the case

Figure 5.27: Comparison of the mixed mode resistance curves obtained by means of the
M -integral with eqs. (5.4), (5.5) and the fitting parameters in Tables E.6 through E.11
and by means of ECM in eq. (5.9) with m from Table 5.30.
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of the C-ELS or DCB tests. The fitting parameter A1 was obtained for each set of data

points, related to each method, in the same manner as described in Section 5.3.1. This

was determined by means of the GRG software of Excel (2016) with the parameter B

expressed by means of eq. (5.10). For a minimum value of the RMSE, the value of A1 was

determined. The obtained R-curves are shown as the black curves in Figs. 5.26.

In Fig. 5.27, the R-curves obtained by means of the two methods are plotted and

compared. The difference between the two curves is apparent. It may be clearly observed

that the ECM global approach resulted in more conservative energy release rate resistance

values than those obtained by means of the M -integral. In addition, a more moderate

increase until steady state was obtained from the ECM results. An opposite result was

observed for the DCB and C-ELS analyses in Figs. 5.4 and 5.14, respectively, where the

M -integral and J-integral, respectively, produced more conservative R-curves.
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Chapter 6

Summary, discussion and conclusions

This investigation focused on the fracture behavior of a multi-directional carbon fiber re-

inforced polymer (CFRP) composite which is commonly used in the aircraft industry. A

delamination, illustrated in Fig. 2.1, along an interface between a UD fabric upper ply with

fibers mainly oriented in the 0◦ or x1-direction and a lower plain balanced woven fabric

ply with tows oriented in the +45◦/ − 45◦ directions, was studied. The CFRP compos-

ite considered was manufactured as a wet-layup and composed of an EPR-L20/EPH-960

epoxy matrix with T300 carbon fibers. The UD upper ply also contained a small per-

centage of glass fibers. The investigation included analytical, numerical and experimental

work. A full mixed mode range for failure initiation was studied by testing and analyzing

Brazilian disk (BD) specimens. In addition, both initiation and propagation behavior of

the delamination using beam type specimens subjected to nearly mode I, nearly mode II

and mixed mode deformations was studied.

This section begins with a summary of the work presented in this thesis, followed

by the contribution of the work, as well as a discussion, the main conclusions and rec-

ommendations for future work. In Chapter 1, an introduction to the subjects in this

investigation was presented, beginning with a short introduction to fracture mechanics

for a linear elastic, homogeneous and isotropic material and for an interface between

two linear elastic, isotropic, homogeneous materials in Section 1.1. Methods for extract-

ing stress intensity factors for such materials were described in Section 1.2. First, in

Section 1.2.1, the displacement extrapolation (DE) method was introduced. Then, in Sec-

tions 1.2.2.1 and 1.2.2.2, two and three-dimensional mechanical and thermal M -integrals,

were presented, respectively.

Chapter 1 continues with a description of several fracture toughness test types from

the literature, presented in Section 1.3. This section begins with a review of the structural

differences between UD, MD and woven fabric composites presented in Section 1.3.1. Next,

modes I and II fracture toughness and resistance energy release rate tests were described

in Section 1.3.2. Among these are the mode I and mode II standardized test methods,

namely, the ASTM D 5528-13 (2014) standard and the ISO 15024:2001 (2001) standard
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for mode I and the ASTM-D7905 (2014) standard and ISO 15114:2014(E) (2014) standard

for mode II. All four standardized methods make use of beam type specimens which are

subjected to quasi-static loading in displacement control, resulting in stable delamination

growth as the displacement increases. It should be noted that all mode I and II standards

are limited to UD CFRPs and GFRPs which have a less complex structure than MD

composites which may consist of UD or woven fabric plies oriented in various directions.

In Section 1.3.3, several specimens which may be used for mixed mode fracture tests,

as well as examples of use of these specimens in the literature, were presented. A focus on

two beam type specimens and test configurations was made in Section 1.3.3.1, namely, the

MMB (ASTM D6671M-13, 2014) and MMELS specimens. Both the MMB and MMELS

specimens are appropriate for determining the mixed mode fracture toughness Gc, as well
as the mixed mode fracture resistance energy release rate GR as the delamination extends.

The MMB test is the only standardized mixed mode fracture test which enables various

mixed mode combinations. However, the setup of the test is cumbersome. The MMELS

specimen has been proposed for standardization by Technical Committee 4 (TC4) of

the European Structural Integrity Society (ESIS). This specimen enables testing of one

mixed mode combination with a relatively simple setup. In order to obtain additional

mixed mode ratios, the thickness of each arm in the specimen should be varied; thus,

a different plate is required for each mode mixity. The MMELS specimen was chosen

to be used in this investigation for testing approximately one mixed mode ratio averaged

through the specimen width. In Sections 1.3.3.2 and 1.3.3.3, the Arcan and BD specimens

which enable a wide range of mixed mode combinations using a simple test setup and

only one specimen type and fixture, were described, respectively. The delamination in

both specimens propagates in an unstable manner. In the current investigation, the BD

specimen was chosen to be used to obtain the initiation interface fracture toughness for a

wide range of mode mixities. In Section 1.3.3.3, the methodology and results, which were

obtained using this specimen in previous investigations, were summarized.

Chapter 2 begins with a description of the mechanical structure of the investigated

material and interface which is presented in Section 2.1. In addition, in this section,

the mechanical properties and CTEs of the materials comprising each ply were presented.

These properties were used with the High-Fidelity Generalized Method of Cells (HFGMC)

(Aboudi, 2004) to determine the effective mechanical properties and CTEs of the UD and

plain woven fabrics. In Sections 2.2 and 2.3, the first term of the asymptotic expansion of

the displacement and stress fields for the considered interface were derived based on the

Stroh (1958) and Lekhnitskii (1963) formalisms, as described by Ting (1996) and summa-

rized in Appendix A. The final expressions for the in-plane and out-of-plane displacement

and stress fields are presented in Section 2.3. These are a function of the complex in-plane

stress intensity factor K = K1+ iK2 and the out-of-plane stress intensity factor KIII . The

complex stress intensity factor is the amplitude of the oscillatory, square-root singularity
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and the mode III stress intensity factor is the amplitude of the square-root singular stress

components.

The analytical development is continued in Chapter 3 where the displacement extrapo-

lation (DE) method, as well as the conservative mechanical and thermalM -integrals were

extended to three dimensions for the current material symmetries. These derivations are

presented in Sections 3.1 and 3.2, respectively. Both methods were used to obtain stress

intensity factors resulting from applied loads, as well as from residual thermal curing

stresses. The numerical part of this investigation included programming the first term

of the asymptotic solution for the displacement component for the DE method and the

conservative, interaction energy M -integrals for mechanical and thermal loading. In Sec-

tion 3.3, three benchmark problems were solved in order to check and verify the results

of the derivations and software used in the current investigation.

The experimental part of the investigation included three types of fracture toughness

and resistance tests which were presented in Chapters 4 and 5. In Chapter 4, the Brazilian

disk (BD) specimen was used for mixed mode initiation fracture tests. In this chapter, the

test, analyses and obtained results were presented. First, in Section 4.1, the structure and

dimensions of the plate which was designed for the BD specimens, was described. Then,

the fiber volume fraction in each ply in the manufactured plate was used to determine the

properties of that ply based on the methodology in Section 2.1. The obtained mechanical

properties and CTEs of each ply were presented in Section 4.2. In Section 4.3, a protocol

for the BD tests was presented. The specimen and loading arrangement were illustrated in

Figs. 1.19 and 4.10, respectively. During each test, a load P was applied at an angle ω with

respect to the artificial delamination located between the investigated plies. Each loading

angle created a different mixed mode combination, so that approximately seven different

mode mixities were tested. Dimensions and results from the tests were presented in

Section 4.4. Both mechanical and thermal FEAs were performed for each tested specimen.

In Section 4.5, the FE model used was described. In addition, a convergence study was

performed and domain independence was examined. The results from these analyses

were used in conjunction with the post-processors for the DE method and M -integrals

to separate the stress intensity factors resulting from applied load K
(f)
m (m = 1, 2, III ),

as well as from residual curing thermal stresses K
(r)
m , respectively. The mechanical and

residual stress intensity factors were superposed to obtain the total stress intensity factors

K
(T )
m and used to calculate the critical initiation interface energy release rates Gic from

eq. (3.17), related to each tested specimen and mode mixity. In addition, the phase

angles ψ̂ and ϕ were calculated from eqs. (3.19) and (3.20). The results obtained from

the analyses were presented in Section 4.6. Employing the experimental and numerical

results obtained from the BD fracture tests, two and three-dimensional failure criteria

were generated as described in Section 4.7. In order to account for scatter in the results,

a statistical analysis with a 10% probability of unexpected failure and a 95% confidence

was performed.
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Two peer-reviewed articles were published related to this part of the investigation,

namely, Mega and Banks-Sills (2019) and Mega et al. (2019). The former included a

description of the BD tests, as well as the numerical analyses and obtained results. In

the latter article, the results obtained in Mega and Banks-Sills (2019) were compared

with BD test results of a different CFRP (Dolev, 2020) with a delamination along an

interface between an upper 0◦/90◦ and a lower +45◦/− 45◦ woven fabric. Two and three-

dimensional failure criteria were proposed for both materials based on the BD fracture

test results. Also, statistical analyses were performed and presented in the paper.

In Chapter 5, initiation and propagation properties based on nearly mode I, nearly

mode II and mixed mode fracture toughness and fracture resistance tests were determined.

For mode I, DCB tests were performed and described in Chocron and Banks-Sills (2019).

The results from that investigation were reanalyzed here using the experimental compli-

ance method (ECM). For the nearly mode II and mixed mode initiation and resistance

properties, C-ELS and MMELS fracture tests were performed, respectively, and analyzed.

First, in Section 5.1, a description of the plate which was designed, manufactured and used

for the DCB, C-ELS and MMELS tests, as well as the mechanical properties and CTEs

which were determined for each ply type, are presented. Next, in Section 5.2, results from

Chocron and Banks-Sills (2019) determined from mode I DCB tests were reanalyzed by

means of the ECM. The R-curve obtained by means of the global ECM was compared

with that obtained in Chocron and Banks-Sills (2019) by means of the M -integral local

approach.

Both Sections 5.3 and 5.4 are composed of four subsections. In Sections 5.3.1 and

5.4.1, the protocols which were used in this investigation for the C-ELS and MMELS frac-

ture tests, respectively, were presented. Both specimens and clamping arrangements are

illustrated in Figs.5.5 and 5.17, respectively. Both tests were carried out quasi-statically

in displacement control to provide stable delamination propagation. The AC (first) and

PC (second) test stages, related to the artificial delamination and to the natural precrack,

respectively, were described in the protocols. Also, the analysis methods which were used

for each test stage were detailed. In Section 5.3.2 results from the calibration test, as

well as from the C-ELS fracture tests were presented. Results from the MMELS fracture

tests were discussed in Section 5.4.2. Among the results were the specimen dimensions,

load-displacement curves, as well as initial loads and displacements before the artificial

or precrack delamination propagated. In addition, values of the delamination length and

corresponding load and displacement obtained from the images captured during propaga-

tion are presented in those sections. Based on the data obtained from the tests, fitting

parameters relating the compliance and the delamination length were determined.

Next, mechanical and thermal FEAs were performed. In Sections 5.3.3 and 5.4.3, mesh

convergence and domain independence were examined for the two-dimensional mechanical

C-ELS FEAs, as well as for the three-dimensional mechanical and thermal MMELS FEAs.
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In Section 5.4.3, the results from the thermal analysis as a function of the delamination

length were also examined. Finally, in Sections 5.3.4 and 5.4.4, the experimental and

numerical results obtained were employed to determine the fracture resistance GiR-curves

for nearly mode II and for one mixed mode I/II deformation ratio. The GiR-curves were

generated by means of a localM -integral approach, as well as by means of the global ECM

and included determination of the initiation Gic and steady state propagation Giss values.

The GiR-curves obtained using both methods were compared for each tested specimen. In

addition, in these sections, the phase angles ψ̂ and ϕ were calculated. The integrated

through the width in-plane phase angle ψ̂ was presented as a function of the delamination

extension with minor changes observed as the delamination extended. The R-curves

found may be used to account for the fracture resistance energy release rate required

for propagation and to assist in improving the design and safety of a structure made of

this laminate with this interface. Two peer-review articles are currently in preparation,

discussing the foundations of this part of the investigation.

The scientific contribution of this research includes three main aspects. First, since

most investigations related to delaminations in composite laminates focus on a delamina-

tion along an interface between two UD plies oriented in one or in different directions,

the type of interface studied here is not commonly investigated where the two plies are

completely different from one another both in structure and properties. Second, use of

several experimental methods for different mode mixities was made. The BD specimen

enabled various mode mixities, however since propagation is unstable, only critical ini-

tiation energy release rate values were obtained as a function of approximately thirteen

differen mixed mode ratios. On the other hand, the beam type specimens, namely, the

DCB, C-ELS and MMELS specimens are each limited to a specific fracture mode, namely,

nearly mode I, nearly mode II and one mixed mode ratio, respectively. However, with

these test set-ups, delamination propagation is generally stable. For each of these three

fracture modes, an R-curve showing the energy release rate as a function of the delam-

ination extension was obtained. It may be concluded that in order to determine both

initiation and propagation behavior under various mode mixities, both BD and beam

specimens are required. The third aspect of this work is based on the use and comparison

of various local analyses methods, as well as the global ECM to determine critical initi-

ation and propagation energy release rate values as a function of the mode mixity. The

local methods used in this investigation were the three-dimensional M -integral, as well as

the two-dimensional J-integral and VCCT all verified by means of the DE method.

The analytical and numerical tools developed and used here may be used for additional

MD laminate composites with an interface between an upper transversely isotropic and

a lower tetragonal ply. In order to determine critical initiation and propagation energy

release rate values, three-dimensional analyses were performed for the BD, DCB and

MMELS specimens in conjunction with the M -integral and DE method. For the C-ELS

specimens, two-dimensional FEAs were performed and use of the J-integral, VCCT and

209



DE method was made. Both the M -integral and VCCT are known to be more accurate

than the DE method. It may be shown that if three-dimensional VCCT was used instead

of the M -integral, the differences between the results would have been negligible. For

additional material pairs analytical and numerical adaptations are required. However, it

should be noted that less analytical development, as well as fewer numerical adaptations

are needed for the VCCT (Farkash, 2020). Although the three-dimensional M -integral

was employed here to determine the values of the partitioned stress intensity factors, in

future investigations use of VCCT for two or three-dimensional FEAs is recommended.

Moreover, it should be pointed out that for another material pair, the methodology used

here may be applied. Once the analytical developments and numerical tools are prepared,

much experimental and numerical work are required. Finally, results obtained by means

of the local and global methods are compared and conclusions are made in the sequel.

For an interface between two plies which are the same in structure and properties, the

partitioning modes are distinct. However, for a delamination along an interface between

two dissimilar plies, as in the case studied here, coupling of the fracture modes occurs

and an oscillatory parameter ε is used to describe the oscillations of the displacement and

stress fields near the delamination front. Hence, the mode partitioning becomes more

complicated. Note that for a smaller oscillatory parameter the effect is less. In this

study ε = 0.02257 which is not negligible. Moreover, in order to investigate a delami-

nation between two dissimilar plies, as was done in this investigation, the layup of the

upper and lower arms in the beam type specimens is different, resulting in different thick-

nesses, flexural moduli, as well as effective mechanical properties of each arm. For such

a case, the standard data reduction techniques presented in the ASTM D5528-13, ISO

15024:2001(E), ASTM D7905/D7905M-14, ISO 15114:2014(E), and ASTM D6671M-13

standards for DCB, ENF, C-ELS and MMB specimens, respectively, which are used to

determine the partitioned critical initiation and propagation energy release rate values,

are not applicable.

That being said, in the literature in some studies (Gong et al., 2019; Rzeczkowski,

2020), beam specimens which include MD interfaces were tested using DCB, ENF and

MMB specimens under nearly mode I, nearly mode II and mixed mode deformations,

and analyzed by means of standard global reduction techniques. It may be interesting to

reanalyze the data from those investigations by means of local methods such as the M -

integral or VCCT to compare and verify the results. In de Morais et al., 2002, de Morais

and Pereira, 2007, Pereira and de Morais, 2008, Gong et al., 2010, the partitioned energy

release rate values were determined by means of the standard global methods, as well as

with VCCT, and compared. In all cases, good correlation in the results was achieved.

However, it shall be noted that in the cases treated, the layup of the specimen arms had

the same thickness and flexural modulus. However, in the case studied here, this was not

achieved. Moreover, when an MD interface is considered, the partitioned energy release

rate values oscillate as a function of the distance from the delamination front. Hence,
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Figure 6.1: Two-dimensional in-plane critical initiation interface energy release rate Gic

values from the BD specimen tests, as well as from the DCB, C-ELS and MMELS tests,
obtained based on eq. (3.17) and plotted as a function of ψ̂ with L̂ = 100 µm. The two-
dimensional five branch criterion in the (Gic, ψ̂)-plane with L̂ = 100 µm obtained using
eq. (4.30) substituted into eq. (4.19) and then into eq. (4.18) based on the data from the
BD tests is plotted in black and the statistical curve in dashed black. The B-K failure
curve given in eq. (6.2) (η = 0.83) was generated based on the beam type specimen results
and plotted in red.

there is some doubt regarding the results obtained by VCCT, since these may change

as a function of the mesh used in the calculation. In the current investigation, instead

of obtaining the partitioned energy release rate values, the partitioned stress intensity

factors were determined by means of the M -integral or VCCT (Farkash and Banks-Sills,

2017), and used to calculate the phase angles which describe the mode mixity of each

tested specimen.

Fracture toughness initiation values obtained using the BD and beam type specimens

are compared in Fig. 6.1. This figure is the same as Fig. 4.27b with the two-dimensional

five-branch criterion in the (Gic, ψ̂)-plane shown as the black curve. Recall that this

criterion was generated based on the BD test results using eq. (4.30) substituted into

eq. (4.19) and then into eq. (4.18). For eq. (4.30), the parameters K̂
(N)
2c , K̂

(P )
2c , β(N), β(P ),

K̂1c, I and β(S) may be found in Tables 4.22 through 4.24. The dashed black curve in

Fig. 6.1 is the statistical two-dimensional five-branch criterion obtained by means of the

same equations as the deterministic criterion, but with the parameters for eq. (4.30) in

Tables 4.27 through 4.29. Also in Fig. 6.1, the critical initiation interface energy release

rate data of Gic through the delamination front are plotted. These values were obtained

for the BD specimens using eq. (3.17) with KIII = 0.

The critical initiation interface energy release rate values Gic obtained for the beam

type specimens are also plotted in Fig. 6.1 as a function of the mixed mode phase angle
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ψ̂ with L̂ = 100 µm. These are shown in red. It may be observed from Fig. 6.1 that the

data points GIc, obtained based on the DCB tests for all specimens, are higher than those

obtained from the ’5-branch’ criterion for ψ̂ = 0. As mode II becomes dominant, namely

as ψ̂ increases, the difference between the GIIc and Gic values obtained from the C-ELS

and MMELS specimens, respectively, versus those from the ’5-branch’ criterion decreases.

The plotted values for the DCB specimen were obtained in Chocron and Banks-Sills

(2019) by means of eq. (5.5), where Gic(a, x3) ≈ GIc(a0, x3) was calculated from eq. (3.17)

with eq. (5.4) for ψ̂ = 0. The average GIc value was found to be 357.9 N/m. For the

BD specimens G1c = 114.4 N/m as found from the ’5-branch’ criterion using eqs. (4.19)

and (4.30)2 with ψ̂ = 0 and L̂ = 100 µm. The difference between the fracture toughness

obtained by means of the DCB specimens verses those obtained with the BD specimens

may be a result of the thickness difference between the two specimens, namely 2h in

Fig. 1.11 for the DCB specimens verses H = HT +HB in Fig. 4.12 for the BD specimens.

The thickness is defined here as 2h for all specimens. Recall that the composite strip

of the BD specimens was composed of 69 plies resulting in a thickness of approximately

17 mm; whereas, the DCB specimens were composed of only 19 plies with a thickness

of approximately 5 mm. Some previous experimental results in the literature (Prel et

al., 1989; Davies et al., 1992; Hojo and Aoki, 1993) showed that there is no effect of the

specimen thickness on the fracture toughness at initiation. Note that these investigations

focused on UD CFRPs. In those investigations, the results were obtained by means of

the experimental compliance calibration method or using modified beam theory, both de-

scribed in the ASTM D5528-13 (2014) standard. In more recent publications (Kravchenko

et al., 2017; Dolev, 2020), a clear relation between the specimen nominal thickness and

the initiation energy release rate values was observed.

In Kravchenko et al. (2019), a clear effect of the DCB specimen thickness on the

fracture toughness at initiation was shown. It was observed in that study that higher

fracture toughness values are expected for thinner specimens. Tests were performed on

UD CFRP DCB specimens with various thicknesses of 2.03 mm, 4.05 mm, 6.1 mm and

8.2 mm with five specimens in each group. The obtained GIc values were found to decrease

as the thickness increased with a maximum value of GIc = 286 N/m for the thinnest

specimen and a minimum value of 193 N/m for the thickest one. These results were

obtained by means of beam theory and are presented in Table 6.1. Note that in the table,

the GIc value for 2h = 16 mm was determined from extrapolation of the values obtained

in Kravchenko et al. (2019). In Dolev (2020), DCB and BD specimens with a nominal

thickness of approximately 5 mm and 16 mm, respectively, were tested. The results are

presented in Table 6.1. In addition, in Simon et al (2017), DCB tests were performed for

specimens made from the same composite material and interface tested in Dolev (2020)

but with a nominal thickness of 3.7 mm. It may be observed from the results in Table 6.1

that as the thickness of the specimens increase the GIc values decrease.
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Table 6.1: Values of GIc as a function of the specimen thicknesses 2h as obtained for a UD
CFRP from Kravchenko et al. (2019), for a delamination along a +45◦/ − 45◦//0◦/90◦

interface from Dolev(2020) and Simon et al. (2017), as well as for a delamination along
a 0◦//+ 45◦/− 45◦ interface investigated here from Chocron and Banks-Sills (2019) and
Section 4.

2h (mm) GIc (N/m)

Kravchenko et al. (2017)

2.0 277
4.1 233
6.1 184
8.2 192
16.0 61

Chocron and Banks-Sills (2019) 5.0 358
Chapter 4 17.1 114

Simon et al (2017) 3.7 508

Dolev (2020)
5.0 376
15.6 210

The results in Table 6.1 are also plotted in Fig. 6.2. It may be observed that the behav-

ior of the three material systems examined is rather similar with a trend of decreasing GIc

values as the specimen thickness increases. A physical explanation for this phenomena is

that the thickness of the DCB specimen bounds the process zone, producing a structural

constraint. It was shown in Kravchenko et al. (2019) that the K-dominant zone is of

the same order of magnitude as the fracture process zone reported in the literature for

Figure 6.2: Values of GIc plotted as a function of the specimen thicknesses 2h for three
different material systems obtained from Kravchenko et al. (2019) for a UD composite,
from Dolev(2020) and Simon et al. (2017) for a woven prepreg, and from Chocron and
Banks-Sills (2019) and Section 4 here for the material composite and interface investigated
here.

213



Table 6.2: Nearly mode II energy release rate Gic ≈ GIIc values obtained for the C-ELS and
BD specimens by means of the J-integral (Abaqus, 2017), BT method (Williams, 1988),
as well as the statistical and deterministic ’5 branch’ criteria in eq. (4.30)1 substituted
into eq. (4.19) and then into eq. (4.18), for ψ̂ = 1.45 rad and L̂ = 100 µm.

method of calculation specimen type Gic

J-integral (Abaqus, 2017) C-ELS 843.1
5 branch statistical criterion BD 853.7

5 branch deterministic criterion BD 1063.1
BT (Williams, 1988) C-ELS 1031.7

brittle thermosets and thermoplastics. Based on the results presented here, as well as

those shown in Kravchenko et al. (2019) and Dolev (2020), it may be concluded that for

dominant mode I deformation, thick specimens are required to determine failure criteria

for the design of thicker structures.

For the C-ELS specimens, the plotted Gic ≈ GIIc values, as well as the in-plane phase

angle ψ̂ were obtained based on results from two-dimensional FEAs of the AC (first) test

stage with PVIS from Table 5.9. The displacement and stress fields from the FEAs were

used with the VCCT (Farkash and Banks-Sills, 2016) to determine stress intensity factors

which were substituted into eq. (3.19) to calculate ψ̂. In addition, values of GIIC were

obtained by means of the J-integral of Abaqus (2017). The obtained values are plotted in

Fig. 6.1 and were given explicitly in Table 5.22. The average values from all C-ELS tests

were found to be ψ̂ = 1.45 rad and GIIc = 843.1 N/m. It may be observed in Fig. 6.1 that

most of the obtained GIIc values for the C-ELS specimens are lower than those obtained

for the BD specimens tested with ω ≈ −13◦.

In the second row of Table 6.2, the average GIIc value obtained by means of the J-

integral of Abaqus (2017) for the C-ELS specimens is presented. In the third and fourth

rows of that table, the statistical and deterministic Gic values, respectively, determined by

means of the BD ’5-branch’ statistical and deterministic criteria in eq. (4.30)1 substituted

into eq. (4.19) and then into eq. (4.18), for ψ̂ = 1.45 rad, are shown. It may be observed

that the statistical value related to the BD specimens is close to that obtained with

the J-integral for the C-ELS specimens. The difference between the two values is 1.3%

with respect the J-integral of Abaqus (2017). Note that the average value obtained by

means of the J-integral is a bit lower. Perhaps lower values were obtained for the C-

ELS tests since two-dimensional FEAs were performed; hence, the GIIc values which were

obtained by means of the J-integral of Abaqus (2017) produced a lower value for Gic

with K̂2 dominant. Moreover, in the two-dimensional analyses performed for the C-ELS

specimens, effective material was used for the alternating +45◦/− 45◦ and 0◦/90◦ woven

plies in the upper and lower parts of the modeled specimen, as shown in Fig. 5.10. It

should be noted that use of this effective material in the model results in slightly more

conservative J values than would have been obtained for a model with every ply modeled
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separately. It might be interesting to reexamine the C-ELS specimens in the future by

means of three-dimensional FEAs with all plies modeled and compare the resulting energy

release rate values with those obtained by means of the two-dimensional FEAs carried

out here.

In Mega and Banks-Sills (2020), the critical initiation energy release rate values related

to the C-ELS specimens were analyzed by means of an additional global method based on

beam theory (BT), as described in Williams (1988). The solution used takes into account

the different thicknesses of the specimen arms, neglecting the differences in the flexural

modulus of each arm. Since an interface between two dissimilar materials is studied, it

should be noted that the influence of these parameters may not be negligible and may

substantially affect the results. However, since a delamination along an interface between

two dissimilar plies is considered, the global methods, namely, simple beam theory (SBT)

and corrected beam theory using an effective crack length (CBTE), presented in the ISO

Standard 15114:2014(E), are not applicable. Moreover, since insufficient data points are

obtained from the NPC (first) test stage, it was not possible to determine GIIc by means

of ECM. Hence, calculation was made with the BT method (Williams, 1988) with a

possibility of an error as a result of the different flexure moduli which were not accounted

for in the calculation.

In the fifth row in Table 6.2, the average GIIc value obtained by means of the BT

method (Williams, 1988) is presented. It may be observed that for the C-ELS specimens

the BT method provided a substantially higher GIIc value with respect to that obtained by

means of the J-integral or by means of the statistical BD ’5-branch’ criterion in eq. (4.30)1

substituted into eq. (4.19) and then into eq. (4.18), for ψ̂ = 1.45 rad, shown in the second

and third rows of Table 6.2. The difference between the results obtained with the J-

integral and the BT method is approximately 18% with respect to the BT method. It

may also be observed that the Gic value determined using the deterministic BD ’5-branch’

criterion in eq. (4.30)1 substituted into eq. (4.19) and then into eq. (4.18), for ψ̂ = 1.45 rad,

was found to be relatively close to the result obtained by means of the BT method, with

only 3% difference with respect to the ’5-branch’ deterministic criterion. It may be noted

that it was previously shown in Blackman et al. (2012), for a UD material, that the BT

method results in an upper bound for the energy release rate value. The results here may

confirm that indeed an upper bound was obtained by means of this global method.

From the comparison shown here for the energy release rate values obtained from the

C-ELS specimens versus the data from the BD specimens, as well as the value obtained

from the ’5-branch’ deterministic criterion, it may be observed that for dominant K2, the

thickness of the specimens did not seem to influence Gic. The individual Gic values which
were calculated by means of the J-integral for each C-ELS specimen were found to be

generally in the range between the statistical and the deterministic criteria values given

in Table 6.2, which are based upon the BD test results.
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For the MMELS specimens, the Gic and ψ̂ values, plotted in Fig. 6.1, were determined

from an integrated average of the form in eq. (5.5), through the specimen width b. The

integrated expressions for Gic(a0AC , x3) and ψ̂(a0AC , x3) were determined from eqs. (3.17)

and (3.19), respectively, with K̂
(T )
m (m = 1, 2, III ) obtained from eq. (5.4) for a0AC and

PVIS in Tables 5.28 and 5.29, respectively. The resulting Gic values were presented explic-

itly in Table 5.37 and are plotted in Fig. 6.1 versus the obtained ψ̂ values. The values

of ψ̂ at ∆a = 0 were also plotted in Fig. 5.25. The integrated average Gic and ψ̂ values

which were obtained for all MMELS tests were averaged and found to be Gic = 567.4 N/m

and ψ̂ = 0.67 rad. This ψ̂ value is approximately equivalent to the average mode mixity

through the thickness of the BD specimens tested with ω ≈ −2◦. The Gic value obtained

from the ’5-branch’ criterion in in eq. (4.30)1 substituted into eq. (4.19) and then into

eq. (4.18), for ψ̂ = 0.67 rad with L̂ = 100 µm, was found to be 406.0 N/m which is

lower than that obtained by means of the MMELS specimens. In addition, it may be

observed that the individual Gic values determined from the MMELS tests and plotted in

Fig. 6.1 are slightly higher than the majority of those obtained from the BD specimens

for ω ≈ −2◦, yet the results are within the scatter of the data. This difference is more

apparent since twenty data points through the width of each BD specimen were plotted in

Fig. 6.1, whereas for the MMELS tests only the integrated average through the width of

the specimen is shown. Recall that the change in Gic as a function of the specimen width

b, presented in Fig. 5.23a, was substantial. In that figure lower Gic values were obtained

near the outer specimen edges.

Although when averaged through the width b, ψ̂ ≈ 0.67 rad for all specimens for

∆a = 0, a great change in the value of ψ̂ may be observed in Fig. 5.23b near the specimen

outer edges. Through the width of each specimen, ψ̂ ranges between about 0.5 rad at mid-

width to about 1.3 rad at the outer edges. However, between 0.2 ≤ x3/b ≤ 0.8, the value of

ψ̂ changes by less than 6% ranging between 0.56 rad and 0.61 rad. Based on the calculated

ψ̂ values between 0.2 ≤ x3/b ≤ 0.8 it may be concluded that 0.6K̂1 < K̂2 < 0.7K̂1; hence,

K̂1 is slightly larger than K̂2 through most of the specimen width. Since the in-plane

mixed mode ratio is found to be mostly K̂1 dominant, perhaps, the explanation for the

lower values obtained from the BD specimens versus those obtained from the MMELS

tests is similar to that shown in the case of the DCB specimens for nearly mode I tests

and related to the specimen thicknesses. Additional factors may be at work, as well. In

addition, it may be observed from Fig. 5.23c that the out-of-plane to in-plane deformation,

described with the phase angle ϕ, increases when approaching the specimen edges. This

increase may be related to Poisson’s ratio, as is the case of an interface between two

homogeneous materials. Since the increase of both ψ̂ and ϕ is most dominant near the

specimen edges, it appears that the in-plane shear deformation is influenced by the out-

of-plane shear deformation.

An empirical criterion proposed in Benzeggagh and Kenane (1996) and given in

eqs. (4.10) and (4.11) was used for the beam type specimens. In eqs. (4.10) and (4.11),
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the criterion relates the total critical energy release rate GTc to the mode mixity GII/GT .
In order to plot the criterion as a function of ψ̂ instead of GII/GT it is assumed here that

tan2ψ̂ =
GII

GI

. (6.1)

With this relation, the B-K criterion from eq. (4.10) may be written as

Gic = GIc + (GIIc − GIc)

(
tan2ψ̂

1 + tan2ψ̂

)η

(6.2)

where η is a fitting parameter which is determined empirically based on experimental data.

Note that the parameter GTc in eq. (4.10) has been replaced with Gic in eq. (6.2) where i

represents interface. The criterion in eq. (6.2) was employed here with the data obtained

by means of the beam type specimens. The values GIc = 357.9 N/m and GIIc = 843.1 N/m

were obtained as the average energy release rate values of all DCB and C-ELS specimens

tested, respectively. By means of the nonlinear Generalized Reduced Gradient (GRG)

method in Excel (2016), the best fit of eq. (6.2) to the data related to the beam type

specimens was found using a minimum value for the root mean square error (RMSE).

The value for η was determined to be 0.83. The resulting B-K-criterion is plotted as the

red curve in Fig. 6.1. It may be observed that for 0 ≤ ψ̂ ≤ 0.93, the B-K criterion is

less conservative than the ’5 branch’ deterministic criterion related to the BD specimens.

For ψ̂ = 0.93, Gic = 692.3 N/m for both the B-K and the deterministic criterion. From

that point, as ψ̂ increases, the B-K criterion becomes more conservative, whereas the

energy release rate values obtained from the ’5 branch’ deterministic and statistical criteria

increase rapidly.

It may be concluded that the initiation fracture toughness values obtained in the

current investigation using the BD specimens, as well as by means of the deterministic ’5-

branch’ criterion are more conservative for K̂2 ≤ 1.34K̂1 obtained for ψ̂ ≤ 0.93 rad. This

was observed in Fig. 6.1 for nearly mode I fracture toughness test results obtained using the

DCB specimens, as well as for the mixed mode MMELS test results for the specific mode

mixity tested. In addition, it was found that the critical interface initiation energy release

rate values obtained by means of the C-ELS specimens, as well as the values calculated

by means of the B-K criterion for ψ̂ ≥ 0.93, were generally more conservative than those

determined using the BD specimens or by means of the deterministic ’5 branch’ failure

criterion. Moreover, it was observed that the critical initiation Gic value is dependent on

specimen thickness for the case of dominant K̂1. It appears that when K̂2 is dominant,

this dependence is not apparent.

The resistance energy release rate GiR values were determined for each tested beam

type specimen by means of two methods, the local M or J- integral approach and the

global ECM. The data obtained for the DCB, MMELS and C-ELS tested specimens were

plotted versus ∆a. It was observed that GiR increased as the delamination extended until

217



reaching steady state. Since the investigated interface consisted of an upper UD fabric

and a lower plain weave, the combination of both plies results in a complex fracture

mechanism which includes fiber bridging, matrix cracking, delamination bifurcation, etc.

As a result of the combination of these common failure mechanisms, a rise in the GiR

values was obtained as the delamination advanced. A power-law of the form in eq. (5.6)

was fit to the rising portion of the data. For the C-ELS and MMELS tests, steady state

was reached at approximately ∆a = 15 mm. For the DCB specimens, steady state was

obtained at approximately ∆a = 30 mm. As steady state was reached, the energy required

for extension remained constant as the delamination propagated.

In Dolev (2020), DCB, C-ELS, MMELS and BD tests were carried out for another

material system. In that study, the investigated material tested was manufactured from

a prepreg and consisted of a delamination along the interface between an upper 0◦/90◦

and a lower +45◦/ − 45◦ woven fabric. A rising R-curve, similar to that observed here,

was also obtained in that study. For the DCB and MMELS specimens, steady state was

reached at ∆a ≈ 13 mm and for the C-ELS test at ∆a ≈ 8 mm. Moreover, in Dolev

(2020), the rising portion of the C-ELS tests was found to be approximately linear. In

Gong et al. (2017) a linear rise in GiR was also observed for nearly mode I, nearly mode

II and mixed mode tests which were performed using DCB, ENF and MMB specimens

for an MD laminate composite with a delamination along a +45◦//− 45◦ interface. The

rising portion in Gong et al. (2017) reached steady state in the case of the DCB specimen

at ∆a ≈ 25 mm. For the ENF and MMB tests, data for only 12 mm and 13 mm of

propagation was obtained from the tests and steady state was not yet reached.

A comparison of the resulting curves obtained by means of the M or J- integrals and

those obtained using the ECM is presented in Figs. 5.4, 5.14 and 5.26 for nearly mode

I, nearly mode II and approximately one integrated through the specimen width mixed

mode ratio I/II, respectively. It may be observed that the steady state energy release

rate value obtained by means of the localM or J-integral approach versus those obtained

from the global ECM differ by approximately 7% to 10% in absolute value. Although the

analyses made with ECM are simpler and faster to perform, since the local M -integral

includes FE models which account for the different stiffness of each specimen arm, as well

as modeling of the investigated interface, the results obtained by means of this method

appear to be more reliable. From this comparison, it may be observed that for the DCB

and C-ELS tests a more conservative curve was determined by means of the local M

and J-integral approach with respect to the resulting curve obtained by means of the

ECM; whereas for the MMELS tests, the ECM produced more conservative values. This

difference may be related to the coupling between the normal and shear forces, as well as

the coupling between the bending and twisting moments with respect to the mid-plane

of the specimen, as well as to the mid-plane of each specimen arm which are not fully

accounted for using the global ECM.
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This investigation may be continued and extended in several directions. First, scanning

electron microscopy (SEM) micrographs of the fracture surfaces of both the UD and woven

plies should be performed for the BD and beam type specimens. Such SEM results may

provide additional information regarding the fracture mode and failure mechanisms which

occurred during initiation and propagation of each test. In addition, use of X-ray micro-

computed tomography, or micro-CT, which is a non-destructive technique (NDT) used

to investigate the internal structure of a sample, may be used for the BD and beam

type specimens. Such scans may provide highly accurate three-dimensional inspections of

fiber architectures, as well as manufacturing defects. These may be examined to better

understand the failure mechanisms related to each mode. It would also be interesting

to analyze the C-ELS tests in three dimensions with each ply modeled separately and

compare the results to those obtained here for two dimensions. Next, criteria of the form

used for the BD specimens, given in eq. (4.43), should be employed with the data from

the beam type specimens for both initiation and steady state energy release rate values.

By doing so, initiation and steady state criteria for thin structures would be determined.

It may also be interesting to perform additional DCB, C-ELS and MMELS tests from a

new laminate plate with a larger thickness than that tested here. The results may be used

to examine the phenomena shown here, as well as in Dolev (2020) and in Kravchenko et

al. (2019), that the laminate thickness influences the initiation interface energy release

rate under mode I dominant deformations. Moreover, using these results, the influence

of laminate thickness on the steady state energy release rate could be examined. Results

from such additional tests may also be used to test the B-K criteria which was employed

here, as well as additional criteria in the form of the criterion in eq. (4.43). Moreover, by

changing the thickness ratio of the MMELS specimen arms or by using the MMB test

setup, several mode mixities may be tested. Results from these tests may verify prediction

of the mixed mode criteria presented here.

Finally, fatigue delamination propagation tests using the C-ELS and MMELS speci-

mens for nearly pure mode II and mixed mode deformation, respectively, for the material

and interface investigated here should be carried out. Recall that such tests were per-

formed for nearly mode I in Chocron and Banks-Sills (2019). The results from these tests

may be used to evaluate the delamination growth rate and propagation parameters for

the different deformation modes, as well as to generate a master curve for delamination

growth rate versus a function of the energy release rate.
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Appendix A

The Lekhnitskii and Stroh
formalisms

A.1 The Lekhnitskii formalism

Following Ting (1996), the Lekhnitskii (1963) formalism for plane deformation of

anisotropic elastic materials is in terms of the reduced elastic compliances. It begins

with the assumption that the stresses are independent of x3, namely

σij = σij(x1, x2). (A.1)

With the stresses independent of x3, the equilibrium equations reduce to

σi1,1 + σi2,2 = 0, i = 1, 2, 3. (A.2)

The form of eq. (A.2) in conjunction with stress symmetry, enables the use of the Airy

stress functions, χ and ψ, respectively. These functions are related to the stress compo-

nents by

σ11 = χ,22 , σ22 = χ,11 , σ12 = −χ,12 ,

σ32 = −ψ,1 , σ31 = ψ,2 . (A.3)

When the stress components are represented as in eq. (A.3) in terms of χ and ψ, the

equations of equilibrium (A.2) are automatically satisfied.

Following the assumption that the stresses are independent of x3, the strains also

depend on only x1 and x2 and the displacements should be linear with respect to x3. For

such a case, the strains may be formulated as

ε11 = u1,1, ε22 = u2,2, ε33 = Ax1 +Bx2 + C,

2ε23 = u3,2 + ωx1, 2ε13 = u3,1 − ωx2 2ε12 = u1,2 + u2,1, (A.4)

where u1, u2 and u3 are the displacement components that solely depend on x1 and x2; the

parameters A, B, C are constants and ω is a constant which represents the deformation
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related to torsion about the x3-axis. It may be noted that A, B, C and ω are taken to

be zero so that the displacement field is independent of x3. The related compatibility

equations are given as

ε13,2 − ε23,1 = 0,

ε11,22 + ε22,11 − 2ε12,12 = 0. (A.5)

The stress-strain relations in contracted notation are given by

εα = Sαβσβ, α, β = 1...6, (A.6)

where, εα and σα are the contracted strain and stress components, and Sαβ are the elastic

compliance components. The stress-strain relations may be written with reduced elastic

compliance components as

εα = S ′
αβσβ +

Sα3
S33

ε3 (A.7)

where

S ′
αβ = Sαβ −

Sα3 S3β

S33

. (A.8)

It is clear that S ′
αβ is symmetric and that

S ′
α3 = S ′

3α = 0 (α = 1, 2, ..., 6). (A.9)

With eq. (A.9), the reduced compliance matrix S′ is reduced to a 5× 5 matrix.

Substitution of eqs. (A.3) into eq. (A.7) leads to a formulation for the strains in terms

of χ and ψ as

εα = S ′
α1χ,22+S

′
α2χ,11−S ′

α4ψ,1+S
′
α5ψ,2−S ′

α6χ,12+
Sα3
S33

ε3. (A.10)

Insertion of (A.10) into the compatibility conditions (A.5) produces a set of differential

equations (Ting, 1996, p. 121) which may be manipulated to obtain a sixth order differ-

ential equation, namely

(L2L4 − L3L3)χ = 0, (A.11)

where the operators L2, L3, and L4 are

L2 = S ′
55

∂2

∂x22
− 2S ′

45

∂2

∂x2∂x1
+ S ′

44

∂2

∂x21
,

L3 = S ′
15

∂3

∂x32
− (S ′

14 + S ′
56)

∂3

∂x22∂x1
+ (S ′

25 + S ′
46)

∂3

∂x2∂x21
− S ′

24

∂3

∂x31
,

L4 = S ′
11

∂4

∂x42
− 2S ′

16

∂4

∂x32∂x1
+ (2S ′

12 + S ′
66)

∂4

∂x22∂x
2
1

− 2S ′
26

∂4

∂x2∂x31
+ S ′

22

∂4

∂x41
.

(A.12)

A general solution of the form

χ(x1, x2) = F (z), (A.13)

is assumed where

z = x1 + px2, (A.14)
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and p is a complex constant. Substitution of eq. (A.13) into eq. (A.11) leads to a sextic

equation in p, namely

l2(p)l4(p)− l3(p)l3(p) = 0, (A.15)

where,

l2(p) = S ′
55p

2 − 2S ′
45p+ S ′

44,

l3(p) = S ′
15p

3 − (S ′
14 + S ′

56) p
2 + (S ′

25 + S ′
46) p− S ′

24,

l4(p) = S ′
11p

4 − 2S ′
16p

3 + (2S ′
12 + S ′

66) p
2 − 2S ′

26p+ S ′
22.

(A.16)

Solution of eq. (A.15) produces three pairs of complex conjugate roots pα and pα (α =

1, 2, 3) which are the eigenvalues of the elastic constants, given in Section 2.2 in eq. (2.36).

A general solution for the stress and displacement fields is obtained by superimposing the

six solutions which are associated with the six eigenvalues pα and pα.

A.2 The Stroh formalism

Stroh’s (1958) sextic formalism for plane deformation of an anisotropic elastic body is

mathematically elegant and technically powerful. With the Stroh formalism, the assump-

tion is made that the displacement components are a function of the coordinates x1 and

x2, namely,

ui = ui(x1, x2), i = 1, 2, 3. (A.17)

The stress-stain laws and equilibrium equations using the stiffness tensor coefficients Cijks,

i, j, k, s = 1, 2, 3 take the form of

σij = Cijksuk,s, (A.18)

and

Cijksuk,sj = 0. (A.19)

A general solution for ui is composed of a linear combination of the coordinates x1 and

x2, so that

ui = aif(z). (A.20)

In eq. (A.20), f(z) is an arbitrary function of z which is defined in eq. (A.14) and ai are

unknown complex constants to be determined. Differentiation of eq. (A.20) with respect

to xs and xj and satisfaction of eq. (A.19) leads to{
Q+ p(R+RT ) + p2T

}
a = 0, (A.21)

where Q, R, and T are 3× 3 matrices whose components are given by

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2. (A.22)

A non-trivial solution for a requires that∣∣Q+ p(R+RT ) + p2T
∣∣ = 0. (A.23)
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From eq. (A.23), three pairs of complex conjugate eigenvalues p are obtained. It was shown

by Barnett and Kirchner (1997) that these eigenvalues are the same as those produced

by eq. (A.15) in the Lekhnitskii formalism, and presented in eq. (2.36). The associated

eigenvectors aα (α = 1...6) are found from eq. (A.21).

Under the assumption that pα (α = 1...6) are distinct, the general solution of the

displacement is obtained by superposing the six solutions from eq. (A.20), namely

u =
3∑

α=1

{aαfα(zα) + aαfα+3(zα)} , (A.24)

where fα (α = 1...6) are arbitrary functions of their arguments zα which are given in

eq. (A.14).

Once the displacement field u = u(x1, x2) is obtained, the stress components σij are

found from eq. (A.18), so that they are independent of x3, as well. The stress components

may be written as

σi1 = −pbif ′(z), σi2 = bif
′(z), (A.25)

where the complex constants bi are related to ai by

b =
(
RT + pT

)
a = −1

p
(Q+ pR)a. (A.26)

A stress function ϕ is selected to represent the stress components as

ϕi = bif(z). (A.27)

The relation between ϕi and σij is given by

σi1 = −ϕi,2 σi2 = ϕi,1 (A.28)

where i = 1, 2, 3.

The general solution for the stress function ϕ is obtained by superposing six solutions

from eq. (A.27) associated with the six eigenvalues pα, namely

ϕ =
3∑

α=1

{
bαfα(zα) + bαfα+3(zα)

}
. (A.29)

Equations (A.24) and (A.29) comprise the sextic formalism due to Stroh (1958). For

both, the functions fα(zα) and fα+3(zα) are chosen as

fα(zα) = f(zα)qα, fα+3(zα) = f(zα)q̃α, (α = 1, 2, 3) , (A.30)

where qα and q̃α are arbitrary complex vectors. The Stroh eigenvectors a and b are

assumed to obey the relations

aα+3 = aα, bα+3 = bα, (α = 1, 2, 3) . (A.31)
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The Lekhnitskii and Stroh formalisms were presented above. The Lekhnitskii for-

malism is compliance based and formulates a sextic differential equation using a stress

function that satisfies equilibrium in conjunction with the compatibility conditions and is

related to the stresses that are independent of x3. The Stroh formalism is stiffness based

and formulates a sextic eigenvalue problem using displacements which are independent of

x3 and satisfy equilibrium in conjunction with the compatibility conditions. Barnett and

Kirchner (1997) have shown that the sextic equations from both methods, leading to the

field solution, are equivalent despite the differences between the two formalisms.
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Appendix B

Tabulated results of benchmark
problems

The methods used in this investigation to analyze test results and compute the stress inten-

sity factors were the DE method and the M -integral. Both methods made use of the first

term of the asymptotic expansion of the displacement components. In order to examine

the accuracy of the asymptotic solution, as well as the software written for these methods,

three benchmark problems. The geometry of the cylindrical body analyzed is presented in

Fig. 3.2. The body contains an edge delamination between an upper transversely isotropic

UD material with fibers oriented in the 0◦-direction and a lower tetragonal woven material

with fibers oriented in the +45◦/ − 45◦-directions. The mesh used is shown in Fig. 3.3.

For each benchmark problem, displacements were applied to the outer surface of the body.

The displacements were obtained from the first term of the asymptotic solution for three

specific sets of stress intensity factors. The delamination faces are traction free. The

expected results are the same as the applied stress intensity factors for each problem. For

the DE method, the exact imposed solutions were obtained for most local stress intensity

factors K
∗
1 , K

∗
2 and K

∗
III in eqs. (3.10) and (3.13), respectively. Hence, extrapolation of

these results led to the exact stress intensity factors.

The M -integral was carried out in six domains shown in Fig. 1.8. In this section,

tabulated results obtained from the M -integral in all six domains are presented. For

the first benchmark problem, the applied stress intensity factors were K1 = 1, K2 = 0

and KIII = 0. The obtained results are presented in Tables B.1 and B.2. In the second

benchmark problem, the applied stress intensity factors wereK1 = 0, K2 = 1 andKIII = 0.

The obtained results are presented in Tables B.3 and B.4. In the third benchmark problem,

the applied stress intensity factors were K1 = 0, K2 = 0 and KIII = 1. The obtained

results are presented in Tables B.5 and B.6.
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Table B.1: K
(f)
1 , K

(f)
2 and K

(f)
III calculated in domains 1, 2 and 3 for the first benchmark

problem: K
(f)
1 = 1, K

(f)
2 = 0, K

(f)
III = 0. The geometry and mesh of the problem are

shown in Figs. 3.2 and 3.3, respectively. Note that the units of K
(f)
i (i = 1, 2) are

MPa
√
mm(mm)−iε, and that the units of K

(f)
III are MPa

√
mm.

domain 1 domain 2 domain 3

x3/B K
(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III

0.025 1.028 0.004 0.001 1.003 0.001 0.002 1.002 -0.001 0.002

0.075 1.006 0.007 0.000 1.001 0.002 0.000 1.001 0.000 0.000

0.125 1.011 0.007 0.000 1.001 0.002 0.000 1.001 0.000 0.000

0.175 1.009 0.007 0.000 1.001 0.002 0.000 1.001 0.000 0.000

0.225 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.275 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.325 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.375 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.425 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.475 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.525 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.575 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.625 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.675 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.725 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.775 1.010 0.007 0.000 1.001 0.002 0.000 1.000 0.000 0.000

0.825 1.009 0.007 0.000 1.001 0.002 0.000 1.001 0.000 0.000

0.875 1.011 0.007 0.000 1.001 0.002 0.000 1.001 0.000 0.000

0.925 1.006 0.007 0.000 1.001 0.002 0.000 1.001 0.000 0.000

0.975 1.028 0.004 -0.001 1.003 0.001 -0.002 1.002 -0.001 -0.002

A thermal problem was also solved. It simulates the temperature change during curing

of the composite. A temperature change of −60◦ C was imposed and the stress intensity

factors resulting from the residual stresses were obtained. With the DE method, local

stress intensity factors K
∗
1 , K

∗
2 and K

∗
III were calculated. Using extrapolation of three

sequential points at a chosen distance from the delamination front, the stress intensity

factors K
(r)
1 , K

(r)
2 and K

(r)
III were obtained. The obtained values as well as the normal-

ized distance from the delamination front (r/R)1, (r/R)2 and (r/R)III , where r is the

distance from the delamination front, R is the radius of the model and the subscript

1, 2, III are related to the relevant stress intensity factor, are presented in Table B.7. The
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Table B.2: K
(f)
1 , K

(f)
2 and K

(f)
III calculated in domains 4, 5 and 6 for the first benchmark

problem: K
(f)
1 = 1, K

(f)
2 = 0, K

(f)
III = 0. The geometry and mesh of the problem are

shown in Figs. 3.2 and 3.3, respectively. Note that the units of K
(f)
i (i = 1, 2) are

MPa
√
mm(mm)−iε, and that the units of K

(f)
III are MPa

√
mm.

domain 4 domain 5 domain 6

x3/B K
(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III

0.025 1.002 -0.001 0.002 1.002 -0.001 0.002 1.002 -0.001 0.002

0.075 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.125 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.175 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.225 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.275 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.325 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.375 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.425 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.475 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.525 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.575 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.625 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.675 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.725 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.775 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.825 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.875 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.925 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

0.975 1.002 -0.001 -0.002 1.002 -0.001 -0.002 1.002 -0.001 -0.002

stress intensity factors K
(r)
1 , K

(r)
2 and K

(r)
III , for the thermal problem, obtained using the

thermal M -integral, for six domains, are presented in Table B.8 for domains 1, 2 and 3

and Table B.9 for domains 4, 5 and 6, respectively. In Table B.10, the averaged values

of the stress intensity factors K
(r)
1 , K

(r)
2 and K

(r)
III , obtained using the DE method, for

each of two adjacent nodes along the delamination front are presented with the values

obtained using the M -integral in the sixth domain. In addition, the differences between

the values obtained with the two methods are shown. These differences were calculated

using eq. (3.31) where K
(1)
i , i = 1, 2, III, is the averaged value obtained by means of the

DE method and K
(2)
i is the stress intensity factor obtained from the thermal M -integral.
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Table B.3: K
(f)
1 , K

(f)
2 and K

(f)
III calculated in domains 1, 2 and 3 for the second benchmark

problem: K
(f)
1 = 0, K

(f)
2 = 1, K

(f)
III = 0. The geometry and mesh of the problem are

shown in Figs. 3.2 and 3.3, respectively. Note that the units of K
(f)
i (i = 1, 2) are

MPa
√
mm(mm)−iε, and that the units of K

(f)
III are MPa

√
mm.

domain 1 domain 2 domain 3

x3/B K
(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III

0.025 0.013 0.737 -0.005 -0.001 1.000 -0.007 -0.001 1.002 -0.007

0.075 0.018 0.745 0.000 -0.001 0.993 0.001 0.000 0.996 0.001

0.125 0.017 0.742 0.000 -0.001 0.993 -0.001 0.000 0.996 -0.001

0.175 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.225 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.275 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.325 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.375 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.425 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.475 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.525 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.575 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.625 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.675 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.725 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.775 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.825 0.017 0.742 0.000 -0.001 0.992 0.000 0.000 0.995 0.000

0.875 0.017 0.742 0.000 -0.001 0.993 0.001 0.000 0.996 0.001

0.925 0.018 0.745 0.000 -0.001 0.993 -0.001 0.000 0.996 -0.001

0.975 0.013 0.737 0.005 -0.001 1.000 0.007 -0.001 1.002 0.007
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Table B.4: K
(f)
1 , K

(f)
2 and K

(f)
III calculated in domains 4, 5 and 6 for the second benchmark

problem: K
(f)
1 = 0, K

(f)
2 = 1, K

(f)
III = 0. The geometry and mesh of the problem are

shown in Figs. 3.2 and 3.3, respectively. Note that the units of K
(f)
i (i = 1, 2) are

MPa
√
mm(mm)−iε, and that the units of K

(f)
III are MPa

√
mm.

domain 4 domain 5 domain 6

x3/B K
(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III

0.025 0.000 1.004 -0.007 0.000 1.005 -0.007 -0.001 1.006 -0.007

0.075 0.000 0.999 0.001 0.000 0.999 0.001 0.000 1.000 0.001

0.125 0.000 0.998 -0.001 0.000 0.999 -0.001 0.000 0.999 -0.001

0.175 0.000 0.998 0.000 0.000 0.999 0.000 0.000 0.999 0.000

0.225 0.000 0.998 0.000 0.000 0.998 0.000 0.000 0.999 0.000

0.275 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.999 0.000

0.325 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.999 0.000

0.375 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.998 0.000

0.425 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.998 0.000

0.475 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.998 0.000

0.525 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.998 0.000

0.575 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.998 0.000

0.625 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.998 0.000

0.675 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.999 0.000

0.725 0.000 0.997 0.000 0.000 0.998 0.000 0.000 0.999 0.000

0.775 0.000 0.998 0.000 0.000 0.998 0.000 0.000 0.999 0.000

0.825 0.000 0.998 0.000 0.000 0.999 0.000 0.000 0.999 0.000

0.875 0.000 0.998 0.001 0.000 0.999 0.001 0.000 0.999 0.001

0.925 0.000 0.999 -0.001 0.000 0.999 -0.001 0.000 1.000 -0.001

0.975 0.000 1.004 0.007 0.000 1.005 0.007 -0.001 1.006 0.007
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Table B.5: K
(f)
1 , K

(f)
2 and K

(f)
III calculated in domains 1, 2 and 3 for the third benchmark

problem: K
(f)
1 = 0, K

(f)
2 = 0, K

(f)
III = 1. The geometry and mesh of the problem are

shown in Figs. 3.2 and 3.3, respectively. Note that the units of K
(f)
i (i = 1, 2) are

MPa
√
mm(mm)−iε, and that the units of K

(f)
III are MPa

√
mm.

domain 1 domain 2 domain 3

x3/B K
(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III

0.025 0.000 -0.003 0.974 0.001 -0.005 1.001 0.001 -0.005 1.002

0.075 0.000 0.001 0.967 0.000 0.001 1.000 0.000 0.001 1.000

0.125 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.175 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.225 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.275 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.325 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.375 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.425 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.475 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.525 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.575 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.625 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.675 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.725 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.775 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.825 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.875 0.000 0.000 0.968 0.000 0.000 0.999 0.000 0.000 1.000

0.925 0.000 -0.001 0.967 0.000 -0.001 1.000 0.000 -0.001 1.000

0.975 0.000 0.003 0.974 -0.001 0.005 1.001 -0.001 0.005 1.002
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Table B.6: K
(f)
1 , K

(f)
2 and K

(f)
III calculated in domains 4, 5 and 6 for the third benchmark

problem: K
(f)
1 = 0, K

(f)
2 = 0, K

(f)
III = 1. The geometry and mesh of the problem are

shown in Figs. 3.2 and 3.3, respectively. Note that the units of K
(f)
i (i = 1, 2) are

MPa
√
mm(mm)−iε, and that the units of K

(f)
III are MPa

√
mm.

domain 4 domain 5 domain 6

x3/B K
(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III K

(f)
1 K

(f)
2 K

(f)
III

0.025 0.001 -0.005 1.002 0.001 -0.005 1.002 0.001 -0.005 1.002

0.075 0.000 0.001 1.000 0.000 0.001 1.000 0.000 0.001 1.000

0.125 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.175 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.225 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.275 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.325 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.375 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.425 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.475 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.525 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.575 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.625 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.675 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.725 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.775 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.825 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.875 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

0.925 0.000 -0.001 1.000 0.000 -0.001 1.000 0.000 -0.001 1.000

0.975 -0.001 0.005 1.002 -0.001 0.005 1.002 -0.001 0.005 1.002
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Table B.7: K
(r)
1 , K

(r)
2 and K

(r)
III calculated with the DE method at the chosen normalized

distance from the delamination front (r/R)1, (r/R)2 and (r/R)III , respectively, for the
thermal problem where r is the distance from the delamination front and R is the radius
of the model. The geometry and mesh of the problem are shown in Figs. 3.2 and 3.3,
respectively. Note that the units of K

(r)
i (i = 1, 2) are MPa

√
mm(mm)−iε, and that the

units of K
(r)
III are MPa

√
mm.

x3/B K
(r)
1 (r/R)1 K

(r)
2 (r/R)2 K

(r)
III (r/R)III

0 - - - - - -

0.05 - - - - 21.237 0.025

0.1 1.316 0.017 -0.756 0.025 18.749 0.023

0.15 0.951 0.025 -1.696 0.015 16.305 0.025

0.2 0.759 0.025 -2.346 0.020 13.821 0.023

0.25 0.654 0.025 -2.741 0.020 11.419 0.023

0.3 0.594 0.025 -3.009 0.020 9.070 0.023

0.35 0.560 0.025 -3.190 0.020 6.764 0.023

0.4 0.541 0.025 -3.307 0.020 4.491 0.023

0.45 0.532 0.025 -3.373 0.020 2.240 0.023

0.5 0.529 0.025 -3.394 0.020 0.000 0.000

0.55 0.532 0.025 -3.373 0.020 -2.240 0.023

0.6 0.541 0.025 -3.307 0.020 -4.491 0.023

0.65 0.560 0.025 -3.190 0.020 -6.764 0.023

0.7 0.594 0.025 -3.009 0.020 -9.070 0.023

0.75 0.654 0.025 -2.741 0.020 -11.419 0.023

0.8 0.759 0.025 -2.346 0.020 -13.821 0.023

0.85 0.951 0.025 -1.696 0.015 -16.305 0.025

0.9 1.316 0.017 -0.756 0.025 -18.749 0.023

0.95 - - - - -21.237 0.025

1 - - - - - -
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Table B.8: K
(r)
1 , K

(r)
2 and K

(r)
III calculated in domains 1, 2 and 3 for the thermal problem.

The geometry and mesh of the problem are shown in Figs. 3.2 and 3.3, respectively. Note
that the units of K

(r)
i (i = 1, 2) are MPa

√
mm(mm)−iε, and that the units of K

(r)
III are

MPa
√
mm.

domain 1 domain 2 domain 3

x3/B K
(r)
1 K

(r)
2 K

(r)
III K

(r)
1 K

(r)
2 K

(r)
III K

(r)
1 K

(r)
2 K

(r)
III

0.025 3.572 3.289 21.031 3.399 4.549 21.438 3.400 4.566 21.440

0.075 1.706 0.139 19.341 1.698 0.141 19.954 1.693 0.159 19.979

0.125 1.114 -1.014 17.011 1.134 -1.318 17.523 1.131 -1.315 17.532

0.175 0.823 -1.622 14.601 0.865 -2.130 15.049 0.861 -2.129 15.059

0.225 0.669 -2.007 12.246 0.725 -2.630 12.620 0.720 -2.631 12.628

0.275 0.582 -2.263 9.941 0.646 -2.965 10.245 0.641 -2.967 10.251

0.325 0.532 -2.438 7.682 0.601 -3.192 7.918 0.596 -3.195 7.922

0.375 0.503 -2.553 5.461 0.575 -3.343 5.628 0.570 -3.346 5.632

0.425 0.487 -2.625 3.266 0.562 -3.435 3.366 0.556 -3.439 3.368

0.475 0.480 -2.659 1.087 0.556 -3.479 1.120 0.550 -3.483 1.121

0.525 0.480 -2.659 -1.087 0.556 -3.479 -1.120 0.550 -3.483 -1.121

0.575 0.487 -2.625 -3.266 0.562 -3.435 -3.366 0.556 -3.439 -3.368

0.625 0.503 -2.553 -5.461 0.575 -3.343 -5.628 0.570 -3.346 -5.632

0.675 0.532 -2.438 -7.682 0.601 -3.192 -7.918 0.596 -3.195 -7.922

0.725 0.582 -2.263 -9.941 0.646 -2.965 -10.245 0.641 -2.967 -10.251

0.775 0.669 -2.007 -12.246 0.725 -2.630 -12.621 0.720 -2.631 -12.628

0.825 0.823 -1.622 -14.601 0.865 -2.130 -15.050 0.861 -2.129 -15.060

0.875 1.114 -1.014 -17.011 1.134 -1.318 -17.523 1.131 -1.315 -17.532

0.925 1.706 0.139 -19.341 1.698 0.141 -19.954 1.693 0.159 -19.979

0.975 3.572 3.289 -21.031 3.399 4.549 -21.438 3.400 4.566 -21.440
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Table B.9: K
(r)
1 , K

(r)
2 and K

(r)
III calculated in domains 4, 5 and 6 for the thermal problem.

The geometry and mesh of the problem are shown in Figs. 3.2 and 3.3, respectively. Note
that the units of K

(r)
i (i = 1, 2) are MPa

√
mm(mm)−iε, and that the units of K

(r)
III are

MPa
√
mm.

domain 4 domain 5 domain 6

x3/B K
(r)
1 K

(r)
2 K

(r)
III K

(r)
1 K

(r)
2 K

(r)
III K

(r)
1 K

(r)
2 K

(r)
III

0.025 3.403 4.569 21.439 3.404 4.568 21.437 3.405 4.567 21.437

0.075 1.694 0.164 19.985 1.694 0.165 19.986 1.695 0.166 19.987

0.125 1.131 -1.318 17.534 1.131 -1.320 17.534 1.132 -1.320 17.534

0.175 0.861 -2.132 15.062 0.861 -2.134 15.062 0.861 -2.135 15.062

0.225 0.720 -2.636 12.630 0.720 -2.638 12.630 0.720 -2.639 12.630

0.275 0.640 -2.972 10.253 0.640 -2.975 10.253 0.641 -2.976 10.253

0.325 0.595 -3.200 7.923 0.595 -3.203 7.924 0.595 -3.204 7.924

0.375 0.569 -3.352 5.632 0.570 -3.354 5.632 0.570 -3.356 5.632

0.425 0.556 -3.445 3.369 0.556 -3.448 3.369 0.556 -3.449 3.369

0.475 0.550 -3.489 1.121 0.550 -3.492 1.121 0.550 -3.493 1.121

0.525 0.550 -3.489 -1.121 0.550 -3.492 -1.121 0.550 -3.493 -1.121

0.575 0.556 -3.445 -3.369 0.556 -3.448 -3.369 0.556 -3.449 -3.369

0.625 0.569 -3.352 -5.632 0.570 -3.354 -5.632 0.570 -3.356 -5.632

0.675 0.595 -3.200 -7.923 0.595 -3.203 -7.924 0.595 -3.204 -7.924

0.725 0.640 -2.972 -10.253 0.640 -2.975 -10.253 0.641 -2.976 -10.253

0.775 0.720 -2.636 -12.630 0.720 -2.638 -12.630 0.720 -2.639 -12.630

0.825 0.861 -2.132 -15.062 0.861 -2.134 -15.062 0.861 -2.135 -15.062

0.875 1.131 -1.318 -17.534 1.131 -1.320 -17.534 1.132 -1.320 -17.534

0.925 1.694 0.164 -19.985 1.694 0.165 -19.986 1.695 0.166 -19.987

0.975 3.403 4.569 -21.439 3.404 4.568 -21.437 3.405 4.567 -21.437
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Table B.10: Comparison of K
(r)
1 , K

(r)
2 and K

(r)
III calculated for the thermal problem using

the DE method and averaged for two adjacent points along the delamination front and
using the thermalM -integral in the sixth domain. The geometry and mesh of the problem
are shown in Figs. 3.2 and 3.3, respectively. Note that the units of K

(r)
i (i = 1, 2) are

MPa
√
mm(mm)−iε, and that the units of K

(r)
III are MPa

√
mm.

DE
average values
for comparison

M-integral
domain 6

difference

x3/B K
(r)
1 K

(r)
2 K

(r)
III K

(r)
1 K

(r)
2 K

(r)
III

0.025 - - - 3.405 4.567 21.437 - - -

0.075 - - 19.993 1.695 0.166 19.987 - - 0.0%

0.125 1.134 -1.226 17.527 1.132 -1.320 17.534 0.2% -7.2% 0.0%

0.175 0.855 -2.021 15.063 0.861 -2.135 15.062 -0.7% -5.3% 0.0%

0.225 0.707 -2.544 12.620 0.720 -2.639 12.630 -1.9% -3.6% -0.1%

0.275 0.624 -2.875 10.244 0.641 -2.976 10.253 -2.6% -3.4% -0.1%

0.325 0.577 -3.099 7.917 0.595 -3.204 7.924 -3.1% -3.3% -0.1%

0.375 0.551 -3.248 5.627 0.570 -3.356 5.632 -3.3% -3.2% -0.1%

0.425 0.536 -3.340 3.366 0.556 -3.449 3.369 -3.5% -3.2% -0.1%

0.475 0.530 -3.384 1.120 0.550 -3.493 1.121 -3.6% -3.1% -0.1%

0.525 0.530 -3.384 -1.120 0.550 -3.493 -1.121 -3.6% -3.1% -0.1%

0.575 0.536 -3.340 -3.366 0.556 -3.449 -3.369 -3.5% -3.2% -0.1%

0.625 0.551 -3.248 -5.627 0.570 -3.356 -5.632 -3.3% -3.2% -0.1%

0.675 0.577 -3.099 -7.917 0.595 -3.204 -7.924 -3.1% -3.3% -0.1%

0.725 0.624 -2.875 -10.244 0.641 -2.976 -10.253 -2.6% -3.4% -0.1%

0.775 0.707 -2.544 -12.620 0.720 -2.639 -12.630 -1.9% -3.6% -0.1%

0.825 0.855 -2.021 -15.063 0.861 -2.135 -15.062 -0.7% -5.3% 0.0%

0.875 1.134 -1.226 -17.527 1.132 -1.320 -17.534 0.2% -7.2% 0.0%

0.925 - - -19.993 1.695 0.166 -19.987 - - 0.0%

0.975 - - - 3.405 4.567 -21.437 - - -
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Appendix C

Tabulated BD tests results from
analyses

For each tested BD specimen, results from the analyses are presented in Tables C.1

through C.27. Each parameter is given along the normalized specimen thickness x3/B.

The parameters presented in the second through fourth columns are the averaged total

stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth, fifth and sixth domains as

were obtained from the FE analyses. Note that the units of K
(T )
III are MPa

√
mm. These

values were obtained directly from the FEAs where the length unit was in mm. Normal-

ized total stress intensity factors K̂
(T )
1 and K̂

(T )
2 calculated for L̂ = 100 µm are presented

in the fifth and sixth columns in these tables. In the seventh column, K
(T )
III is shown with

different units of MPa
√
m. In the eighth and ninth columns of Tables C.1 through C.27,

the phase angles ψ̂ and ϕ are shown. Finally, the critical interface energy release rates Gic
are given in the last column of these tables.
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Table C.1: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.6.1 with loading
angle ω = −1.9◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 38.77 26.51 17.43 1.27 0.77 0.55 0.548 0.375 430.1
0.075 37.87 24.71 8.26 1.24 0.72 0.26 0.526 0.191 358.1
0.125 36.02 24.84 4.97 1.18 0.73 0.16 0.552 0.120 327.9
0.175 34.34 25.05 3.24 1.13 0.73 0.10 0.578 0.081 306.9
0.225 32.96 25.24 2.17 1.08 0.74 0.07 0.601 0.055 291.8
0.275 31.89 25.38 1.46 1.05 0.75 0.05 0.620 0.038 280.9
0.325 31.09 25.49 0.97 1.02 0.75 0.03 0.635 0.026 273.0
0.375 30.52 25.57 0.61 1.01 0.76 0.02 0.645 0.016 267.7
0.425 30.16 25.62 0.34 0.99 0.76 0.01 0.652 0.009 264.3
0.475 29.98 25.64 0.11 0.99 0.76 0.00 0.656 0.003 262.7
0.525 29.98 25.64 -0.11 0.99 0.76 0.00 0.656 -0.003 262.7
0.575 30.16 25.62 -0.34 0.99 0.76 -0.01 0.652 -0.009 264.3
0.625 30.52 25.57 -0.61 1.01 0.76 -0.02 0.645 -0.016 267.7
0.675 31.09 25.49 -0.97 1.02 0.75 -0.03 0.635 -0.026 273.0
0.725 31.89 25.38 -1.46 1.05 0.75 -0.05 0.620 -0.038 280.9
0.775 32.96 25.24 -2.17 1.08 0.74 -0.07 0.601 -0.055 291.8
0.825 34.34 25.05 -3.24 1.13 0.73 -0.10 0.578 -0.081 306.9
0.875 36.02 24.84 -4.97 1.18 0.73 -0.16 0.552 -0.120 327.9
0.925 37.87 24.71 -8.26 1.24 0.72 -0.26 0.526 -0.191 358.1
0.975 38.77 26.51 -17.43 1.27 0.77 -0.55 0.548 -0.375 430.1
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Table C.2: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.14.2 with loading
angle ω = −2.0◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 43.03 30.85 17.84 1.41 0.90 0.56 0.570 0.343 533.6
0.075 40.83 28.83 8.65 1.34 0.84 0.27 0.563 0.182 435.9
0.125 38.98 28.90 5.27 1.28 0.85 0.17 0.586 0.115 402.7
0.175 37.29 29.14 3.40 1.23 0.86 0.11 0.611 0.076 380.2
0.225 35.87 29.38 2.24 1.18 0.87 0.07 0.634 0.051 363.8
0.275 34.75 29.56 1.47 1.15 0.88 0.05 0.653 0.034 351.8
0.325 33.90 29.71 0.95 1.12 0.88 0.03 0.668 0.022 343.1
0.375 33.28 29.81 0.59 1.10 0.89 0.02 0.679 0.014 337.1
0.425 32.89 29.88 0.32 1.09 0.89 0.01 0.685 0.008 333.3
0.475 32.70 29.91 0.10 1.08 0.89 0.00 0.689 0.002 331.4
0.525 32.70 29.91 -0.10 1.08 0.89 0.00 0.689 -0.002 331.4
0.575 32.89 29.88 -0.32 1.09 0.89 -0.01 0.685 -0.008 333.3
0.625 33.28 29.81 -0.59 1.10 0.89 -0.02 0.679 -0.014 337.1
0.675 33.90 29.71 -0.95 1.12 0.88 -0.03 0.668 -0.022 343.1
0.725 34.75 29.56 -1.47 1.15 0.88 -0.05 0.653 -0.034 351.8
0.775 35.87 29.38 -2.24 1.18 0.87 -0.07 0.634 -0.051 363.8
0.825 37.29 29.14 -3.40 1.23 0.86 -0.11 0.611 -0.076 380.2
0.875 38.98 28.90 -5.27 1.28 0.85 -0.17 0.586 -0.115 402.7
0.925 40.83 28.83 -8.65 1.34 0.84 -0.27 0.563 -0.182 435.9
0.975 43.03 30.85 -17.84 1.41 0.90 -0.56 0.570 -0.343 533.6
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Table C.3: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.8.2 with loading
angle ω = −2.2◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 44.77 35.81 22.37 1.47 1.06 0.71 0.623 0.393 649.8
0.075 42.81 33.17 11.45 1.41 0.98 0.36 0.607 0.221 519.9
0.125 40.32 33.08 7.19 1.33 0.98 0.23 0.635 0.145 469.0
0.175 38.25 33.22 4.83 1.26 0.99 0.15 0.663 0.101 437.7
0.225 36.61 33.39 3.33 1.21 0.99 0.11 0.687 0.071 416.5
0.275 35.35 33.53 2.29 1.17 1.00 0.07 0.707 0.050 401.7
0.325 34.41 33.65 1.55 1.14 1.01 0.05 0.722 0.034 391.4
0.375 33.74 33.73 1.00 1.12 1.01 0.03 0.733 0.022 384.4
0.425 33.32 33.79 0.56 1.11 1.01 0.02 0.740 0.012 380.1
0.475 33.11 33.82 0.18 1.10 1.01 0.01 0.744 0.004 378.0
0.525 33.11 33.82 -0.18 1.10 1.01 -0.01 0.744 -0.004 378.0
0.575 33.32 33.79 -0.56 1.11 1.01 -0.02 0.740 -0.012 380.1
0.625 33.74 33.73 -1.00 1.12 1.01 -0.03 0.733 -0.022 384.4
0.675 34.41 33.65 -1.55 1.14 1.01 -0.05 0.722 -0.034 391.4
0.725 35.35 33.53 -2.29 1.17 1.00 -0.07 0.707 -0.050 401.7
0.775 36.61 33.39 -3.33 1.21 0.99 -0.11 0.687 -0.071 416.5
0.825 38.25 33.22 -4.83 1.26 0.99 -0.15 0.663 -0.101 437.7
0.875 40.32 33.08 -7.19 1.33 0.98 -0.23 0.635 -0.145 469.0
0.925 42.81 33.17 -11.45 1.41 0.98 -0.36 0.607 -0.221 519.9
0.975 44.77 35.81 -22.37 1.47 1.06 -0.71 0.623 -0.393 649.8
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Table C.4: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.8.1 with loading
angle ω = −2.5◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 48.33 41.78 22.91 1.60 1.24 0.72 0.661 0.363 788.6
0.075 45.38 39.08 11.35 1.50 1.16 0.36 0.659 0.198 629.8
0.125 42.64 39.01 7.02 1.41 1.16 0.22 0.689 0.128 573.2
0.175 40.38 39.18 4.63 1.34 1.17 0.15 0.718 0.087 538.4
0.225 38.59 39.36 3.13 1.28 1.18 0.10 0.743 0.060 514.7
0.275 37.21 39.51 2.12 1.24 1.19 0.07 0.763 0.041 498.0
0.325 36.19 39.61 1.41 1.21 1.19 0.04 0.779 0.028 486.3
0.375 35.46 39.69 0.89 1.18 1.20 0.03 0.790 0.018 478.3
0.425 35.00 39.74 0.49 1.17 1.20 0.02 0.797 0.010 473.4
0.475 34.77 39.76 0.16 1.16 1.20 0.00 0.800 0.003 471.0
0.525 34.77 39.76 -0.16 1.16 1.20 0.00 0.800 -0.003 471.0
0.575 35.00 39.74 -0.49 1.17 1.20 -0.02 0.797 -0.010 473.4
0.625 35.46 39.69 -0.89 1.18 1.20 -0.03 0.790 -0.018 478.3
0.675 36.19 39.61 -1.41 1.21 1.19 -0.04 0.779 -0.028 486.3
0.725 37.21 39.51 -2.12 1.24 1.19 -0.07 0.763 -0.041 498.0
0.775 38.59 39.36 -3.13 1.28 1.18 -0.10 0.743 -0.060 514.7
0.825 40.38 39.18 -4.63 1.34 1.17 -0.15 0.718 -0.087 538.4
0.875 42.64 39.01 -7.02 1.41 1.16 -0.22 0.689 -0.128 573.2
0.925 45.38 39.08 -11.35 1.50 1.16 -0.36 0.659 -0.198 629.8
0.975 48.33 41.78 -22.91 1.60 1.24 -0.72 0.661 -0.363 788.6
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Table C.5: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.12.2 with loading
angle ω = −2.6◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 45.40 43.10 24.21 1.50 1.29 0.77 0.707 0.389 772.9
0.075 43.25 40.54 11.64 1.43 1.21 0.37 0.701 0.205 618.9
0.125 40.60 40.67 6.93 1.35 1.22 0.22 0.734 0.127 566.5
0.175 38.33 40.91 4.46 1.28 1.23 0.14 0.766 0.084 534.2
0.225 36.53 41.11 2.94 1.22 1.24 0.09 0.792 0.057 512.2
0.275 35.16 41.26 1.94 1.18 1.25 0.06 0.813 0.038 496.8
0.325 34.16 41.38 1.25 1.15 1.25 0.04 0.829 0.025 486.3
0.375 33.46 41.46 0.77 1.12 1.25 0.02 0.840 0.015 479.2
0.425 33.02 41.51 0.42 1.11 1.26 0.01 0.847 0.008 474.9
0.475 32.81 41.53 0.13 1.10 1.26 0.00 0.850 0.003 472.8
0.525 32.81 41.53 -0.13 1.10 1.26 0.00 0.850 -0.003 472.8
0.575 33.02 41.51 -0.42 1.11 1.26 -0.01 0.847 -0.008 474.9
0.625 33.46 41.46 -0.77 1.12 1.25 -0.02 0.840 -0.015 479.2
0.675 34.16 41.38 -1.25 1.15 1.25 -0.04 0.829 -0.025 486.3
0.725 35.16 41.26 -1.94 1.18 1.25 -0.06 0.813 -0.038 496.8
0.775 36.53 41.11 -2.94 1.22 1.24 -0.09 0.792 -0.057 512.2
0.825 38.33 40.91 -4.46 1.28 1.23 -0.14 0.766 -0.084 534.2
0.875 40.60 40.67 -6.93 1.35 1.22 -0.22 0.734 -0.127 566.5
0.925 43.25 40.54 -11.64 1.43 1.21 -0.37 0.701 -0.205 618.9
0.975 45.40 43.10 -24.21 1.50 1.29 -0.77 0.707 -0.389 772.9
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Table C.6: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.2.2 with loading
angle ω = −4.4◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 37.71 60.43 31.77 1.29 1.85 1.00 0.961 0.442 1048.1
0.075 34.73 56.81 17.51 1.19 1.74 0.55 0.970 0.272 806.5
0.125 32.76 56.73 11.59 1.13 1.74 0.37 0.995 0.186 750.0
0.175 31.21 56.93 8.18 1.08 1.75 0.26 1.017 0.133 724.1
0.225 29.98 57.13 5.90 1.04 1.76 0.19 1.036 0.097 709.3
0.275 29.03 57.29 4.25 1.01 1.76 0.13 1.050 0.070 699.8
0.325 28.31 57.42 3.00 0.99 1.77 0.09 1.061 0.050 693.4
0.375 27.80 57.50 1.99 0.97 1.77 0.06 1.068 0.033 689.3
0.425 27.47 57.56 1.14 0.96 1.77 0.04 1.074 0.019 686.8
0.475 27.31 57.58 0.37 0.96 1.77 0.01 1.076 0.006 685.6
0.525 27.31 57.58 -0.37 0.96 1.77 -0.01 1.076 -0.006 685.6
0.575 27.47 57.56 -1.14 0.96 1.77 -0.04 1.074 -0.019 686.8
0.625 27.80 57.50 -1.99 0.97 1.77 -0.06 1.068 -0.033 689.3
0.675 28.31 57.42 -3.00 0.99 1.77 -0.09 1.061 -0.050 693.4
0.725 29.03 57.29 -4.25 1.01 1.76 -0.13 1.050 -0.070 699.8
0.775 29.98 57.13 -5.90 1.04 1.76 -0.19 1.036 -0.097 709.3
0.825 31.21 56.93 -8.18 1.08 1.75 -0.26 1.017 -0.133 724.1
0.875 32.76 56.73 -11.59 1.13 1.74 -0.37 0.995 -0.186 750.0
0.925 34.73 56.81 -17.51 1.19 1.74 -0.55 0.970 -0.272 806.5
0.975 37.71 60.43 -31.77 1.29 1.85 -1.00 0.961 -0.442 1048.1
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Table C.7: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.3.1 with loading
angle ω = −4.7◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 36.78 66.38 31.75 1.27 2.04 1.00 1.013 0.418 1163.7
0.075 32.96 62.33 17.68 1.14 1.91 0.56 1.032 0.260 898.4
0.125 31.36 62.12 11.55 1.09 1.91 0.37 1.051 0.174 842.7
0.175 29.95 62.37 7.94 1.05 1.92 0.25 1.071 0.121 819.9
0.225 28.75 62.63 5.56 1.01 1.93 0.18 1.089 0.085 807.6
0.275 27.79 62.85 3.90 0.98 1.94 0.12 1.102 0.060 800.0
0.325 27.05 63.01 2.69 0.96 1.95 0.09 1.113 0.042 795.0
0.375 26.53 63.12 1.75 0.94 1.95 0.06 1.121 0.027 791.8
0.425 26.18 63.19 0.99 0.93 1.95 0.03 1.126 0.015 789.8
0.475 26.02 63.22 0.32 0.93 1.95 0.01 1.128 0.005 788.9
0.525 26.02 63.22 -0.32 0.93 1.95 -0.01 1.128 -0.005 788.9
0.575 26.18 63.19 -0.99 0.93 1.95 -0.03 1.126 -0.015 789.8
0.625 26.53 63.12 -1.75 0.94 1.95 -0.06 1.121 -0.027 791.8
0.675 27.05 63.01 -2.69 0.96 1.95 -0.09 1.113 -0.042 795.0
0.725 27.79 62.85 -3.90 0.98 1.94 -0.12 1.102 -0.060 800.0
0.775 28.75 62.63 -5.56 1.01 1.93 -0.18 1.089 -0.085 807.6
0.825 29.95 62.37 -7.94 1.05 1.92 -0.25 1.071 -0.121 819.9
0.875 31.36 62.12 -11.55 1.09 1.91 -0.37 1.051 -0.174 842.7
0.925 32.96 62.33 -17.68 1.14 1.91 -0.56 1.032 -0.260 898.5
0.975 36.78 66.38 -31.75 1.27 2.04 -1.00 1.013 -0.418 1163.7
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Table C.8: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.1.2 with loading
angle ω = −4.9◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 38.50 62.92 33.27 1.32 1.92 1.05 0.970 0.446 1128.6
0.075 34.90 58.51 19.29 1.20 1.79 0.61 0.981 0.292 854.1
0.125 32.86 58.01 13.16 1.13 1.78 0.42 1.003 0.206 783.3
0.175 31.23 58.05 9.43 1.08 1.78 0.30 1.025 0.151 750.3
0.225 29.91 58.20 6.86 1.04 1.79 0.22 1.044 0.111 731.7
0.275 28.87 58.35 4.98 1.01 1.80 0.16 1.059 0.081 720.1
0.325 28.07 58.48 3.52 0.98 1.80 0.11 1.071 0.058 712.6
0.375 27.50 58.57 2.35 0.96 1.80 0.07 1.080 0.038 707.7
0.425 27.13 58.63 1.35 0.95 1.81 0.04 1.085 0.022 704.8
0.475 26.95 58.66 0.44 0.95 1.81 0.01 1.088 0.007 703.4
0.525 26.95 58.66 -0.44 0.95 1.81 -0.01 1.088 -0.007 703.4
0.575 27.13 58.63 -1.35 0.95 1.81 -0.04 1.085 -0.022 704.8
0.625 27.50 58.57 -2.35 0.96 1.80 -0.07 1.080 -0.038 707.7
0.675 28.07 58.48 -3.52 0.98 1.80 -0.11 1.071 -0.058 712.6
0.725 28.86 58.35 -4.98 1.01 1.80 -0.16 1.060 -0.081 720.1
0.775 29.91 58.20 -6.86 1.04 1.79 -0.22 1.044 -0.111 731.7
0.825 31.23 58.05 -9.43 1.08 1.78 -0.30 1.025 -0.151 750.3
0.875 32.86 58.01 -13.16 1.13 1.78 -0.42 1.003 -0.206 783.3
0.925 34.90 58.51 -19.29 1.20 1.79 -0.61 0.981 -0.292 854.0
0.975 38.50 62.92 -33.27 1.32 1.92 -1.05 0.970 -0.446 1128.6
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Table C.9: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.2.1 with loading
angle ω = −5.3◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 36.30 68.63 35.66 1.26 2.11 1.13 1.032 0.453 1259.0
0.075 32.19 64.03 20.67 1.12 1.97 0.65 1.053 0.297 948.1
0.125 30.38 63.65 14.05 1.06 1.96 0.44 1.073 0.208 877.1
0.175 29.07 63.79 10.04 1.02 1.97 0.32 1.091 0.151 848.6
0.225 28.02 64.04 7.29 0.99 1.98 0.23 1.106 0.110 834.9
0.275 27.20 64.26 5.28 0.96 1.98 0.17 1.118 0.080 827.2
0.325 26.57 64.43 3.74 0.94 1.99 0.12 1.128 0.057 822.6
0.375 26.12 64.56 2.49 0.93 2.00 0.08 1.134 0.038 819.9
0.425 25.82 64.64 1.43 0.92 2.00 0.05 1.139 0.022 818.2
0.475 25.68 64.68 0.47 0.92 2.00 0.01 1.141 0.007 817.5
0.525 25.68 64.68 -0.46 0.92 2.00 -0.01 1.141 -0.007 817.5
0.575 25.82 64.64 -1.43 0.92 2.00 -0.05 1.139 -0.022 818.2
0.625 26.12 64.56 -2.49 0.93 2.00 -0.08 1.134 -0.038 819.8
0.675 26.57 64.43 -3.74 0.94 1.99 -0.12 1.128 -0.057 822.6
0.725 27.20 64.26 -5.28 0.96 1.98 -0.17 1.118 -0.080 827.2
0.775 28.02 64.04 -7.29 0.99 1.98 -0.23 1.106 -0.110 834.9
0.825 29.07 63.79 -10.04 1.02 1.97 -0.32 1.091 -0.151 848.7
0.875 30.38 63.65 -14.05 1.06 1.96 -0.44 1.073 -0.208 877.1
0.925 32.19 64.03 -20.67 1.12 1.97 -0.65 1.053 -0.297 948.1
0.975 36.30 68.63 -35.66 1.26 2.11 -1.13 1.032 -0.453 1259.0
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Table C.10: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.1.1 with loading
angle ω = −5.3◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 38.40 71.25 36.39 1.33 2.19 1.15 1.025 0.445 1357.3
0.075 34.27 66.39 21.22 1.19 2.04 0.67 1.042 0.293 1027.7
0.125 32.28 65.78 14.48 1.13 2.02 0.46 1.063 0.207 946.0
0.175 30.75 65.79 10.37 1.08 2.03 0.33 1.082 0.150 910.7
0.225 29.53 65.95 7.54 1.04 2.03 0.24 1.098 0.110 892.2
0.275 28.58 66.08 5.47 1.01 2.04 0.17 1.111 0.080 880.6
0.325 27.85 66.21 3.87 0.99 2.05 0.12 1.121 0.057 873.8
0.375 27.33 66.29 2.58 0.97 2.05 0.08 1.128 0.038 869.1
0.425 27.00 66.34 1.48 0.96 2.05 0.05 1.132 0.022 866.2
0.475 26.83 66.36 0.48 0.96 2.05 0.02 1.135 0.007 864.8
0.525 26.83 66.36 -0.48 0.96 2.05 -0.02 1.135 -0.007 864.8
0.575 27.00 66.34 -1.48 0.96 2.05 -0.05 1.132 -0.022 866.2
0.625 27.34 66.29 -2.58 0.97 2.05 -0.08 1.128 -0.038 869.1
0.675 27.85 66.20 -3.87 0.99 2.04 -0.12 1.121 -0.057 873.6
0.725 28.58 66.07 -5.47 1.01 2.04 -0.17 1.111 -0.080 880.5
0.775 29.53 65.95 -7.54 1.04 2.03 -0.24 1.098 -0.110 892.1
0.825 30.75 65.78 -10.37 1.08 2.03 -0.33 1.081 -0.150 910.5
0.875 32.27 65.77 -14.48 1.13 2.02 -0.46 1.063 -0.207 945.8
0.925 34.27 66.39 -21.22 1.19 2.04 -0.67 1.042 -0.293 1027.7
0.975 38.41 71.25 -36.39 1.33 2.19 -1.15 1.024 -0.445 1357.6
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Table C.11: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.3.2 with loading
angle ω = −9.9◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 16.54 73.55 38.33 0.64 2.30 1.21 1.298 0.495 1238.4
0.075 12.97 68.41 24.25 0.52 2.14 0.77 1.331 0.354 929.9
0.125 12.29 67.78 17.44 0.50 2.12 0.55 1.340 0.262 858.7
0.175 11.96 67.84 13.00 0.49 2.12 0.41 1.344 0.198 833.1
0.225 11.69 68.06 9.78 0.48 2.13 0.31 1.349 0.149 823.1
0.275 11.46 68.28 7.29 0.47 2.14 0.23 1.353 0.111 819.3
0.325 11.26 68.48 5.27 0.47 2.14 0.17 1.356 0.080 818.3
0.375 11.11 68.63 3.57 0.46 2.15 0.11 1.358 0.054 818.4
0.425 11.01 68.74 2.07 0.46 2.15 0.07 1.360 0.032 818.8
0.475 10.96 68.79 0.68 0.46 2.15 0.02 1.361 0.010 819.0
0.525 10.96 68.79 -0.68 0.46 2.15 -0.02 1.361 -0.010 819.0
0.575 11.01 68.74 -2.07 0.46 2.15 -0.07 1.360 -0.032 818.8
0.625 11.11 68.63 -3.57 0.46 2.15 -0.11 1.358 -0.054 818.4
0.675 11.26 68.48 -5.27 0.47 2.14 -0.17 1.356 -0.080 818.3
0.725 11.46 68.28 -7.29 0.47 2.14 -0.23 1.353 -0.111 819.3
0.775 11.69 68.06 -9.78 0.48 2.13 -0.31 1.349 -0.149 823.0
0.825 11.96 67.84 -13.00 0.49 2.12 -0.41 1.344 -0.198 833.0
0.875 12.29 67.78 -17.44 0.50 2.12 -0.55 1.340 -0.262 858.7
0.925 12.97 68.41 -24.25 0.52 2.14 -0.77 1.331 -0.354 929.9
0.975 16.54 73.55 -38.33 0.64 2.30 -1.21 1.298 -0.495 1238.4
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Table C.12: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.4.2 with loading
angle ω = −10.1◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 17.12 79.41 39.67 0.67 2.48 1.25 1.306 0.478 1413.0
0.075 13.46 74.52 24.50 0.55 2.33 0.77 1.340 0.331 1082.0
0.125 12.90 74.18 17.42 0.53 2.32 0.55 1.347 0.241 1014.5
0.175 12.63 74.40 12.91 0.52 2.33 0.41 1.351 0.180 992.9
0.225 12.40 74.71 9.68 0.51 2.34 0.31 1.354 0.135 985.8
0.275 12.19 74.99 7.20 0.51 2.35 0.23 1.358 0.100 984.0
0.325 12.01 75.21 5.20 0.50 2.36 0.16 1.360 0.072 984.3
0.375 11.87 75.38 3.52 0.50 2.36 0.11 1.363 0.049 985.2
0.425 11.78 75.48 2.04 0.50 2.36 0.06 1.364 0.028 986.0
0.475 11.73 75.54 0.67 0.49 2.37 0.02 1.365 0.009 986.5
0.525 11.73 75.54 -0.67 0.49 2.37 -0.02 1.365 -0.009 986.5
0.575 11.78 75.48 -2.04 0.50 2.36 -0.06 1.364 -0.028 986.0
0.625 11.87 75.38 -3.52 0.50 2.36 -0.11 1.363 -0.049 985.2
0.675 12.01 75.21 -5.20 0.50 2.36 -0.16 1.360 -0.072 984.3
0.725 12.19 74.99 -7.20 0.51 2.35 -0.23 1.358 -0.100 984.0
0.775 12.40 74.71 -9.68 0.51 2.34 -0.31 1.354 -0.135 985.8
0.825 12.63 74.40 -12.91 0.52 2.33 -0.41 1.351 -0.180 992.9
0.875 12.90 74.18 -17.42 0.53 2.32 -0.55 1.347 -0.241 1014.5
0.925 13.46 74.52 -24.50 0.55 2.33 -0.77 1.340 -0.331 1082.0
0.975 17.12 79.41 -39.67 0.67 2.48 -1.25 1.306 -0.478 1413.0
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Table C.13: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.6.2 with loading
angle ω = −10.3◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 14.03 75.70 37.88 0.57 2.37 1.20 1.336 0.481 1273.1
0.075 11.00 71.59 23.09 0.46 2.24 0.73 1.366 0.326 986.9
0.125 10.51 71.47 16.34 0.45 2.24 0.52 1.373 0.236 931.7
0.175 10.33 71.72 12.10 0.44 2.25 0.38 1.376 0.175 914.0
0.225 10.18 72.01 9.05 0.44 2.26 0.29 1.378 0.131 908.3
0.275 10.05 72.25 6.72 0.44 2.27 0.21 1.381 0.097 906.8
0.325 9.94 72.45 4.85 0.43 2.27 0.15 1.382 0.070 907.2
0.375 9.85 72.60 3.28 0.43 2.28 0.10 1.384 0.047 908.0
0.425 9.78 72.69 1.90 0.43 2.28 0.06 1.385 0.027 908.8
0.475 9.75 72.74 0.62 0.43 2.28 0.02 1.386 0.009 909.2
0.525 9.75 72.74 -0.62 0.43 2.28 -0.02 1.386 -0.009 909.2
0.575 9.78 72.69 -1.90 0.43 2.28 -0.06 1.385 -0.027 908.8
0.625 9.85 72.60 -3.28 0.43 2.28 -0.10 1.384 -0.047 908.0
0.675 9.94 72.45 -4.85 0.43 2.27 -0.15 1.382 -0.070 907.2
0.725 10.05 72.25 -6.72 0.44 2.27 -0.21 1.381 -0.097 906.8
0.775 10.18 72.01 -9.05 0.44 2.26 -0.29 1.378 -0.131 908.3
0.825 10.33 71.72 -12.10 0.44 2.25 -0.38 1.376 -0.175 914.0
0.875 10.51 71.47 -16.34 0.45 2.24 -0.52 1.373 -0.236 931.7
0.925 11.00 71.59 -23.09 0.46 2.24 -0.73 1.366 -0.326 986.9
0.975 14.03 75.70 -37.88 0.57 2.37 -1.20 1.336 -0.481 1273.1
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Table C.14: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.5.1 with loading
angle ω = −10.3◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 15.82 75.53 38.94 0.62 2.36 1.23 1.312 0.492 1293.3
0.075 12.31 70.37 24.64 0.50 2.20 0.78 1.346 0.351 976.9
0.125 11.60 69.79 17.78 0.48 2.18 0.56 1.354 0.261 904.9
0.175 11.23 69.87 13.32 0.47 2.19 0.42 1.360 0.197 879.0
0.225 10.94 70.10 10.06 0.46 2.20 0.32 1.364 0.149 868.8
0.275 10.70 70.33 7.52 0.45 2.20 0.24 1.368 0.112 864.9
0.325 10.51 70.53 5.46 0.45 2.21 0.17 1.371 0.081 863.9
0.375 10.36 70.68 3.71 0.44 2.22 0.12 1.373 0.055 864.0
0.425 10.26 70.79 2.15 0.44 2.22 0.07 1.375 0.032 864.4
0.475 10.21 70.84 0.71 0.44 2.22 0.02 1.376 0.010 864.7
0.525 10.21 70.84 -0.71 0.44 2.22 -0.02 1.376 -0.010 864.7
0.575 10.26 70.79 -2.15 0.44 2.22 -0.07 1.375 -0.032 864.4
0.625 10.36 70.68 -3.71 0.44 2.22 -0.12 1.373 -0.055 864.0
0.675 10.51 70.53 -5.46 0.45 2.21 -0.17 1.371 -0.081 863.9
0.725 10.70 70.33 -7.52 0.45 2.20 -0.24 1.368 -0.112 864.9
0.775 10.94 70.10 -10.06 0.46 2.20 -0.32 1.364 -0.149 868.8
0.825 11.23 69.87 -13.32 0.47 2.19 -0.42 1.360 -0.197 879.0
0.875 11.60 69.79 -17.78 0.48 2.18 -0.56 1.354 -0.261 904.9
0.925 12.31 70.37 -24.64 0.50 2.20 -0.78 1.346 -0.351 976.9
0.975 15.82 75.53 -38.94 0.62 2.36 -1.23 1.312 -0.492 1293.3
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Table C.15: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.4.1 with loading
angle ω = −10.5◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 15.52 73.64 38.15 0.61 2.30 1.21 1.311 0.493 1232.6
0.075 12.20 68.60 24.28 0.50 2.15 0.77 1.343 0.354 931.3
0.125 11.64 68.02 17.65 0.48 2.13 0.56 1.349 0.265 863.1
0.175 11.36 68.08 13.31 0.47 2.13 0.42 1.354 0.202 837.7
0.225 11.12 68.28 10.12 0.46 2.14 0.32 1.357 0.154 827.2
0.275 10.91 68.48 7.61 0.46 2.14 0.24 1.361 0.116 822.8
0.325 10.73 68.66 5.55 0.45 2.15 0.18 1.364 0.085 821.1
0.375 10.60 68.80 3.78 0.45 2.16 0.12 1.366 0.058 820.7
0.425 10.52 68.89 2.20 0.45 2.16 0.07 1.367 0.033 820.7
0.475 10.47 68.94 0.72 0.44 2.16 0.02 1.368 0.011 820.8
0.525 10.47 68.94 -0.72 0.44 2.16 -0.02 1.368 -0.011 820.8
0.575 10.52 68.89 -2.20 0.45 2.16 -0.07 1.367 -0.033 820.7
0.625 10.60 68.80 -3.78 0.45 2.16 -0.12 1.366 -0.058 820.7
0.675 10.73 68.66 -5.55 0.45 2.15 -0.18 1.364 -0.085 821.1
0.725 10.91 68.48 -7.61 0.46 2.14 -0.24 1.361 -0.116 822.8
0.775 11.12 68.28 -10.12 0.46 2.14 -0.32 1.357 -0.154 827.2
0.825 11.36 68.08 -13.31 0.47 2.13 -0.42 1.354 -0.202 837.7
0.875 11.64 68.02 -17.65 0.48 2.13 -0.56 1.349 -0.265 863.1
0.925 12.20 68.60 -24.28 0.50 2.15 -0.77 1.343 -0.354 931.3
0.975 15.52 73.64 -38.15 0.61 2.30 -1.21 1.311 -0.493 1232.6
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Table C.16: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.7.1 with loading
angle ω = −12.7◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 7.25 81.05 39.75 0.36 2.55 1.26 1.430 0.478 1417.9
0.075 3.88 76.55 24.60 0.25 2.41 0.78 1.468 0.328 1106.7
0.125 3.98 76.41 17.53 0.25 2.41 0.55 1.467 0.238 1046.6
0.175 4.30 76.75 13.03 0.26 2.42 0.41 1.463 0.178 1029.7
0.225 4.56 77.13 9.79 0.27 2.43 0.31 1.460 0.134 1026.0
0.275 4.73 77.46 7.30 0.28 2.44 0.23 1.458 0.099 1026.7
0.325 4.84 77.72 5.28 0.28 2.45 0.17 1.457 0.072 1028.8
0.375 4.91 77.91 3.58 0.28 2.45 0.11 1.456 0.049 1031.0
0.425 4.95 78.03 2.07 0.28 2.46 0.07 1.455 0.028 1032.7
0.475 4.97 78.09 0.68 0.29 2.46 0.02 1.455 0.009 1033.6
0.525 4.97 78.09 -0.68 0.29 2.46 -0.02 1.455 -0.009 1033.6
0.575 4.95 78.03 -2.07 0.28 2.46 -0.07 1.455 -0.028 1032.7
0.625 4.91 77.91 -3.58 0.28 2.45 -0.11 1.456 -0.049 1031.0
0.675 4.84 77.72 -5.28 0.28 2.45 -0.17 1.457 -0.072 1028.8
0.725 4.73 77.46 -7.30 0.28 2.44 -0.23 1.458 -0.099 1026.7
0.775 4.56 77.13 -9.79 0.27 2.43 -0.31 1.460 -0.134 1026.0
0.825 4.30 76.75 -13.03 0.26 2.42 -0.41 1.463 -0.178 1029.7
0.875 3.98 76.41 -17.53 0.25 2.41 -0.55 1.467 -0.238 1046.6
0.925 3.88 76.55 -24.60 0.25 2.41 -0.78 1.468 -0.328 1106.7
0.975 7.25 81.05 -39.75 0.36 2.55 -1.26 1.430 -0.478 1417.9
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Table C.17: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.11.2 with loading
angle ω = −12.9◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 11.96 92.13 48.27 0.53 2.89 1.53 1.390 0.504 1899.7
0.075 6.62 85.79 31.64 0.35 2.70 1.00 1.442 0.372 1439.8
0.125 5.61 85.00 23.38 0.32 2.67 0.74 1.453 0.283 1328.7
0.175 5.35 85.02 17.90 0.31 2.68 0.57 1.456 0.219 1285.8
0.225 5.27 85.26 13.78 0.31 2.68 0.44 1.457 0.169 1267.8
0.275 5.24 85.52 10.48 0.31 2.69 0.33 1.458 0.129 1260.1
0.325 5.23 85.76 7.70 0.31 2.70 0.24 1.458 0.095 1257.3
0.375 5.22 85.94 5.28 0.31 2.71 0.17 1.458 0.065 1256.6
0.425 5.21 86.06 3.09 0.31 2.71 0.10 1.458 0.038 1256.7
0.475 5.21 86.13 1.02 0.31 2.71 0.03 1.458 0.012 1256.9
0.525 5.21 86.13 -1.02 0.31 2.71 -0.03 1.458 -0.012 1256.9
0.575 5.21 86.06 -3.09 0.31 2.71 -0.10 1.458 -0.038 1256.7
0.625 5.22 85.94 -5.28 0.31 2.71 -0.17 1.458 -0.065 1256.6
0.675 5.23 85.76 -7.70 0.31 2.70 -0.24 1.458 -0.095 1257.3
0.725 5.24 85.52 -10.48 0.31 2.69 -0.33 1.458 -0.129 1260.1
0.775 5.27 85.26 -13.78 0.31 2.68 -0.44 1.457 -0.169 1267.8
0.825 5.35 85.02 -17.90 0.31 2.68 -0.57 1.456 -0.219 1285.8
0.875 5.61 85.00 -23.38 0.32 2.67 -0.74 1.453 -0.283 1328.7
0.925 6.62 85.79 -31.64 0.35 2.70 -1.00 1.442 -0.372 1439.8
0.975 11.96 92.13 -48.27 0.53 2.89 -1.53 1.390 -0.504 1899.7
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Table C.18: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.7.2 with loading
angle ω = −12.9◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 8.63 78.79 38.70 0.40 2.47 1.22 1.410 0.478 1345.0
0.075 5.47 74.71 23.99 0.30 2.35 0.76 1.446 0.328 1056.6
0.125 5.38 74.65 17.20 0.29 2.35 0.54 1.447 0.239 1001.7
0.175 5.55 74.96 12.85 0.30 2.36 0.41 1.445 0.179 984.9
0.225 5.70 75.30 9.69 0.30 2.37 0.31 1.443 0.135 980.3
0.275 5.80 75.59 7.24 0.31 2.38 0.23 1.442 0.101 980.0
0.325 5.87 75.82 5.25 0.31 2.38 0.17 1.442 0.073 981.3
0.375 5.91 75.98 3.57 0.31 2.39 0.11 1.441 0.050 982.9
0.425 5.93 76.10 2.07 0.31 2.39 0.07 1.441 0.029 984.2
0.475 5.94 76.15 0.68 0.31 2.40 0.02 1.441 0.009 984.8
0.525 5.94 76.15 -0.68 0.31 2.40 -0.02 1.441 -0.009 984.9
0.575 5.93 76.10 -2.07 0.31 2.39 -0.07 1.441 -0.029 984.2
0.625 5.91 75.98 -3.57 0.31 2.39 -0.11 1.441 -0.050 982.9
0.675 5.87 75.82 -5.25 0.31 2.38 -0.17 1.442 -0.073 981.3
0.725 5.80 75.59 -7.24 0.31 2.38 -0.23 1.442 -0.101 980.0
0.775 5.70 75.30 -9.69 0.30 2.37 -0.31 1.443 -0.135 980.3
0.825 5.55 74.96 -12.85 0.30 2.36 -0.41 1.445 -0.179 984.9
0.875 5.38 74.65 -17.20 0.29 2.35 -0.54 1.447 -0.239 1001.8
0.925 5.47 74.71 -23.99 0.30 2.35 -0.76 1.446 -0.328 1056.6
0.975 8.63 78.79 -38.70 0.40 2.47 -1.22 1.410 -0.478 1345.0
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Table C.19: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.13.2 with loading
angle ω = −12.9◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 9.03 82.79 42.15 0.42 2.60 1.33 1.410 0.493 1508.2
0.075 5.10 77.42 26.94 0.29 2.44 0.85 1.453 0.353 1153.9
0.125 4.87 76.90 19.60 0.28 2.42 0.62 1.456 0.264 1075.1
0.175 5.02 77.05 14.81 0.29 2.43 0.47 1.454 0.201 1047.9
0.225 5.17 77.33 11.27 0.29 2.43 0.36 1.452 0.153 1038.1
0.275 5.27 77.61 8.49 0.29 2.44 0.27 1.451 0.115 1035.0
0.325 5.33 77.84 6.20 0.30 2.45 0.20 1.450 0.084 1034.8
0.375 5.37 78.01 4.23 0.30 2.45 0.13 1.450 0.057 1035.5
0.425 5.39 78.13 2.46 0.30 2.46 0.08 1.450 0.033 1036.3
0.475 5.40 78.18 0.81 0.30 2.46 0.03 1.450 0.011 1036.8
0.525 5.40 78.18 -0.81 0.30 2.46 -0.03 1.450 -0.011 1036.9
0.575 5.39 78.13 -2.46 0.30 2.46 -0.08 1.450 -0.033 1036.3
0.625 5.37 78.01 -4.23 0.30 2.45 -0.13 1.450 -0.057 1035.5
0.675 5.33 77.84 -6.20 0.30 2.45 -0.20 1.450 -0.084 1034.8
0.725 5.27 77.61 -8.49 0.29 2.44 -0.27 1.451 -0.115 1035.0
0.775 5.17 77.33 -11.27 0.29 2.43 -0.36 1.452 -0.153 1038.1
0.825 5.02 77.05 -14.81 0.29 2.43 -0.47 1.454 -0.201 1047.9
0.875 4.87 76.90 -19.60 0.28 2.42 -0.62 1.456 -0.264 1075.1
0.925 5.10 77.42 -26.94 0.29 2.44 -0.85 1.453 -0.353 1153.9
0.975 9.03 82.79 -42.15 0.42 2.60 -1.33 1.410 -0.493 1508.2
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Table C.20: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.5.2 with loading
angle ω = −13.0◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 9.15 80.21 39.79 0.42 2.52 1.26 1.405 0.482 1400.8
0.075 6.06 76.12 24.50 0.32 2.39 0.77 1.439 0.328 1098.4
0.125 5.97 76.13 17.56 0.31 2.39 0.56 1.441 0.239 1042.9
0.175 6.14 76.46 13.18 0.32 2.40 0.42 1.439 0.180 1026.2
0.225 6.29 76.80 9.99 0.32 2.42 0.32 1.437 0.137 1021.3
0.275 6.39 77.09 7.51 0.33 2.42 0.24 1.436 0.103 1020.6
0.325 6.46 77.31 5.47 0.33 2.43 0.17 1.435 0.075 1021.5
0.375 6.49 77.47 3.72 0.33 2.44 0.12 1.435 0.051 1022.7
0.425 6.51 77.57 2.17 0.33 2.44 0.07 1.435 0.030 1023.7
0.475 6.52 77.62 0.71 0.33 2.44 0.02 1.435 0.010 1024.3
0.525 6.52 77.62 -0.71 0.33 2.44 -0.02 1.435 -0.010 1024.3
0.575 6.51 77.57 -2.17 0.33 2.44 -0.07 1.435 -0.030 1023.7
0.625 6.49 77.47 -3.72 0.33 2.44 -0.12 1.435 -0.051 1022.7
0.675 6.46 77.31 -5.47 0.33 2.43 -0.17 1.435 -0.075 1021.5
0.725 6.39 77.09 -7.51 0.33 2.42 -0.24 1.436 -0.103 1020.6
0.775 6.29 76.80 -9.99 0.32 2.42 -0.32 1.437 -0.137 1021.4
0.825 6.14 76.46 -13.18 0.32 2.40 -0.42 1.439 -0.180 1026.2
0.875 5.97 76.13 -17.56 0.31 2.39 -0.56 1.441 -0.239 1042.9
0.925 6.06 76.12 -24.50 0.32 2.39 -0.77 1.439 -0.328 1098.4
0.975 9.15 80.21 -39.79 0.42 2.52 -1.26 1.405 -0.482 1400.8
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Table C.21: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD2.8.1 with loading
angle ω = 2.0◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 17.29 -17.36 -1.64 0.52 -0.58 -0.05 -0.839 -0.071 130.3
0.075 20.76 -16.64 -3.03 0.63 -0.56 -0.10 -0.728 -0.120 135.0
0.125 20.76 -16.23 -2.91 0.63 -0.55 -0.09 -0.716 -0.117 127.5
0.175 20.32 -15.99 -2.53 0.62 -0.54 -0.08 -0.719 -0.103 120.1
0.225 19.87 -15.83 -2.12 0.60 -0.53 -0.07 -0.725 -0.088 114.2
0.275 19.49 -15.70 -1.71 0.59 -0.53 -0.05 -0.730 -0.072 109.7
0.325 19.19 -15.61 -1.32 0.58 -0.52 -0.04 -0.735 -0.056 106.3
0.375 18.98 -15.54 -0.93 0.57 -0.52 -0.03 -0.738 -0.040 104.0
0.425 18.84 -15.50 -0.56 0.57 -0.52 -0.02 -0.740 -0.024 102.4
0.475 18.77 -15.47 -0.18 0.57 -0.52 -0.01 -0.741 -0.008 101.7
0.525 18.77 -15.47 0.18 0.57 -0.52 0.01 -0.741 0.008 101.7
0.575 18.84 -15.50 0.56 0.57 -0.52 0.02 -0.740 0.024 102.4
0.625 18.98 -15.54 0.93 0.57 -0.52 0.03 -0.738 0.040 104.0
0.675 19.19 -15.61 1.32 0.58 -0.52 0.04 -0.735 0.056 106.3
0.725 19.49 -15.70 1.71 0.59 -0.53 0.05 -0.730 0.072 109.7
0.775 19.87 -15.83 2.12 0.60 -0.53 0.07 -0.725 0.088 114.2
0.825 20.32 -15.99 2.53 0.62 -0.54 0.08 -0.719 0.103 120.1
0.875 20.76 -16.23 2.91 0.63 -0.55 0.09 -0.716 0.117 127.5
0.925 20.76 -16.64 3.03 0.63 -0.56 0.10 -0.728 0.120 135.0
0.975 17.29 -17.36 1.64 0.52 -0.58 0.05 -0.839 0.071 130.3
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Table C.22: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD2.7.1 with loading
angle ω = 2.3◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 17.19 -24.74 -1.45 0.50 -0.81 -0.05 -1.016 -0.051 168.4
0.075 21.19 -24.57 -1.35 0.63 -0.81 -0.04 -0.911 -0.044 185.5
0.125 21.64 -24.48 -0.91 0.64 -0.81 -0.03 -0.899 -0.029 185.1
0.175 21.41 -24.43 -0.51 0.64 -0.81 -0.02 -0.903 -0.017 181.4
0.225 21.05 -24.39 -0.25 0.62 -0.80 -0.01 -0.911 -0.008 177.6
0.275 20.71 -24.34 -0.10 0.61 -0.80 0.00 -0.918 -0.003 174.1
0.325 20.43 -24.30 -0.02 0.61 -0.80 0.00 -0.924 -0.001 171.3
0.375 20.21 -24.26 0.02 0.60 -0.80 0.00 -0.928 0.001 169.2
0.425 20.07 -24.23 0.02 0.59 -0.80 0.00 -0.931 0.001 167.9
0.475 20.00 -24.22 0.01 0.59 -0.80 0.00 -0.933 0.000 167.2
0.525 20.00 -24.22 -0.01 0.59 -0.80 0.00 -0.933 0.000 167.2
0.575 20.07 -24.23 -0.02 0.59 -0.80 0.00 -0.931 -0.001 167.9
0.625 20.21 -24.26 -0.02 0.60 -0.80 0.00 -0.928 -0.001 169.2
0.675 20.43 -24.30 0.02 0.61 -0.80 0.00 -0.924 0.001 171.3
0.725 20.71 -24.34 0.10 0.61 -0.80 0.00 -0.918 0.003 174.1
0.775 21.05 -24.39 0.25 0.62 -0.80 0.01 -0.911 0.008 177.6
0.825 21.41 -24.43 0.51 0.64 -0.81 0.02 -0.903 0.017 181.4
0.875 21.64 -24.48 0.91 0.64 -0.81 0.03 -0.899 0.029 185.1
0.925 21.19 -24.57 1.35 0.63 -0.81 0.04 -0.911 0.044 185.5
0.975 17.19 -24.74 1.45 0.50 -0.81 0.05 -1.016 0.051 168.4
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Table C.23: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD2.7.2 with loading
angle ω = 1.9◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 15.57 -56.42 -16.46 0.40 -1.81 -0.52 -1.353 -0.290 646.0
0.075 22.71 -53.80 -12.44 0.63 -1.74 -0.39 -1.223 -0.222 611.0
0.125 23.42 -53.10 -9.62 0.65 -1.72 -0.30 -1.207 -0.174 589.2
0.175 23.10 -52.82 -7.44 0.64 -1.71 -0.24 -1.211 -0.136 573.2
0.225 22.62 -52.68 -5.72 0.63 -1.70 -0.18 -1.217 -0.106 561.8
0.275 22.17 -52.59 -4.35 0.61 -1.70 -0.14 -1.224 -0.081 553.6
0.325 21.81 -52.52 -3.19 0.60 -1.69 -0.10 -1.229 -0.059 547.6
0.375 21.54 -52.48 -2.19 0.59 -1.69 -0.07 -1.233 -0.041 543.5
0.425 21.36 -52.45 -1.28 0.59 -1.69 -0.04 -1.236 -0.024 540.9
0.475 21.27 -52.43 -0.42 0.59 -1.69 -0.01 -1.237 -0.008 539.6
0.525 21.27 -52.43 0.42 0.59 -1.69 0.01 -1.237 0.008 539.6
0.575 21.36 -52.45 1.28 0.59 -1.69 0.04 -1.236 0.024 540.9
0.625 21.54 -52.48 2.19 0.59 -1.69 0.07 -1.233 0.041 543.5
0.675 21.81 -52.52 3.19 0.60 -1.69 0.10 -1.229 0.059 547.6
0.725 22.17 -52.59 4.34 0.61 -1.70 0.14 -1.224 0.081 553.6
0.775 22.62 -52.68 5.72 0.63 -1.70 0.18 -1.217 0.106 561.8
0.825 23.10 -52.82 7.44 0.64 -1.71 0.24 -1.211 0.136 573.2
0.875 23.42 -53.10 9.62 0.65 -1.72 0.30 -1.207 0.174 589.2
0.925 22.71 -53.80 12.44 0.63 -1.74 0.39 -1.223 0.222 611.0
0.975 15.57 -56.42 16.46 0.40 -1.81 0.52 -1.353 0.290 646.0
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Table C.24: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD1.13.1 with loading
angle ω = 4.9◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 11.31 -62.12 -22.15 0.26 -1.98 -0.70 -1.443 -0.356 766.2
0.075 18.11 -58.33 -16.35 0.48 -1.87 -0.52 -1.322 -0.277 680.4
0.125 19.20 -57.40 -12.47 0.51 -1.84 -0.39 -1.300 -0.215 647.9
0.175 19.27 -57.06 -9.64 0.51 -1.83 -0.30 -1.297 -0.168 629.9
0.225 19.10 -56.90 -7.47 0.51 -1.83 -0.24 -1.299 -0.131 618.7
0.275 18.88 -56.80 -5.71 0.50 -1.82 -0.18 -1.302 -0.101 610.9
0.325 18.68 -56.73 -4.23 0.50 -1.82 -0.13 -1.305 -0.075 605.4
0.375 18.51 -56.68 -2.91 0.49 -1.82 -0.09 -1.307 -0.052 601.7
0.425 18.40 -56.65 -1.71 0.49 -1.82 -0.05 -1.309 -0.030 599.4
0.475 18.34 -56.63 -0.56 0.49 -1.82 -0.02 -1.310 -0.010 598.3
0.525 18.34 -56.63 0.56 0.49 -1.82 0.02 -1.310 0.010 598.3
0.575 18.40 -56.65 1.71 0.49 -1.82 0.05 -1.309 0.030 599.4
0.625 18.51 -56.68 2.91 0.49 -1.82 0.09 -1.307 0.052 601.7
0.675 18.68 -56.73 4.23 0.50 -1.82 0.13 -1.305 0.075 605.4
0.725 18.88 -56.80 5.71 0.50 -1.82 0.18 -1.302 0.101 610.9
0.775 19.10 -56.90 7.47 0.51 -1.83 0.24 -1.299 0.131 618.7
0.825 19.27 -57.06 9.64 0.51 -1.83 0.30 -1.297 0.168 629.9
0.875 19.20 -57.40 12.47 0.51 -1.84 0.39 -1.300 0.215 647.9
0.925 18.11 -58.33 16.35 0.48 -1.87 0.52 -1.322 0.277 680.4
0.975 11.31 -62.12 22.15 0.26 -1.98 0.70 -1.443 0.356 766.2
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Table C.25: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD2.8.2 with loading
angle ω = 5.1◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 9.39 -57.01 -18.70 0.20 -1.82 -0.59 -1.459 -0.331 641.0
0.075 16.38 -54.01 -13.98 0.43 -1.73 -0.44 -1.328 -0.257 581.1
0.125 17.70 -53.33 -10.86 0.47 -1.71 -0.34 -1.302 -0.202 558.6
0.175 17.94 -53.09 -8.50 0.48 -1.71 -0.27 -1.297 -0.160 545.2
0.225 17.90 -52.98 -6.65 0.48 -1.70 -0.21 -1.297 -0.125 536.5
0.275 17.78 -52.91 -5.12 0.47 -1.70 -0.16 -1.299 -0.097 530.4
0.325 17.65 -52.87 -3.80 0.47 -1.70 -0.12 -1.301 -0.072 526.0
0.375 17.54 -52.84 -2.63 0.47 -1.70 -0.08 -1.302 -0.050 523.0
0.425 17.47 -52.82 -1.54 0.46 -1.70 -0.05 -1.303 -0.029 521.1
0.475 17.43 -52.81 -0.51 0.46 -1.70 -0.02 -1.304 -0.010 520.2
0.525 17.43 -52.81 0.51 0.46 -1.70 0.02 -1.304 0.010 520.2
0.575 17.47 -52.82 1.54 0.46 -1.70 0.05 -1.303 0.029 521.1
0.625 17.54 -52.84 2.63 0.47 -1.70 0.08 -1.302 0.050 523.0
0.675 17.65 -52.87 3.80 0.47 -1.70 0.12 -1.301 0.072 526.0
0.725 17.78 -52.91 5.12 0.47 -1.70 0.16 -1.299 0.097 530.4
0.775 17.90 -52.98 6.65 0.48 -1.70 0.21 -1.297 0.125 536.5
0.825 17.94 -53.09 8.50 0.48 -1.71 0.27 -1.297 0.160 545.2
0.875 17.70 -53.33 10.86 0.47 -1.71 0.34 -1.302 0.202 558.6
0.925 16.38 -54.01 13.98 0.43 -1.73 0.44 -1.328 0.257 581.1
0.975 9.39 -57.01 18.70 0.20 -1.82 0.59 -1.459 0.331 641.0
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Table C.26: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD2.1.1 with loading
angle ω = 5.4◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 11.79 -78.21 -26.42 0.24 -2.49 -0.84 -1.473 -0.341 1188.5
0.075 21.14 -74.30 -18.94 0.55 -2.38 -0.60 -1.346 -0.255 1075.4
0.125 22.83 -73.54 -14.42 0.60 -2.36 -0.46 -1.322 -0.196 1040.3
0.175 23.07 -73.31 -11.15 0.61 -2.35 -0.35 -1.318 -0.153 1020.7
0.225 22.93 -73.24 -8.62 0.60 -2.35 -0.27 -1.319 -0.119 1008.4
0.275 22.70 -73.21 -6.58 0.60 -2.35 -0.21 -1.322 -0.091 999.8
0.325 22.46 -73.19 -4.86 0.59 -2.35 -0.15 -1.325 -0.067 993.8
0.375 22.26 -73.18 -3.34 0.58 -2.35 -0.11 -1.327 -0.046 989.7
0.425 22.13 -73.17 -1.96 0.58 -2.35 -0.06 -1.329 -0.027 987.1
0.475 22.05 -73.17 -0.64 0.58 -2.35 -0.02 -1.330 -0.009 985.8
0.525 22.05 -73.17 0.64 0.58 -2.35 0.02 -1.330 0.009 985.8
0.575 22.13 -73.17 1.96 0.58 -2.35 0.06 -1.329 0.027 987.1
0.625 22.26 -73.18 3.34 0.58 -2.35 0.11 -1.327 0.046 989.6
0.675 22.46 -73.19 4.86 0.59 -2.35 0.15 -1.325 0.067 993.8
0.725 22.70 -73.21 6.58 0.60 -2.35 0.21 -1.322 0.091 999.8
0.775 22.93 -73.24 8.62 0.60 -2.35 0.27 -1.319 0.119 1008.4
0.825 23.07 -73.31 11.15 0.61 -2.35 0.35 -1.318 0.153 1020.7
0.875 22.83 -73.54 14.42 0.60 -2.36 0.46 -1.322 0.196 1040.3
0.925 21.14 -74.30 18.94 0.55 -2.38 0.60 -1.346 0.255 1075.4
0.975 11.79 -78.21 26.42 0.24 -2.49 0.84 -1.473 0.341 1188.5
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Table C.27: Averaged total stress intensity factors K
(T )
1 , K

(T )
2 and K

(T )
III from the fourth,

fifth and sixth integration domains, normalized total stress intensity factors K̂
(T )
1 , K̂

(T )
2

and K
(T )
III calculated for L̂ = 100 µm, phase angles ψ̂ and ϕ, and the critical interface

energy release rates Gic along the specimen thickness for specimen BD2.4.2 with loading
angle ω = 9.5◦.

x3/B K
(T )
1 K

(T )
2 K

(T )
III K̂

(T )
1 K̂

(T )
2 K

(T )
III ψ̂ ϕ Gic(

MPa
√
mm(mm)

−iε
)

(MPa
√
mm) (MPa

√
m) (rad) (rad) (N/m)

0.025 -8.27 -83.93 -32.82 -0.40 -2.64 -1.04 -1.721 -0.392 1405.3
0.075 1.43 -78.67 -23.91 -0.08 -2.49 -0.76 -1.605 -0.312 1153.6
0.125 3.94 -77.64 -18.65 0.00 -2.46 -0.59 -1.572 -0.249 1086.1
0.175 4.97 -77.34 -14.73 0.03 -2.45 -0.47 -1.559 -0.199 1055.0
0.225 5.51 -77.26 -11.59 0.05 -2.45 -0.37 -1.552 -0.157 1038.2
0.275 5.81 -77.24 -8.96 0.06 -2.45 -0.28 -1.548 -0.122 1027.9
0.325 5.99 -77.23 -6.67 0.06 -2.45 -0.21 -1.545 -0.091 1021.4
0.375 6.10 -77.24 -4.62 0.07 -2.45 -0.15 -1.544 -0.063 1017.4
0.425 6.16 -77.24 -2.71 0.07 -2.45 -0.09 -1.543 -0.037 1015.0
0.475 6.18 -77.25 -0.90 0.07 -2.45 -0.03 -1.543 -0.012 1013.8
0.525 6.18 -77.25 0.90 0.07 -2.45 0.03 -1.543 0.012 1013.8
0.575 6.16 -77.24 2.71 0.07 -2.45 0.09 -1.543 0.037 1015.0
0.625 6.10 -77.24 4.62 0.07 -2.45 0.15 -1.544 0.063 1017.4
0.675 5.99 -77.23 6.67 0.06 -2.45 0.21 -1.545 0.091 1021.4
0.725 5.81 -77.24 8.96 0.06 -2.45 0.28 -1.548 0.122 1027.9
0.775 5.51 -77.26 11.59 0.05 -2.45 0.37 -1.552 0.157 1038.2
0.825 4.97 -77.34 14.73 0.03 -2.45 0.47 -1.559 0.199 1055.1
0.875 3.94 -77.64 18.65 0.00 -2.46 0.59 -1.572 0.249 1086.1
0.925 1.43 -78.67 23.91 -0.08 -2.49 0.76 -1.605 0.312 1153.6
0.975 -8.27 -83.93 32.82 -0.40 -2.64 1.04 -1.721 0.392 1405.3
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Appendix D

Tabulated results measured from the
C-ELS tests

As described in Section 5.3, six C-ELS specimens were tested quasi-statically. For each

C-ELS specimen, values of the delamination length a between the load-line and the de-

lamination tip were measured by the ImageJ (2015) software from images obtained during

the PC (second) stage of the test. These values, as well as the synchronized values of the

load P and actuator displacement d are presented in the first through third columns of

Tables D.1 through D.6. Values of the compliance C were calculated for each delamination

length using eq. (5.12) and the results are presented in the fourth column of these tables.

In addition, the stress intensity factors resulting from applied loads were calculated based

on FEA results by means of VCCT (Farkash and Banks-Sills, 2016). For each measured

delamination length a, the obtained Km (m = 1, 2) values were normalized by means of

eq. (1.26) with L̂ = 100 µm. The results are presented for each delamination length in

columns five and six of Tables D.1 through D.6.

To obtain GIIR as a function of the delamination extension ∆a two methods were

used, namely, the J-integral and the ECM; both methods are described in Sections 5.3.1

and 5.2, respectively. The resulting GIIR values which were calculated by means of the

J-integral with eq. (5.15) are presented in the seventh column of Tables D.1 through D.6.

In the eighth column of these tables, the resulting GIIR values calculated with ECM using

eq. (5.9) and the fitting parameter m from Table 5.12, are shown. Finally, in the last

column of Tables D.1 through D.6, the values of ψ̂ which were obtained from eq. (3.19)

using K̂1 and K̂2 in columns five and six of Tables D.1 through D.6 for each delamination

length, are shown. Note that the in-plane mode mixity obtained for each specimen remains

approximately constant for all delamination length values for all specimens.
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Table D.1: Dimensions from the test, as well as analysis results for specimen CELS-2-2.

a P d C K̂1 K̂2 GIIR (J-int) GIIR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (MPa

√
m) (N/m) (N/m) (rad)

51.8 164.6 10.5 0.070 0.32 2.53 841.0 841.0 1.445
59.2 150.8 15.7 0.106 0.34 2.65 904.9 870.9 1.441
61.1 156.5 16.7 0.108 0.37 2.83 1036.5 998.8 1.441
61.4 156.8 16.8 0.108 0.37 2.85 1048.4 1010.4 1.441
62.9 159.2 17.5 0.111 0.39 2.96 1136.2 1096.1 1.440
65.0 158.8 17.9 0.113 0.40 3.05 1205.4 1164.4 1.439
65.2 159.0 18.1 0.114 0.41 3.06 1214.0 1172.8 1.439
67.1 156.3 18.4 0.118 0.41 3.10 1243.0 1202.2 1.439
68.7 153.4 18.6 0.121 0.42 3.11 1252.1 1212.1 1.438
70.3 150.1 18.7 0.124 0.42 3.11 1252.6 1213.5 1.438
71.7 146.4 18.9 0.127 0.42 3.10 1239.2 1201.4 1.437
72.4 142.3 19.0 0.131 0.41 3.04 1194.9 1158.9 1.437
74.6 138.9 19.1 0.135 0.41 3.06 1208.8 1173.5 1.436
74.8 137.8 19.2 0.136 0.41 3.04 1194.1 1159.3 1.436
77.6 132.4 19.3 0.142 0.41 3.03 1185.1 1152.1 1.436
78.6 129.0 19.3 0.145 0.41 2.99 1153.3 1121.5 1.435

Table D.2: Dimensions from the test, as well as analysis results for specimen CELS-2-3.

a P d C K̂1 K̂2 GIIR (J-int) GIIR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (MPa

√
m) (N/m) (N/m) (rad)

53.1 189.4 11.1 0.063 0.36 2.90 1082.4 1082.4 1.446
58.0 175.3 16.5 0.096 0.37 2.92 1103.0 1159.0 1.444
59.7 172.1 16.9 0.100 0.38 2.95 1124.7 1183.2 1.443
61.2 169.0 16.9 0.102 0.38 2.97 1138.5 1199.0 1.443
61.7 167.7 17.0 0.103 0.38 2.97 1137.4 1198.3 1.442
63.9 165.0 17.0 0.105 0.39 3.02 1180.2 1245.1 1.442
65.2 161.9 17.1 0.107 0.39 3.03 1184.4 1250.7 1.441
67.7 157.0 17.6 0.113 0.40 3.04 1197.9 1266.7 1.440
69.2 158.5 18.4 0.117 0.41 3.14 1275.4 1349.8 1.440
70.6 158.0 18.8 0.119 0.42 3.19 1316.6 1394.4 1.439
71.5 157.5 19.2 0.122 0.43 3.22 1342.8 1422.9 1.439
73.6 156.6 19.6 0.125 0.44 3.30 1404.5 1489.7 1.439
74.2 152.8 19.8 0.129 0.43 3.24 1359.6 1442.5 1.438
75.9 151.8 19.9 0.130 0.44 3.29 1400.9 1487.6 1.438
77.0 149.3 19.9 0.132 0.44 3.29 1396.3 1483.4 1.438
77.9 141.3 20.3 0.142 0.42 3.14 1276.1 1356.2 1.437
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Table D.3: Dimensions from the test, as well as analysis results for specimen CELS-2-4.

a P d C K̂1 K̂2 GIIR (J-int) GIIR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (MPa

√
m) (N/m) (N/m) (rad)

52.7 189.4 11.8 0.068 0.32 2.62 888.9 888.9 1.448
57.0 165.5 15.3 0.095 0.34 2.69 930.8 1033.4 1.445
59.2 168.2 15.9 0.096 0.36 2.83 1034.1 1150.1 1.444
59.6 170.4 16.4 0.098 0.37 2.89 1077.1 1198.3 1.444
62.1 168.8 16.8 0.101 0.38 2.98 1147.2 1278.6 1.443
63.7 166.9 17.3 0.104 0.39 3.02 1175.3 1311.2 1.443
65.2 167.8 17.7 0.105 0.40 3.10 1243.1 1388.1 1.442
65.5 166.7 17.8 0.107 0.40 3.10 1238.6 1383.4 1.442
67.0 156.5 17.9 0.113 0.39 2.98 1144.0 1279.0 1.441
68.5 148.5 17.9 0.118 0.38 2.88 1074.3 1202.0 1.441
70.5 145.2 17.9 0.120 0.38 2.90 1087.6 1218.3 1.440
71.6 140.9 18.0 0.124 0.38 2.86 1055.9 1183.5 1.440
73.8 140.3 18.0 0.124 0.39 2.93 1111.6 1247.3 1.439
74.6 135.2 18.0 0.128 0.38 2.85 1052.6 1181.6 1.439

Table D.4: Dimensions from the test, as well as analysis results for specimen CELS-2-5.

a P d C K̂1 K̂2 GIIR (J-int) GIIR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (MPa

√
m) (N/m) (N/m) (rad)

52.8 158.8 12.7 0.086 0.30 2.41 716.8 716.8 1.446
58.1 149.4 16.6 0.114 0.32 2.49 801.6 944.9 1.444
59.7 152.1 17.2 0.116 0.33 2.61 877.0 1035.0 1.443
61.7 154.0 17.6 0.117 0.35 2.72 958.9 1133.2 1.442
62.6 154.3 17.8 0.119 0.36 2.77 990.7 1171.6 1.442
63.5 152.1 18.1 0.121 0.36 2.77 988.9 1170.1 1.442
65.7 151.2 18.2 0.123 0.37 2.84 1044.0 1236.9 1.441
67.6 146.6 18.7 0.130 0.37 2.84 1038.9 1232.3 1.440
68.5 143.8 18.8 0.132 0.37 2.82 1024.8 1216.2 1.440
68.9 141.4 18.8 0.135 0.37 2.79 1003.5 1191.0 1.440
71.3 139.7 18.9 0.136 0.38 2.85 1046.9 1244.2 1.439
73.1 134.3 19.1 0.143 0.37 2.80 1016.0 1208.5 1.439
74.1 134.1 19.3 0.144 0.38 2.84 1041.1 1238.9 1.438
74.8 135.3 19.8 0.147 0.39 2.89 1079.0 1284.5 1.438
75.3 133.7 20.2 0.151 0.38 2.87 1067.8 1271.4 1.438
76.7 130.3 20.5 0.157 0.38 2.85 1051.5 1252.8 1.438
77.9 129.0 20.6 0.159 0.38 2.87 1063.8 1268.2 1.437
79.0 126.8 20.8 0.162 0.38 2.86 1056.5 1260.0 1.437
79.8 125.8 21.1 0.166 0.39 2.86 1060.0 1264.6 1.437
82.7 123.0 21.4 0.171 0.39 2.90 1088.1 1299.6 1.436
83.9 119.2 21.4 0.176 0.39 2.85 1051.9 1256.9 1.436
84.3 116.6 21.4 0.180 0.38 2.80 1015.1 1213.1 1.436
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Table D.5: Dimensions from the test, as well as analysis results for specimen CELS-2-6.

a P d C K̂1 K̂2 GIIR (J-int) GIIR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (MPa

√
m) (N/m) (N/m) (rad)

52.8 158.8 12.7 0.086 0.30 2.43 761.7 761.7 1.447
57.7 164.5 16.0 0.097 0.34 2.70 939.9 1042.0 1.445
58.0 165.3 16.4 0.098 0.35 2.73 959.1 1063.6 1.445
59.2 164.8 16.5 0.099 0.35 2.77 993.6 1102.9 1.444
60.6 164.1 16.6 0.100 0.36 2.83 1031.0 1145.5 1.444
61.6 163.8 16.9 0.102 0.37 2.87 1060.4 1179.1 1.443
66.2 147.2 17.3 0.115 0.36 2.76 987.3 1101.0 1.442
67.1 143.0 17.3 0.119 0.35 2.72 955.3 1065.9 1.441
69.8 138.0 17.4 0.123 0.36 2.73 961.8 1074.7 1.440
71.2 136.5 17.4 0.124 0.36 2.75 976.7 1092.2 1.440
74.1 138.2 18.8 0.132 0.38 2.89 1082.5 1212.2 1.439
76.5 136.9 19.3 0.137 0.39 2.96 1133.5 1270.7 1.439
77.1 136.7 19.3 0.137 0.40 2.98 1148.3 1287.7 1.438
77.8 133.6 19.6 0.142 0.39 2.94 1116.5 1252.4 1.438
80.3 131.5 19.7 0.144 0.40 2.98 1148.5 1289.6 1.438

Table D.6: Dimensions from the test, as well as analysis results for specimen CELS-2-7.

a P d C K̂1 K̂2 GIIR (J-int) GIIR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (MPa

√
m) (N/m) (N/m) (rad)

52.9 146.9 9.7 0.066 0.30 2.35 711.6 711.6 1.445
57.9 154.5 16.5 0.107 0.33 2.60 872.8 809.6 1.443
59.2 154.9 16.7 0.108 0.34 2.66 916.6 851.1 1.442
61.1 152.8 17.1 0.112 0.35 2.71 949.0 882.4 1.442
62.7 153.0 17.3 0.113 0.36 2.78 1000.5 931.2 1.441
65.7 151.1 18.1 0.119 0.38 2.88 1071.5 999.2 1.440
68.9 145.3 18.4 0.125 0.39 2.90 1088.4 1016.8 1.439
71.4 139.3 18.5 0.130 0.38 2.88 1070.3 1001.2 1.438
73.1 137.1 18.5 0.132 0.39 2.90 1087.1 1017.7 1.438
74.2 135.9 18.5 0.133 0.39 2.92 1101.1 1031.4 1.437
76.2 129.3 18.6 0.140 0.38 2.85 1050.5 984.9 1.437
77.4 125.9 19.0 0.146 0.38 2.82 1027.5 963.8 1.437
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Appendix E

Tabulated results measured from the
MMELS tests

Five MMELS specimens were tested, as described in Section 5.4. In Section E.1, values

measured and obtained from the PC (second) test stage are given. In addition, values

obtained from the analyses of the results such as the energy release rate and phase angles,

integrated through the width of each specimen, are presented. The fitting parameters

used to determine K
(f)
m and K

(r)
m (m = 1, 2, III ) for each specimen by means of eqs. (5.1)

and (5.3), respectively, are presented in Section E.2.

E.1 Specimen dimensions and analysis results

For each MMELS specimen, values of the delamination length a between the load-line

and the delamination tip were measured by the ImageJ (2015) software from the images

obtained during the PC stage of the test. These values, as well as the synchronized load P

and actuator displacement d are presented in the first through third columns of Tables E.1

through E.5. Values of the compliance C were calculated for each delamination length

using eq. (5.12) and the results are presented in the fourth column of these tables. In

addition, the expressions for the stress intensity factors resulting from the applied load,

as well as those resulting from residual curing stresses in eqs. (5.1) and (5.3), respectively,

with the fitting parameters in Tables E.6 through E.11 were superposed in eq. (5.4). The

energy release rate values through the specimen width were then determined by means of

eq. (3.17). The obtained result was then integrated through the width of the specimen

with eq. (5.5) to obtain values of GiR as a function of the delamination extension ∆a, as

described in Sections 5.4.1. The resulting GiR values are presented in the fifth column of

Tables E.1 through E.5. Values of GiR were also determined by means of the ECM, as

described in 5.2. In the sixth column of these tables, the resulting GiR values calculated

with ECM using eq. (5.9) and the fitting parameterm from Table 5.30, are shown. Finally,

in the last column of Tables E.1 through E.5, values of ψ̂ for each delamination length a,
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Table E.1: Data from the test, as well as analysis results for specimen MMELS-1-9.

a P d C GiR (M -int) GiR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (N/m) (N/m) (rad)

55.5 89.4 12.0 0.139 525.4 576.4 0.659
58.9 93.3 13.5 0.148 756.6 708.4 0.660
59.3 92.4 13.5 0.150 733.1 704.0 0.660
60.7 90.4 13.6 0.153 759.6 706.1 0.661
61.5 89.0 13.7 0.157 740.7 702.9 0.661
62.3 86.8 13.7 0.161 737.0 687.3 0.661
64.9 84.5 14.1 0.170 748.2 704.7 0.662
66.7 86.0 15.2 0.179 797.2 772.3 0.663
69.5 82.8 15.2 0.186 816.7 776.5 0.664
71.3 79.7 15.5 0.196 799.9 755.7 0.664
73.7 76.5 16.1 0.210 797.6 747.0 0.665
74.4 76.2 16.1 0.212 804.3 752.4 0.665
77.0 72.4 16.5 0.227 780.1 728.5 0.666
79.5 71.7 17.2 0.238 813.2 762.8 0.666
80.7 69.8 17.4 0.247 789.8 744.5 0.667
81.8 68.8 17.8 0.255 787.8 743.3 0.667
83.9 66.7 18.2 0.269 777.1 734.1 0.667
85.5 65.0 18.5 0.280 765.5 724.6 0.668
87.6 62.6 18.9 0.295 741.5 705.2 0.668

Table E.2: Data from the test, as well as analysis results for specimen MMELS-1-11.

a P d C GiR (M -int) GiR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (N/m) (N/m) (rad)

58.1 96.9 13.7 0.146 807.1 724.8 0.660
58.7 96.5 13.8 0.147 815.5 733.2 0.660
59.6 94.8 13.9 0.150 811.0 730.0 0.660
60.6 93.6 14.0 0.154 817.2 736.6 0.661
61.9 92.8 14.4 0.159 837.2 756.2 0.661
62.9 92.2 14.6 0.162 852.3 770.9 0.662
63.9 92.0 14.9 0.165 872.4 790.1 0.662
65.5 91.8 15.4 0.170 910.9 826.8 0.663
68.0 88.8 15.4 0.176 916.7 834.3 0.663
68.5 84.7 15.5 0.185 846.1 769.9 0.664
70.2 83.0 15.6 0.190 851.9 776.9 0.664
70.6 81.0 15.7 0.195 821.8 749.1 0.664
72.2 84.5 16.6 0.198 932.3 852.2 0.665
73.9 83.7 16.6 0.200 956.7 876.1 0.665
74.7 78.0 16.7 0.214 847.4 775.7 0.665
77.5 75.0 17.0 0.227 841.4 771.9 0.666
79.4 73.6 17.7 0.240 849.7 780.7 0.666
82.2 70.3 18.1 0.255 831.3 765.2 0.667
83.8 67.9 18.3 0.266 803.4 740.0 0.667
86.5 66.4 19.1 0.282 817.2 754.2 0.668

are presented. These values were determined from expressions for ψ̂ which were obtained

using eq. (3.19) with the expressions in eqs. (5.4), for each specimen, and integrated

through the width. Note that the in-plane mode mixity obtained for each specimen

remains approximately constant for all delamination length values.
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Table E.3: Data from the test, as well as analysis results for specimen MMELS-1-12.

a P d C GiR (M -int) GiR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (N/m) (N/m) (rad)

55.2 86.5 10.8 0.129 581.3 497.6 0.659
56.8 87.3 11.2 0.133 622.6 545.1 0.659
57.3 89.8 11.7 0.134 671.0 588.3 0.659
59.0 93.0 12.7 0.140 758.5 667.5 0.660
60.4 90.6 12.8 0.144 753.7 664.5 0.661
61.2 89.6 12.9 0.147 757.2 668.3 0.661
63.6 91.1 13.9 0.155 840.9 745.3 0.662
67.8 86.4 14.7 0.171 855.9 762.3 0.663
69.6 87.8 15.5 0.177 929.0 829.5 0.664
71.1 82.2 15.6 0.190 848.4 758.0 0.664
72.9 80.1 15.7 0.195 844.0 755.2 0.665
73.6 79.7 15.7 0.196 852.3 763.2 0.665
75.4 76.7 15.8 0.203 828.7 742.9 0.665
76.5 76.0 16.2 0.211 835.6 750.0 0.666
77.2 75.7 16.3 0.212 843.1 757.2 0.666
78.9 72.1 16.4 0.223 798.4 717.6 0.666
80.5 70.2 16.7 0.233 786.8 708.0 0.667
82.4 68.9 17.3 0.245 793.5 715.0 0.667
83.7 70.5 18.1 0.250 856.8 773.4 0.667
84.6 70.7 18.4 0.253 878.8 793.9 0.667
86.5 68.3 18.7 0.265 856.8 774.8 0.668

Table E.4: Data from the test, as well as analysis results for specimen MMELS-1-17.

a P d C GiR (M -int) GiR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (N/m) (N/m) (rad)

59.0 91.9 11.9 0.135 751.8 608.6 0.660
61.9 93.8 12.8 0.141 859.7 699.6 0.662
62.9 93.0 12.8 0.143 869.5 708.4 0.662
65.1 95.1 13.7 0.149 971.2 794.2 0.663
65.5 94.4 13.7 0.150 966.8 790.8 0.663
66.7 89.2 13.8 0.158 896.3 733.6 0.663
68.1 88.8 13.8 0.159 922.7 756.6 0.664
69.0 88.5 14.1 0.163 942.0 773.4 0.664
69.6 88.4 14.2 0.165 956.5 785.5 0.664
71.2 86.5 14.7 0.174 955.6 786.3 0.664
71.6 85.4 14.8 0.176 940.9 774.2 0.665
72.8 82.7 14.8 0.182 913.4 752.3 0.665
74.7 78.9 14.8 0.190 872.6 719.7 0.666
75.2 78.3 14.9 0.193 870.9 718.6 0.666
75.8 77.9 14.9 0.194 876.3 723.3 0.666
77.2 74.8 15.1 0.204 834.6 689.4 0.666
77.7 74.8 15.1 0.204 846.6 699.8 0.666
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Table E.5: Data from the test, as well as analysis results for specimen MMELS-1-18.

a P d C GiR (M -int) GiR (ECM) ψ̂
(mm) (N) (mm) (mm/N) (N/m) (N/m) (rad)

56.5 94.7 11.7 0.128 676.4 729.4 0.659
58.1 96.6 12.5 0.134 742.1 803.0 0.660
59.2 95.0 12.6 0.136 743.0 805.5 0.660
59.8 94.2 12.7 0.139 745.0 804.6 0.660
60.9 93.6 13.0 0.142 760.9 808.4 0.661
61.6 93.7 13.2 0.145 780.9 809.8 0.661
62.5 92.6 13.3 0.147 781.9 827.2 0.661
64.8 93.3 14.3 0.156 851.2 849.9 0.662
65.4 93.6 14.5 0.158 870.7 850.1 0.662
65.9 92.9 14.6 0.160 870.3 852.2 0.662
66.1 92.4 14.6 0.162 865.7 849.5 0.662
71.5 88.1 15.6 0.180 916.5 930.9 0.664
72.2 88.2 16.3 0.187 936.3 953.2 0.664
73.0 87.9 16.5 0.190 949.8 953.4 0.664
74.3 82.6 16.6 0.203 867.3 948.5 0.665
75.5 82.0 16.7 0.206 881.4 932.9 0.665
76.2 79.8 16.8 0.213 848.9 954.6 0.665
77.4 78.1 17.0 0.219 837.5 1011.2 0.666
78.1 76.5 17.0 0.224 817.0 1011.0 0.666
79.8 72.7 17.4 0.239 771.8 1023.6 0.666
80.6 73.6 18.0 0.245 805.6 1033.9 0.666
81.5 73.2 18.2 0.248 814.6 1049.4 0.667
82.0 72.7 18.3 0.251 812.8 1054.1 0.667
83.2 71.0 18.5 0.260 796.2 1049.8 0.667
84.4 71.1 18.9 0.266 821.8 951.2 0.667
85.7 70.1 19.1 0.272 822.7 959.7 0.667
86.4 68.2 19.4 0.282 791.2 976.5 0.668
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Table E.6: Constants pi0, (i = 0, 1, .., 5), and pj1, (j = 0, 1, .., 4), of eq. 5.1 for K
(f)
1 for

the MMELS specimens.

MMELS-1-9 MMELS-1-11 MMELS-1-12 MMELS-1-17 MMELS-1-18

p00 (mm−3/2mm−iε) 8.07 ×10−2 8.09 ×10−2 8.03 ×10−2 8.12 ×10−2 8.02×10−2

p10 (mm−5/2mm−iε) -1.65 ×10−2 -1.65 ×10−2 -1.64×10−2 -1.67×10−2 -1.63×10−2

p20 (mm−7/2mm−iε) 1.71 ×10−3 1.70 ×10−3 1.69 ×10−3 1.71 ×10−3 1.67×10−3

p30 (mm−9/2mm−iε) -8.80 ×10−5 -8.76 ×10−5 -8.71×10−5 -8.79×10−5 -8.61×10−5

p40 (mm−11/2mm−iε) 2.22 ×10−6 2.20 ×10−6 2.19 ×10−6 2.20 ×10−6 2.17×10−6

p50 (mm−13/2mm−iε) 1.16 ×10−11 -6.15 ×10−12 3.92 ×10−11 -2.46×10−12 2.02×10−11

p01 (mm−5/2mm−iε) 7.12 ×10−4 6.95 ×10−4 7.13 ×10−4 6.80 ×10−4 7.35×10−4

p11 (mm−7/2mm−iε) 4.43 ×10−3 4.42 ×10−3 4.40 ×10−3 4.43 ×10−3 4.40×10−3

p21 (mm−9/2mm−iε) -6.80 ×10−4 -6.76 ×10−4 -6.75×10−4 -6.76×10−4 -6.74×10−4

p31 (mm−11/2mm−iε) 4.60 ×10−5 4.56 ×10−5 4.56 ×10−5 4.55 ×10−5 4.55×10−5

p41 (mm−13/2mm−iε) -1.16 ×10−6 -1.14 ×10−6 -1.15×10−6 -1.14×10−6 -1.15×10−6

E.2 Fitting parameters related to the mechanical and

residual stress intensity factors

As described in Section 5.4.4, mechanical and thermal FEAs were performed for the five

MMELS specimens tested. Stress intensity factors resulting from applied loads, as well

as from thermal residual curing stresses were obtained for each analysis by means of the

mechanical and thermalM -integrals, described in Section 3.2. For the mechanical problem

(f), surfaces were fitted through the finite element results to obtain a relation between

K
(f)
m (m = 1, 2, III ), the delamination length a and position along the delamination front

x3. In eq. (5.1), the expression for these surfaces is presented. The values of pi0 and pj1

(i = 0, 1, .., 5 and j = 0, 1, .., 4) in this equation are given in Tables E.6 through E.8 for

m = 1, 2 and III, respectively. For the thermal problem (r), curves were fitted through

the finite element results to obtain a relation between K
(r)
m (m = 1, 2, III) and position

along the delamination front x3. In eq. (5.3), the expression for this curve is presented.

The values of bi(i = 0, 1, .., 14) in this equation are given in Tables E.9 through E.11 for

m = 1, 2 and III, respectively.
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Table E.7: Constants pi0, (i = 0, 1, .., 5), and pj1, (j = 0, 1, .., 4), of eq. 5.1 for K
(f)
2 for

the MMELS specimens.

MMELS-1-9 MMELS-1-11 MMELS-1-12 MMELS-1-17 MMELS-1-18

p00 (mm−3/2mm−iε) 5.77 ×10−2 5.83 ×10−2 5.72 ×10−2 5.92 ×10−2 5.64 ×10−2

p10 (mm−5/2mm−iε) -5.24 ×10−3 -5.43 ×10−3 -5.13 ×10−3 -5.65 ×10−3 -4.89 ×10−3

p20 (mm−7/2mm−iε) -1.55 ×10−3 -1.53 ×10−3 -1.55 ×10−3 -1.51 ×10−3 -1.56 ×10−3

p30 (mm−9/2mm−iε) 1.83 ×10−4 1.81 ×10−4 1.82 ×10−4 1.80 ×10−4 1.82 ×10−4

p40 (mm−11/2mm−iε) -4.60 ×10−6 -4.53 ×10−6 -4.57 ×10−6 -4.50 ×10−6 -4.57 ×10−6

p50 (mm−13/2mm−iε) 5.05 ×10−12 5.34 ×10−12 -8.88 ×10−12 -9.90 ×10−12 -2.99 ×10−12

p01 (mm−5/2mm−iε) 7.97 ×10−3 7.94 ×10−3 7.93 ×10−3 7.94 ×10−3 7.97 ×10−3

p11 (mm−7/2mm−iε) -5.80 ×10−5 -5.10 ×10−5 -6.19 ×10−5 -4.28 ×10−5 -6.98 ×10−5

p21 (mm−9/2mm−iε) 8.87 ×10−5 8.71 ×10−5 8.87 ×10−5 8.60 ×10−5 8.97 ×10−5

p31 (mm−11/2mm−iε) -8.63 ×10−6 -8.48 ×10−6 -8.61 ×10−6 -8.38 ×10−6 -8.67 ×10−6

p41 (mm−13/2mm−iε) 2.17 ×10−7 2.13 ×10−7 2.17 ×10−7 2.10 ×10−7 2.18 ×10−7

Table E.8: Constants pi0, (i = 0, 1, .., 5), and pj1, (j = 0, 1, .., 4), of eq. 5.1 for K
(f)
III for

the MMELS specimens.

MMELS-1-9 MMELS-1-11 MMELS-1-12 MMELS-1-17 MMELS-1-18

p00 (mm−3/2mm−iε) 3.31 ×10−2 3.32 ×10−2 3.30 ×10−2 3.33 ×10−2 3.29 ×10−2

p10 (mm−5/2mm−iε) -4.83 ×10−2 -4.80 ×10−2 -4.82 ×10−2 -4.78 ×10−2 -4.84 ×10−2

p20 (mm−7/2mm−iε) 1.65 ×10−2 1.63 ×10−2 1.65 ×10−2 1.63 ×10−2 1.65 ×10−2

p30 (mm−9/2mm−iε) -2.19 ×10−3 -2.16 ×10−3 -2.18 ×10−3 -2.14 ×10−3 -2.19 ×10−3

p40 (mm−11/2mm−iε) 1.23 ×10−4 1.21 ×10−4 1.23 ×10−4 1.20 ×10−4 1.23 ×10−4

p50 (mm−13/2mm−iε) -2.49 ×10−6 -2.43 ×10−6 -2.47 ×10−6 -2.40 ×10−6 -2.48 ×10−6

p01 (mm−5/2mm−iε) 5.92 ×10−3 5.91 ×10−3 5.89 ×10−3 5.92 ×10−3 5.91 ×10−3

p11 (mm−7/2mm−iε) -1.22 ×10−3 -1.21 ×10−3 -1.21 ×10−3 -1.21 ×10−3 -1.21 ×10−3

p21 (mm−9/2mm−iε) 9.37 ×10−5 9.30 ×10−5 9.30 ×10−5 9.30 ×10−5 9.30 ×10−5

p31 (mm−11/2mm−iε) -3.15 ×10−6 -3.11 ×10−6 -3.12 ×10−6 -3.10 ×10−6 -3.12 ×10−6

p41 (mm−13/2mm−iε) 4.62 ×10−13 1.62 ×10−13 -7.23 ×10−13 -8.87 ×10−14 -4.66 ×10−13

Table E.9: Constants bi, (i = 0, 1, 2, ..., 14), of eq. (5.3) for K
(r)
1 for the MMELS specimens

MMELS-1-9 MMELS-1-11 MMELS-1-12 MMELS-1-17 MMELS-1-18

b0 (MPa mm1/2(mm)−iε) -5.39 -5.36 -5.33 -5.53 -5.53
b1 (MPa mm−1/2(mm)−iε) 12.5 12.4 12.4 12.7 12.8
b2 (MPa mm−3/2(mm)−iε) -15.2 -14.9 -15.0 -15.3 -15.4
b3 (MPa mm−5/2(mm)−iε) 11.0 10.8 10.9 11.0 11.2
b4 (MPa mm−7/2(mm)−iε) -5.09 -4.97 -5.03 -5.07 -5.18
b5 (MPa mm−9/2(mm)−iε) 1.58 1.54 1.56 1.57 1.61
b6 (MPa mm−11/2(mm)−iε) -0.343 -0.332 -0.339 -0.337 -0.349
b7 (MPa mm−13/2(mm)−iε) 5.32 ×10−2 5.13 ×10−2 5.25 ×10−2 5.19 ×10−2 5.41 ×10−2

b8 (MPa mm−15/2(mm)−iε) -5.96 ×10−3 -5.73 ×10−3 -5.88 ×10−3 -5.78 ×10−3 -6.06 ×10−3

b9 (MPa mm−17/2(mm)−iε) 4.83 ×10−4 4.63 ×10−4 4.77 ×10−4 4.66 ×10−4 4.91 ×10−4

b10 (MPa mm−19/2(mm)−iε) -2.81 ×10−5 -2.68 ×10−5 -2.77 ×10−5 -2.69 ×10−5 -2.85 ×10−5

b11 (MPa mm−21/2(mm)−iε) 1.14 ×10−6 1.08 ×10−6 1.12 ×10−6 1.08 ×10−6 1.16 ×10−6

b12 (MPa mm−23/2(mm)−iε) -3.06 ×10−8 -2.89 ×10−8 -3.01 ×10−8 -2.89 ×10−8 -3.10 ×10−8

b13 (MPa mm−25/2(mm)−iε) 4.89 ×10−10 4.61 ×10−10 4.81 ×10−10 4.59 ×10−10 4.96 ×10−10

b14 (MPa mm−27/2(mm)−iε) -3.52 ×10−12 -3.30 ×10−12 -3.46 ×10−12 -3.28 ×10−12 -3.56 ×10−12
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Table E.10: Constants bi, (i = 0, 1, 2, ..., 14), of eq. (5.3) for K
(r)
2 for the MMELS speci-

mens

MMELS-1-9 MMELS-1-11 MMELS-1-12 MMELS-1-17 MMELS-1-18

b0 (MPa mm1/2(mm)−iε) 0.374 0.370 0.372 0.379 0.378
b1 (MPa mm−1/2(mm)−iε) -2.43 -2.40 -2.40 -2.47 -2.48
b2 (MPa mm−3/2(mm)−iε) 3.46 3.41 3.42 3.50 3.54
b3 (MPa mm−5/2(mm)−iε) -2.60 -2.55 -2.57 -2.61 -2.65
b4 (MPa mm−7/2(mm)−iε) 1.22 1.19 1.21 1.22 1.24
b5 (MPa mm−9/2(mm)−iε) -0.384 -0.373 -0.379 -0.380 -0.391
b6 (MPa mm−11/2(mm)−iε) 0.0841 0.0815 0.0830 0.0827 0.0856
b7 (MPa mm−13/2(mm)−iε) -1.31 ×10−2 -1.27 ×10−2 -1.30 ×10−2 -1.28 ×10−2 -1.34 ×10−2

b8 (MPa mm−15/2(mm)−iε) 1.48 ×10−3 1.42 ×10−3 1.46 ×10−3 1.44 ×10−3 1.51 ×10−3

b9 (MPa mm−17/2(mm)−iε) -1.21 ×10−4 -1.15 ×10−4 -1.19 ×10−4 -1.16 ×10−4 -1.23 ×10−4

b10 (MPa mm−19/2(mm)−iε) 7.04 ×10−6 6.71 ×10−6 6.93 ×10−6 6.74 ×10−6 7.14 ×10−6

b11 (MPa mm−21/2(mm)−iε) -2.86 ×10−7 -2.71 ×10−7 -2.82 ×10−7 -2.72 ×10−7 -2.90 ×10−7

b12 (MPa mm−23/2(mm)−iε) 7.69 ×10−9 7.27 ×10−9 7.57 ×10−9 7.27 ×10−9 7.80 ×10−9

b13 (MPa mm−25/2(mm)−iε) -1.23 ×10−10 -1.16 ×10−10 -1.21 ×10−10 -1.15 ×10−10 -1.25 ×10−10

b14 (MPa mm−27/2(mm)−iε) 8.84 ×10−13 8.29 ×10−13 8.70 ×10−13 8.25 ×10−13 8.96 ×10−13

Table E.11: Constants bi, (i = 0, 1, 2, ..., 14), of eq. (5.3) for K
(r)
III for the MMELS speci-

mens

MMELS-1-9 MMELS-1-11 MMELS-1-12 MMELS-1-17 MMELS-1-18

b0 (MPa mm1/2) 8.82 8.77 8.74 9.04 9.03
b1 (MPa mm−1/2) -16.7 -16.5 -16.5 -17.0 -17.0
b2 (MPa mm−3/2) 18.5 18.3 18.3 18.7 18.9
b3 (MPa mm−5/2) -11.9 -11.7 -11.8 -12.0 -12.2
b4 (MPa mm−7/2) 4.83 4.73 4.78 4.83 4.95
b5 (MPa mm−9/2) -1.31 -1.27 -1.29 -1.30 -1.34
b6 (MPa mm−11/2) 0.243 0.236 0.240 0.240 0.248
b7 (MPa mm−13/2) -3.18 ×10−2 -3.08 ×10−2 -3.14 ×10−2 -3.12 ×10−2 -3.25 ×10−2

b8 (MPa mm−15/2) 2.96 ×10−3 2.85 ×10−3 2.92 ×10−3 2.88 ×10−3 3.02 ×10−3

b9 (MPa mm−17/2) -1.93 ×10−4 -1.86 ×10−4 -1.91 ×10−4 -1.87 ×10−4 -1.97 ×10−4

b10 (MPa mm−19/2) 8.69 ×10−6 8.31 ×10−6 8.57 ×10−6 8.36 ×10−6 8.87 ×10−6

b11 (MPa mm−21/2) -2.56 ×10−7 -2.44 ×10−7 -2.52 ×10−7 -2.45 ×10−7 -2.61 ×10−7

b12 (MPa mm−23/2) 4.44 ×10−9 4.21 ×10−9 4.37 ×10−9 4.22 ×10−9 4.53 ×10−9

b13 (MPa mm−25/2) -3.44 ×10−11 -3.25 ×10−11 -3.39 ×10−11 -3.25 ×10−11 -3.51 ×10−11

b14 (MPa mm−27/2) 1.33 ×10−19 1.31 ×10−19 -2.46 ×10−19 1.58 ×10−19 -1.40 ×10−21

E-7



ואורך הדלמינציה. אנרגיית  על סמך התוצאות שהתקבלו הוצג קשר בין קצב שחרור האנרגיה ,. כמו כןזניח
Gההתנגדות להתקדמות הדלמינציה 

𝑖𝑅
חושבה כפונקציה של אורך הדלמינציה והוצגו עקומות התנגדות  

 . R-curvesמסוג 

קצב שחרור ,  experimental compliance method  (ECM) מסוג באמצעות שיטה גלובליתבנוסף, 
ניתוח התוצאות באמצעות שיטה  .אנרגית ההתנגדות חושבוקצב שחרור ושל הדלמינציה אנרגית האתחול 

. בנוסף, בוצעה אנליזה חוזרת באמצעות  MMELSו  C-ELSזו בוצע עבור תוצאות הניסויים בדגמי 
ECM  עבור דגמים מסוגdouble cantilever beam (DCB)  אשר שימשו לניסויים קוואזי סטטיים

סילס עבור החומר והממשק אשר נחקרים כאן. -לסלי בנקסעל ידי תומר שוקרון ו 2017במחקר שבוצע ב 
מוצגת העל סמך השיטה הלוקאלית  ות ההתנגדות שנמצאומתוך כלל התוצאות בוצעה השוואה בין עקומ

 .ECMבמחקר זה וכוללת הפרדת מודים לעומת העקומות שהתקבלו באמצעות שיטת 

המכילים את מבנים התכנון את במחקר זה ניתן לשפר  שנמצאועל סמך עקומות ההתנגדות והחסינות לשבר 
לאתחול או  החומר והממשק הנחקר. התחשבות בממצאים המגבילים את קצב שחרור האנרגיה הדרושה

 .ן תקציבי מובהקסכויאלו תוך ח יםמבנ של בטיחותבו בתכנון שיפוריאפשרו קידום דלמינציה בממשק 

  



 תקציר
בתעשיות  פולימרים מחוזקים בסיבי פחמן משמשים לשיפור ביצועים ולהוזלת עלויות תפעול של מבנים

במיוחד בתעשייה האווירית. עם זאת, חוסר ידע על התנהגות השבר של חומרים מרוכבים אלה עלול שונות ו
פולימר מחוזק אתחול והתקדמות דלמינציה בלמינט מרוכב מסוג ליים. הבנת קטסטרופלגרום לאסונות 

. כלים הנדסיים מדויקים עשויים כגון מטוסים במבנים שכאלהלסייע במניעת כשלים  עשוי בסיבי פחמן
מרוכבים להוביל לתכנון בטוח יותר, לשיפור ביצועים, ולהוזלת עלויות תפעול של מבנים הבנויים מחומרים 

 .מסוג זה

. השכבה העליונה היא בכיוונים שונים י שכבות מרוכבות מחוזקות בסיביםשתבין ממשק מקד במחקר מתה
עם סיבים ארוגים בכיוון מאוזן  השכבה התחתונה הינה אריג פשוטו 0° בכיווןפחמן  סיביעם  אריג חד כיווני
 רטובה. ידני אשר מכונה הספגהבתהליך חומר יוצר . ה45°−/45°+

ת ברזילאי הדיסק דגמים מסוגבאמצעות  רבים שוניםועמודים מר בוצעו בחסינות לשבניסויי שרים ושבע ע
. במהלך כל בדיקה הספציפייםממשק המרוכב והחומר השל חסינות לשבר הלקבוע את מאפייני על מנת 

ההתחלית אשר מוקמה בממשק בין שתי מלאכותית הביחס לדלמינציה  ωהדגם בזווית  על Pעומס  הופעל
מעורבים שונים. בהתבסס על יצירת מודים שימשו לשונות העמסה . שבע זוויות הנחקרותהשכבות 

 האנרגייאינטגרל תלת מימדי משמר מבוסס  אלמנטים סופיים בשילוב עם בשיטתהתוצאות, תוך שימוש 
מאמץ  עבור עוצמת ה חושבו מקדמי אקסטרפולצית הזזות,שיטת , כמו גם שימוש בMאשר מכונה אינטגרל 

נובעים מעומסים אשר  המכאנית חושבו מקדמי עוצמת המאמץים השונים. באמצעות ניתוח הבעיה המוד
על ידי ניתוח בעיה תרמית אשר קשורה בהיווצרות מאמצים שיוריים כתוצאה מהפרשי בנוסף, . מכניים

 . הטמפרטורות שהדגמים היו נתונים להם במהלך הייצור חושבו מקדמי עוצמת המאמץ התרמיים

כלליים המאמץ המקדמי עוצמת  את והניבזיציה של מקדמי עוצמת המאמץ המכאניים והתרמיים, וסופרפ
Gהקריטי להתקדמות הדלמינציה  האנרגייהשימשו לחישוב קצב שחרור אשר  רלוונטיים לכל דגםה

𝑖𝑐
. 

אשר  𝜙ו  �̂�זוויות הפאזה  שימשו לחישוב התוצאותהיחידות המרוכבות של מקדמי עוצמת המאמץ נורמלו ו
מחוץ למישור לאלו בתוך המישור, את יחס המודים מתארות את יחס המודים המעורבים בתוך המישור ו

ובוצע ניתוח הנחקרים לחומר ולממשק  ים ותלת מימדייםממדי-כשל דו קריטריונילבסוף הוצעו בהתאמה. 
 ומשטחי. עקומות 95% לכישלון בלתי צפוי באזור הבטוח עם ביטחון של 10%של  הסתברותסטטיסטי עם 

כן, הממצאים כמו  .הנחקריםממשק החומר והכשל קטסטרופלי עבור  לאפשר חיזויעשויים הוצגו שכשל ה
 קדמות דלמינציה בממשק בין שכבתי בלמינט מרוכב.בהקשר של התהבנה טובה יותר מאפשרים 

 calibrated end loaded בדגמים מסוג כמעט טהור  IIבמוד סטטיים  - בנוסף, בוצעו שישה ניסויים קוואזי
split (C-ELS)   סטטיים בדגמים מסוג -וחמישה ניסויים קוואזיmixed mode end loaded split 

(MMELS)  .שני שלבים, שלב אתחול  הניסויים כללכל אחד מ)AC (ושלב התקדמות )PC( בשלב .
דלמינציה טבעית בממשק. בשלב השני נבחנה התקדמות  תונוצר מתקדמתכותית אהראשון הדלמינציה המל

 יציבה של הדלמיצנציה הטבעית.

עבור כל דגם שעבר ניסוי נבנה מודל ובוצעה אנליזת אלמנט סופי מכאנית ותרמתי. מקדמי עוצמת המאמץ 
אשר נובעים כתוצאה מעומסים מכאניים ותרמיים שיוריים חושבו מתוך תוצאות האנליזות תוך שימוש 

,  Mמסוג ים ותרמי יםתלת מימדיים מכאני הזזות, באמצעות אינטגרלים משמריםטת אקסטרפולציית הבשי
. על סמך התוצאות, מקדמי עוצמת המאמץ virtual closure technique (VCCT)ועל ידי שימוש ב 

Gהכוללים חושבו כסופרפוזיציה של המקדמים המכאניים והתרמיים. בנוסף, קצב שחרור האנרגיה  
𝑖

, כמו  

כפונקציה של חושבו עבור כל ניסוי באמצעות קשרים שונים. זוויות הפאזה הוצגו  𝜙ו  �̂�גם זוויות הפאזה 
 ביחס המודים כפונקציה של התקדמות הדלמינציה השינוינראה ש. לפי הממצאים התקדמות הדלמינציה
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