


Materials and Structural Integrity: Research Preprints 
 

JOURNAL DESCRIPTION AND AIMS 
Materials and Structural Integrity: Research Preprints is published by the European Structural integrity Society (ESIS) . 
It is an open-access Journal published on-line four time per year  (January, April, July, October). 
Materials and Structural Integrity: Research Preprints encompasses the broad topic of  structural integrity, which is 
based on the mechanics of  fatigue and fracture and is concerned with the reliability and effectiveness of  
structural components. The journal publishes collection of  preprints submitted to the ESIS platform ESIS-PS 
(https://www.esis-ps.eu/). 
 
 
EDITORIAL TEAM 
 

 
 
PUBLISHER 
European Structural Integrity Society (ESIS)  
https://www.esis.site/  
via G. Di Biasio 43, 03043, Cassino (FR), Italy 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Materials and Structural Integrity: Research Preprints is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) 

Editors-in-Chief 
Francesco Iacoviello (Università di Cassino e del Lazio Meridionale, Italy) 
Aleksandar Sedmak (University of  Belgrade, Serbia) 
Sabrina Vantadori (Università di Parma, Italy) 
 
Editorial Board 

 
 

Liviu Marsavina (University Politehnica Timisoara, Romania) 
Filippo Berto (Sapienza, Università di Roma, Italy) 
Pedro M. G. P. Moreira (INEGI – Institute of  Science and Innovation in Mechanical and Industrial Engineering, Portugal) 
Giuseppe A. Ferro (Politecnico di Torino, Italy) 
Željko Božić (University of  Zagreb, Croatia) 
Stavros Kourkoulis (National Technical University of  Athens, Greece) 
Vittorio Di Cocco (Università di Cassino e del Lazio Meridionale, Italy) 
Per Ståhle (Lund Institute of  Technology, Sweden) 
Jianying He (Norwegian University of  Science and Technology, Norway) 
Leslie Banks-Sills (Tel Aviv University, Israel) 
Oleg Plekhov (Perm Federal Research Center of  the Ural, Perm, Russia) 
Milos Djukic (University of  Belgrade, Serbia) 
Sara Bagherifard (Politecnico di Milano, Italy) 
Oleg Plekhov (Perm federal research center Ural Branch Russian Academy of  Sciences, Russian Federation) 
Łukasz Sadowski (Wroclaw University of  Science and Technology, Poland) 



 
 

1 
 

Optimization of functionally graded materials to make stress 1 
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_____________________________________________________________ 6 

Abstract: This paper is devoted to the minimization of the stress concentration factor in 7 
infinite plates with circular hole made of functionally graded materials and subjected to a 8 
far-field uniform uniaxial tension. Despite the vast literature on the versatility of these 9 
materials, the novelty of the results is that the optimal material distribution is not limited 10 
to prefixed laws, as in many works available in the literature. It is assumed to be an 11 
unknown piecewise constant function, thus aiming to derive the material distribution by 12 
exploiting, at best, the inhomogeneity concept associated with functionally graded 13 
materials. After a brief review of the governing equations, the motivation, the statement 14 
and the mathematical formulation of the optimization problem are given under the 15 
hypothesis of axisymmetric material distribution. Still, the problem could not be solved 16 
analytically, therefore a direct transcription approach by the aid of finite difference method 17 
has been followed to convert it into a nonlinear programming problem, whose solution has 18 
been obtained numerically by dedicated gradient-based solvers. Numerical solutions are 19 
reported in graphical forms, thoroughly discussed and validated by means of the finite 20 
element method. The developed numerical approach yields a material inhomogeneity 21 
obeying a sigmoid-like function and a uniform hoop stress along the radial direction, thus 22 
making the stress concentration factor at the rim of the circular hole vanish. 23 

Keywords: Functionally graded materials; stress concentration factor; direct transcription; 24 
optimization; nonlinear programming; plates. 25 
_____________________________________________________________ 26 

1. Introduction 27 

 The study of the stress concentration in panels due to the presence of circular holes 28 

constitutes one of the classic problems in mechanics. It is known that if the panel is 29 

infinitely large and made of a homogenous, linearly elastic and isotropic material and 30 

subjected to a uniform uniaxial tension, then the stress concentration factor (hereinafter 31 
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abbreviated by SCF) is identically 3. In literature, this result is commonly referred to as the 32 

Kirsch solution, named after the German engineer who first described the elastic stresses 33 

around the hole [1]. Since then, engineers and researchers have been interested in reducing 34 

such a factor by abandoning the aforementioned isotropic and homogeneity assumptions 35 

and the shape of the geometrical discontinuity (see, e.g., [2,3] for an exhaustive literature 36 

review on various analytical methods). 37 

 The adoption of functionally graded materials has propounded its application to 38 

numerous mechanical and geotechnical models [4-6], where the microstructure was 39 

allowed to vary along one or several directions by employing isotropic, orthotropic or even 40 

anisotropic constituent materials (see, e.g., [7-9]). Among all, the stress analysis of 41 

functionally graded panels with holes has been investigated. Several analytical and 42 

numerical efforts have been carried out aiming at reducing the stress concentration by 43 

taking advantage of different inhomogeneity models. For instance, the effect of the material 44 

inhomogeneity on the SCF due to circular and elliptic holes are predicted in [10] and [11], 45 

respectively, both by means of the finite element method. In particular, Young’s modulus 46 

has been allowed to vary spatially. Authors have shown that a reduction in the SCF can be 47 

obtained by properly choosing the tuning parameters of the heterogeneity factors 48 

associated with the property variations (e.g., the exponents in the power- and exponential 49 

laws). In [12], the SCF around a circular hole in an infinite plate subjected to uniform 50 

biaxial tension and pure shear is analytically solved by exploiting Frobenius series. Closed-51 

form solutions are derived for an exponential variation of Young’s modulus along the 52 

radius. By dividing the functionally graded plate into a series of piecewise homogeneous 53 

radial layers, Ref. [13,14] report the SCFs due to circular holes and under constant loads 54 

by means of Muskhelishvili method of the complex variable functions. In [15], closed-55 

form solutions for the SCF at a circular hole in functionally graded panels subject to a 56 

uniform far-field tensile traction are derived by using hypergeometric functions and 57 

Frobenius series. Authors show that the SCF at the circular hole can be considerably 58 

reduced by appropriately grading the mechanical properties along the radial direction. The 59 

elastic response of a functionally graded annular ring inserted in a hole of a homogeneous 60 

plate is derived analytically in [16,17] under different far-field loading conditions. All the 61 

aforementioned works report a considerable stress concentration reduction only when the 62 

Young’s modulus progressively increases away from the hole. Moreover, it is observed 63 
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that the variation of the Poisson’s ratio on the stress distribution in the plate is negligible 64 

[15-17]. 65 

 The aforementioned considerations bring into mind the possibility of exploiting 66 

optimization theory to enhance the elastic performance of such structures. Many solutions 67 

have been proposed to different problems [18,19], some of which are capable of handling 68 

only one-dimensional material distribution with one-dimensional geometry and simple 69 

loads, while others can tackle more sophisticated problems. Interesting results in terms of 70 

stress reduction have been achieved when considering models such as beams, cylindrical 71 

shells, rotating disks, pressure vessels and plates (see, e.g., [20-34]), however by imposing 72 

prefixed laws for the variation of mechanical properties. In this way, the optimization 73 

problems reduce to the search for the heterogeneity factors associated with functional 74 

models describing these property variations. On the other hand, other works dealt with the 75 

search for the best material distribution to enhance the elastic stress performance without 76 

prefixing the functional model. Some of these are developed within an analytical tailoring 77 

framework [35,36], whereas others rely on phase-field and topology optimization [37,38] 78 

or exploit principles from the optimal control theory [39-41]. As far as infinite plates with 79 

a circular hole are concerned, the overwhelming research works impose the Young’s 80 

modulus a priori to forecast the stress concentration near the hole. Only in Ref. [35], an 81 

analytical solution is proposed for the cylinder under pressure, whose validity can 82 

equivalently hold for the case of biaxially loaded plates. In the uniaxial load case, to the 83 

extent of the authors’ knowledge, Ref. [42] is the only work where the unknown Young’s 84 

modulus distribution is sought in plates with different holes and cutouts, in which enhanced 85 

stress results have been obtained by developing an evolutionary algorithm combined with 86 

the finite element method. It is worth noting that the iteration process for updating the 87 

Young’s modulus in each element was governed by a power-law function of local and 88 

global stress measures. The stiffness was thus reduced only in the elements whose stresses 89 

were higher than an imposed threshold. Although this rule-of-thumb stiffness modification 90 

led to enhanced SCFs, we strongly believe that optimal solutions can be achieved if the 91 

stiffness optimization is carried out in a more global sense. Accordingly, the objective of 92 

the present article is to seek the Young’s modulus distribution around the circular hole such 93 

that the hoop stress reaches its minimum value along prescribed directions. 94 
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 The article is organized as follows. Section 2 recalls the governing equations for the 95 

plane stresses in linearly elastic, isotropic and inhomogeneous plates. Section 3 aims at 96 

presenting the motivation of the work as well as the formulation of the optimization 97 

problem. Section 4 illustrates the direct transcription approach as a numerical procedure to 98 

convert the optimization problem into a nonlinear programming problem, whose solution 99 

has been computed by resorting to a solver available in the literature. The optimal solution 100 

of a study case, its validation by a finite element model and its discussion are shown in 101 

Section 5 and conclusions are drawn in Section 6. 102 

2. Governing equations 103 

Consider a linearly elastic, isotropic and functionally graded infinite plate with a 104 

circular hole of radius 𝑎. Let the thickness of the plate be sufficiently small to the point 105 

that the stress state is two-dimensional (plane-stress condition). Let the plate be subject to 106 

a far-field uniaxial traction 𝜎0, as shown in Figure 1a, where the generic point P is described 107 

by the polar coordinate system (𝑟, 𝜃), whose origin is at the center of the circular hole, and 108 

MN denotes the vertical line associated with the polar angle 𝜃 = 𝜋/2. Moreover, let the 109 

inhomogeneity be described by the radial variation of the volume fraction 𝑉(𝑟) of one of 110 

the two constituents of the functionally graded material (e.g. material #2), which in turn 111 

are linked to the effective Young’s modulus 𝐸(𝑟) by the well-known rule of mixture 112 

 𝐸(𝑟) = 𝐸̃1(1 − 𝑉(𝑟)) + 𝐸̃2𝑉(𝑟) , (1) 

where 𝐸̃1 and 𝐸̃2 denote the Young’s moduli of the constituents (e.g., metallic and ceramic 113 

materials), while the Poisson’s ratio 𝜈 is assumed to be constant and not affected by the 114 

volume fraction. It is worthwhile to note Eq. (1) is adopted in this study since it can be 115 

considered as the simplest homogenization technique among the several approaches in 116 

micromechanics [43]. 117 

2.1. Equilibrium, constitutive and compatibility equations 118 

Next, equations describing the mechanical behavior of the plate are listed. In the 119 

absence of body forces, the equilibrium equations read [44] 120 

 𝜕𝜎𝑟(𝑟, 𝜃)

𝜕𝑟
+

1

𝑟

𝜕𝜎𝑟𝜃(𝑟, 𝜃)

𝜕𝜃
+

𝜎𝑟(𝑟, 𝜃) − 𝜎𝜃(𝑟, 𝜃)

𝑟
= 0 , (2a,b) 
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𝜕𝜎𝑟𝜃(𝑟, 𝜃)

𝜕𝑟
+

1

𝑟

𝜕𝜎𝜃(𝑟, 𝜃)

𝜕𝜃
+

2

𝑟
𝜎𝑟𝜃(𝑟, 𝜃) = 0 , 

 
Fig. 1: A schematic representation of (a) an infinite plate with a circular hole subject to a far-field uniaxial 
traction and its split into (b) uniform biaxial and (c) pure shear sub-problems. 

where 𝜎𝑟, 𝜎𝜃 and 𝜎𝑟𝜃 are the radial, hoop and shear stresses, respectively, all functions of 121 

the radial 𝑟 and circumferential 𝜃 coordinates. The elastic stresses are related to the 122 

corresponding strains by the plane-stress constitutive equations, namely [44] 123 

 𝐸(𝑟) 𝜀𝑟(𝑟, 𝜃) = 𝜎𝑟(𝑟, 𝜃) − 𝜈 𝜎𝜃(𝑟, 𝜃) , 

(3a-c) 𝐸(𝑟) 𝜀𝜃(𝑟, 𝜃) = 𝜎𝜃(𝑟, 𝜃) − 𝜈 𝜎𝑟(𝑟, 𝜃) , 

𝐸(𝑟) 𝜀𝑟𝜃(𝑟, 𝜃) = 2(1 + 𝜈) 𝜎𝑟𝜃(𝑟, 𝜃) , 

where 𝜀𝑟, 𝜀𝜃 and 𝜀𝑟𝜃 are the radial, hoop and shear strains, respectively, which obey the 124 

following compatibility equation [44] 125 

 
𝜕2𝜀𝜃

𝜕𝑟2
+

1

𝑟2

𝜕2𝜀𝑟

𝜕𝜃2
+

2

𝑟

𝜕𝜀𝜃

𝜕𝑟
−

1

𝑟
 
𝜕𝜀𝑟

𝜕𝑟
=

1

𝑟
 
𝜕2𝜀𝑟𝜃

𝜕𝑟𝜕𝜃
+

1

𝑟2
 
𝜕𝜀𝑟𝜃

𝜕𝜃
 . (4) 

2.2. Superposition of stresses 126 

Due to the linearity hypothesis, if the elastic problem is split into two sub-problems, 127 

namely the biaxial problem (Figure 1b) and the pure shear problem (Figure 1c), the 128 

superposition of their solutions leads to the solution of the original one. In other words, 129 

letting superscripts “bx” and “ps” denote respectively the uniform biaxial and pure shear 130 

terms, stresses can be written as 131 

 𝜎𝑟(𝑟, 𝜃) = 𝜎𝑟
𝑏𝑥(𝑟) + 𝜎𝑟

𝑝𝑠(𝑟, 𝜃) , 

(5a-c) 𝜎𝜃(𝑟, 𝜃) = 𝜎𝜃
𝑏𝑥(𝑟) + 𝜎𝜃

𝑝𝑠(𝑟, 𝜃) , 

𝜎𝑟𝜃(𝑟, 𝜃) = 𝜎𝑟𝜃
𝑝𝑠(𝑟, 𝜃) , 
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where it is emphasized that stresses for the biaxial problem depend on the radial coordinate 132 

only, since the geometry of the problem, the assumed nature of the inhomogeneity and the 133 

far-field loading are axisymmetric (and therefore 𝜎𝑟𝜃
𝑏𝑥 is identically zero). Substitution of 134 

the constitutive relations (3a-c) into the compatibility equation (4) yields the following 135 

boundary-value problem for the radial stress 136 

 ℬ𝒳(𝜎𝑟
𝑏𝑥(𝑟)) = 0 , 𝑎 ≤ 𝑟 < ∞ 

(6a-c) 𝜎𝑟
𝑏𝑥(𝑎) = 0 , 

lim
𝑟→∞

𝜎𝑟
𝑏𝑥(𝑟) =

𝜎0

2
 , 

where the differential operator ℬ𝒳(∙) is given by 𝑑2(∙)

𝑑𝑟2 + 𝛼𝑏𝑥(𝑟)
𝑑(∙)

𝑑𝑟
+ 𝛽𝑏𝑥(𝑟) (∙) with 137 

𝛼𝑏𝑥 =
3

𝑟
−

1

𝐸

𝑑𝐸

𝑑𝑟
  and 𝛽𝑏𝑥 = (𝜈 − 1)

1

𝑟𝐸

𝑑𝐸

𝑑𝑟
 . 138 

Moreover, the hoop stress can be obtained from the equilibrium equation (2a) 139 

 𝜎𝜃
𝑏𝑥(𝑟) = 𝜎𝑟

𝑏𝑥(𝑟) + 𝑟
𝑑𝜎𝑟

𝑏𝑥(𝑟)

𝑑𝑟
 . (7) 

In parallel, and similar to the Kirsch solution, the pure shear problem can be solved 140 

by introducing the Airy stress function 𝜑(𝑟, 𝜃) as follows [44] 141 

 
𝜎𝑟

𝑝𝑠(𝑟, 𝜃) =
1

𝑟

𝜕𝜑(𝑟, 𝜃)

𝜕𝑟
+

1

𝑟2

𝜕2𝜑(𝑟, 𝜃)

𝜕𝜃2
 , 

(8a-c) 𝜎𝜃
𝑝𝑠(𝑟, 𝜃) =

𝜕2𝜑(𝑟, 𝜃)

𝜕𝑟2
 , 

𝜎𝑟𝜃
𝑝𝑠(𝑟, 𝜃) = −

𝜕

𝜕𝑟
(

1

𝑟

𝜕𝜑(𝑟, 𝜃)

𝜕𝜃
) , 

where 𝜑 has the form [44] 142 

 𝜑(𝑟, 𝜃) = 𝑔(𝑟) cos 2𝜃.  (9) 

Consequently, Eqs. (8a-c) read  143 

 
𝜎𝑟

𝑝𝑠(𝑟, 𝜃) = (
1

𝑟

𝑑𝑔(𝑟)

𝑑𝑟
−

4𝑔(𝑟)

𝑟2
) cos 2𝜃, 

(10a-c) 𝜎𝜃
𝑝𝑠(𝑟, 𝜃) =

𝑑2𝑔(𝑟)

𝑑𝑟2
cos 2𝜃, 

𝜎𝑟𝜃
𝑝𝑠(𝑟, 𝜃) = 2 (

1

𝑟

𝑑𝑔(𝑟)

𝑑𝑟
−

𝑔(𝑟)

𝑟2
) sin 2𝜃. 
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Combining Eqs. (10a-c) and (3a-c), the compatibility equation (4) reduces to the following 144 

differential equation 145 

 𝒫𝒮(𝑔(𝑟)) = 0 , 𝑎 ≤ 𝑟 < ∞ (11) 

where the differential operator 𝒫𝒮(∙) is given by 𝑑4(∙)

𝑑𝑟4 + 𝛼𝑝𝑠(𝑟)
𝑑3(∙)

𝑑𝑟3 + 𝛽𝑝𝑠(𝑟)
𝑑2(∙)

𝑑𝑟2 +146 

𝛾𝑝𝑠(𝑟)
𝑑(∙)

𝑑𝑟
+ 𝛿𝑝𝑠(𝑟)(∙) with 𝛼𝑝𝑠 =

2

𝑟
−

2

𝐸

𝑑𝐸

𝑑𝑟
 , 𝛽𝑝𝑠 = −

1

𝐸

𝑑2𝐸

𝑑𝑟2
+

2

𝐸2
(

𝑑𝐸

𝑑𝑟
)

2

+
𝜈

𝑟𝐸

𝑑𝐸

𝑑𝑟
−

2

𝑟𝐸

𝑑𝐸

𝑑𝑟
−147 

9

𝑟2 , 𝛾𝑝𝑠 =
𝜈

𝑟𝐸

𝑑2𝐸

𝑑𝑟2 −
2𝜈

𝑟𝐸2 (
𝑑𝐸

𝑑𝑟
)

2

+
9

𝑟2𝐸

𝑑𝐸

𝑑𝑟
+

9

𝑟3  and 𝛿𝑝𝑠 = −
4𝜈

𝑟2𝐸

𝑑2𝐸

𝑑𝑟2 +
8𝜈

𝑟2𝐸2 (
𝑑𝐸

𝑑𝑟
)

2

−
12

𝑟3𝐸

𝑑𝐸

𝑑𝑟
 .  148 

Relation (11) is a fourth-order linear differential equation with variable coefficients, and it 149 

is solved by considering the following boundary conditions 150 

 𝜎𝑟
𝑝𝑠(𝑎, 𝜃) = 0 , 

(12a-d) 

𝜎𝑟𝜃
𝑝𝑠(𝑎, 𝜃) = 0 , 

lim
𝑟→∞

𝜎𝑟
𝑝𝑠(𝑟, 𝜃) =

𝜎0

2
 cos 2𝜃 , 

lim
𝑟→∞

𝜎𝑟𝜃
𝑝𝑠(𝑟, 𝜃) = −

𝜎0

2
 sin 2𝜃 . 

The set of the above equations for the two sub-problems can be found in [15]. 151 

3. The optimization problem: Motivation and formulation 152 

Stresses for the case of a homogeneous infinite plate with a circular hole and subject 153 

to a uniaxial traction can be determined by taking Young’s modulus as constant in the 154 

aforementioned equations, leading to the well-known Kirsch stress field [44] 155 

 
𝜎𝑟(𝑟, 𝜃) =

𝜎0

2
(1 −

𝑎2

𝑟2
) +

𝜎0

2
(1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2
) cos 2𝜃, 

(13a-c) 𝜎𝜃(𝑟, 𝜃) =
𝜎0

2
(1 +

𝑎2

𝑟2
) −

𝜎0

2
(1 +

3𝑎4

𝑟4
) cos 2𝜃, 

𝜎𝑟𝜃(𝑟, 𝜃) = −
𝜎0

2
(1 −

3𝑎4

𝑟4
+

2𝑎2

𝑟2
) sin 2𝜃. 

It can be easily shown that the SCF at the rim of the circular hole is identically 3 by taking 156 

the limit of Eq. (13b) for 𝑟 → 𝑎 and 𝜃 = 𝜋/2 and dividing by 𝜎0. This value has been 157 

drastically reduced by replacing homogeneous materials by functionally graded ones. For 158 

instance, according to [15], one can reduce the SCF at the rim of the hole by suitably 159 
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varying the two heterogeneity factors 𝑛 and 𝛽, linked to the Young’s modulus through the 160 

relation 161 

 𝐸(𝑟) = 𝐸∞ [1 + 𝛽 (
𝑟

𝑎
)

𝑛

] , (14) 

where 𝐸∞ = lim
𝑟→∞

𝐸(𝑟), −1 < 𝛽 < 1 and 𝑛 < 0 (Figure 2a shows the radial distribution of 162 

Young’s modulus for 𝑛 = −5 and for different instances of 𝛽 < 0). A similar relation for 163 

Poisson’s ratio has been employed with different heterogeneity factors, but it was found 164 

that it does not affect stresses significantly (for this problem, the order of discrepancy is 165 

less than 1%). Expressions for the associated stress field on MN are lengthy and therefore 166 

omitted in this article, but represented in a graphical form in Figure 2b (see [15]). It is 167 

important to notice that although the SCF may arbitrarily tend to 0+, an increase of the hoop 168 

stress occurs elsewhere along the radius, say at 𝑟 = 𝑎̃. Denoting here after by 𝜎̌𝜃(𝑟) the 169 

hoop stress along the vertical line MN, such inevitable increase takes place as the improper 170 

integral lim
𝑟→∞

∫ 𝜎̌𝜃(𝑡) 𝑑𝑡
𝑟

𝑎
, resulting from the equilibrium between the applied load and 171 

occurring hoop stresses, is constant regardless of the Young’s modulus distribution.  172 

  
 
 
 
 
 

(a) (b) 

Fig. 2: (a) Variation of Young’s modulus with 𝑟/𝑎 for 𝑛 = −5 and for different values of 𝛽 < 0. (b) The 
associated hoop stresses (solid lines) alongside with Kirsch solution (dashed line) on the vertical line MN. 
Stresses associated with other Young’s modulus distributions are addressed in [15]. 

Thus, the optimum scenario, for the Young’s modulus distribution (14), occurs when the 173 

heterogeneity factors lead to a constant hoop stress for 𝑟 ∈ [𝑎, 𝑎̃], or, lato sensu, to a hoop 174 

stress whose standard deviation (or statistical variation) is as minimum as possible. This 175 

problem has not been addressed in [15], as authors focused on finding analytical solutions 176 
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for stresses. The formulation of the SCF minimization problem without remarkably 177 

increasing the hoop stress along the radius has been addressed in [16], albeit for a 178 

homogeneous isotropic infinite plate endowed with a functionally graded ring of radius 179 

𝑏 > 𝑎 , where the Young’s modulus distribution is given by 180 

 𝐸(𝑟) = 𝐸𝑏 (
𝑟

𝑏
)

𝑚

 , (15) 

where 𝐸𝑏 is the Young’s modulus at 𝑟 = 𝑏 and 𝑚 is a real positive number playing the role 181 

of the heterogeneity factor (see Figure 3a where different Young’s modulus distributions 182 

are shown). 183 

 

(a) (b) 

 

 

 

 

 

 

 

 

(c) 

Fig. 3: (a) Variation of Young’s modulus with 𝑏/𝑎 = 3 and for different values of 𝑚 > 0. (b) The associated 
hoop stresses on the vertical line MN alongside with the Kirsch solution. (c) Contour levels for SCFs at the 
rim of the circular hole (solid contours), the interface between the ring and the homogeneous media (dashed 
contours) and best homogeneous factors 𝑚∗ (scatter points). Stresses associated with other ring radii are 
addressed in [16]. 
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Also here, Poisson’s ratio 𝜈 is assumed constant and equal to the value of the homogeneous 184 

medium. Unlike [15], however, the author not only discussed the analytical tractability of 185 

the stress field (whose expression is omitted in this article), but also gave hints on the 186 

choice of the best heterogeneity factor for the optimum distribution for the hoop stress 187 

throughout the plate. In other words, the author showed that, regardless of the ring 188 

geometry, there exists a value of 𝑚, say 𝑚∗, such that the hoop stress assumes the same 189 

value at 𝑟 = 𝑎 and 𝑟 = 𝑏 and less elsewhere, provided that the search for 𝑚∗ takes place 190 

in the range [16] 191 

 0 < 𝑚∗ ≤
8(2 − √3)

𝜈 − 7 + 4√3
 (16) 

to avoid complex values for the stress field. Figure 3b shows the normalized hoop stresses 192 

along the vertical line MN for different instances of 𝑚 and for 𝑏/𝑎 = 3 and compared with 193 

(13b). It is shown that the value of the best heterogeneity factor is approximately 𝑚∗ = 1.1 194 

[16]. For completeness, it is desired to study the dependence of 𝑚∗ on the geometry of the 195 

ring. A possible way is to compute contour levels for the SCFs at the rim of the circular 196 

hole and at the interface of the ring with the homogeneous medium for a range of 197 

admissible 𝑚, in the sense of the upper and lower limits given by Eq. (16), and for different 198 

values of 𝑏/𝑎. By construction, the intersection of the two contour levels thus helps the 199 

reader identify the best heterogeneity factors 𝑚∗ for fixed values of the ring geometry 𝑏/𝑎. 200 

This practical chart is shown in Figure 3c, where the values for 𝑚∗ are represented by 201 

scatter points. It is worth noting that the optimum heterogeneity factor monotonically 202 

decreases as 𝑏/𝑎 increases, namely a stiffer material at the circular hole is needed to 203 

compensate for the increase in the ring radius. 204 

 Based on the aforementioned considerations, an optimization problem in which the 205 

distribution of Young’s modulus is sought for the minimization of the SCF arises. In order 206 

to avoid stress peaks along the radial direction the goal of minimizing the SCF can be 207 

replaced by the minimization of the maximum hoop stress along the line MN (see Figure 208 

1a), namely 209 

 𝜎̌𝜃,max = max
𝑟≥𝑎

𝜎̌𝜃 (𝑟) , (17) 

as the hoop stress, for any (axisymmetric) Young’s modulus variation, is expected to reach 210 

its peak only along this line. Hence, the optimization problem consists in finding the 211 
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Young’s modulus distribution (or, through Eq. (1), the volume fraction) along the radial 212 

direction such that the maximum value for the hoop stress along MN reaches its minimum 213 

value, namely 214 

Problem 1. min (17) ,  
             𝑉(𝑟) 

 s.t. (1) ,  

 (5a-c) ,  

 (6a-c) ,  

 (11) ,  

 (12a-d) .  

Consequently, Problem 1 does not assume any a priori functional form of Young’s modulus 215 

along the radial direction. 216 

In the parlance of optimization theory, Problem 1 is referred to as dynamic 217 

optimization problem, namely an optimization problem whose decision variables are 218 

unknown piecewise continuous functions living in a certain domain, and constraints are 219 

differential relations. Solution to Problem 1 is cumbersome from the analytical viewpoint, 220 

requiring one to resort to numerical methods. Among all, the so-called direct transcription 221 

approach is used, which helps convert the dynamic optimization problem into a nonlinear 222 

programming (NLP) problem, namely to an optimization problem whose decision 223 

variables are collected in a finite-dimensional vector and constraints consist in equality or 224 

inequality algebraic relations. The conversion of algebraic and differential constraints (5a-225 

c)-(6a-c) and (11)-(12a-d) into algebraic ones can be carried out by classic numerical 226 

methods in mechanics such as the finite- element, volume, or difference methods. In this 227 

article, the latter method is employed due to the simplicity of the boundary conditions of 228 

the problem under consideration. Hence, the governing equations for the biaxial and pure 229 

shear problems are solved by the finite difference method, which is recalled in the next 230 

Section for the sake of a self-contained work. Subsequently, to validate the finite difference 231 

code, an infinite functionally graded plate with a prefixed Young’s modulus distribution of 232 

the form (14) is numerically solved and compared to analytical solutions in [15]. 233 

  234 
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4. Direct transcription approach 235 

 Hereinafter, the discretization scheme and matrices assembly are performed along 236 

the vertical line MN (i.e., with 𝜃 = 𝜋/2) up to a limit radius 𝐴 sufficiently large (namely 237 

𝑎 ≪ 𝐴 < ∞). Denoting by 𝐾 the number of (equally distant) discretization points 𝑟𝑘 (𝑘 =238 

1,2, … , 𝐾) and letting 𝑟1 = 𝑎 and 𝑟𝑘 = 𝐴, Table 1 lists the finite difference expressions 239 

employed to substitute the different derivatives appearing in the governing equations at the 240 

generic node 𝑟𝑘, where 𝛹 generically represents the unknown variable, i.e., either 𝜎𝑟
𝑏𝑥 in 241 

Eq. (6a) or 𝑔 in Eq. (11), and Δ𝑟 =
𝐴−𝑎

𝐾−1
 denotes the radial step. Finite difference 242 

approximation terms have been chosen to guarantee a second-order accuracy. 243 

Tab. 1: Second-order accuracy expressions for the finite difference terms for the approximation of the 
different derivatives [45]. Here, 𝛹𝑘 denotes the value of 𝛹 at the generic node 𝑟𝑘. 

Node Derivative Approximation 

First Forward 1st derivative 𝑑𝛹

𝑑𝑟
≈

−𝛹3+4𝛹2−3𝛹1

2𝛥𝑟
  

Forward 2nd derivative 𝑑2𝛹

𝑑𝑟2 ≈
2𝛹1−5𝛹2+4𝛹3−𝛹4

Δ𝑟2   

Last Backward 1st derivative 𝑑𝛹

𝑑𝑟
≈

𝛹𝐾−2−4𝛹𝐾−1+3𝛹𝐾

2𝛥𝑟
  

Backward 2nd derivative 𝑑2𝛹

𝑑𝑟2 ≈
−𝛹𝐾−3+4𝛹𝐾−2−5𝛹𝐾−1+2𝛹𝐾

Δ𝑟2   

Intermediate Central 1st derivative 𝑑𝛹

𝑑𝑟
≈

𝛹𝑘+1−𝛹𝑘−1

2𝛥𝑟
  

Central 2nd derivative 𝑑2𝛹

𝑑𝑟2 ≈
𝛹𝑘+1−2𝛹𝑘+𝛹𝑘−1

𝛥𝑟2   

Central 3rd derivative 𝑑3𝛹

𝑑𝑟3 ≈
𝛹𝑘+2−2𝛹𝑘+1+2𝛹𝑘−1−𝛹𝑘−2

2𝛥𝑟3   

Central 4th derivative 𝑑4𝛹

𝑑𝑟4
≈

𝛹𝑘+2−4𝛹𝑘+1+6𝛹𝑘−4𝛹𝑘−1+𝛹𝑘−2

𝛥𝑟4
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 Firstly, the finite difference method is applied to Eqs. (6a-c). Taking into account 244 

the different expressions in Table 1, and after some algebra, Eq. (6a) can be rewritten as 245 

the following system of 𝐾 − 2 algebraic equations  246 

𝜎𝑟 𝑘+1
𝑏𝑥 (2 + Δ𝑟 𝛼𝑘

𝑏𝑥) + 𝜎𝑟 𝑘
𝑏𝑥(−4 + 2Δ𝑟2 𝛽𝑘

𝑏𝑥)

+ 𝜎𝑟 𝑘−1
𝑏𝑥 (2 − Δ𝑟 𝛼𝑘

𝑏𝑥) = 0 , 
𝑘 = 2,3, … , 𝐾 − 1 (18) 

while boundary conditions (6b,c) are simply replaced by their approximations 247 

 𝜎𝑟 1
𝑏𝑥 = 0 , 

(19a,b) 
𝜎𝑟 𝐾

𝑏𝑥 =
𝜎0

2
 . 

Equations (18)-(19a,b) can thus be written in the matrix form 248 

 𝐀 𝚺 = 𝐦 , (20) 

where 𝐀 ∈ ℝ𝐾×𝐾 is a square tridiagonal matrix, 𝚺 ∈ ℝ𝐾 is a column vector whose elements 249 

are the variables 𝜎𝑟 1
𝑏𝑥, 𝜎𝑟 2

𝑏𝑥, … , 𝜎𝑟 𝐾
𝑏𝑥  and 𝐦 ∈ ℝ𝐾 is a column vector whose first 𝐾 − 1 250 

elements are zeros and the last one is 𝜎0/2. 251 

The same considerations can be taken into account for Eqs. (11)-(12a-d). Equation 252 

(11) can be rewritten as the following system of 𝐾 − 4 algebraic equations 253 

𝑔𝑘+2(2 + Δ𝑟 𝛼𝑘
𝑝𝑠) + 𝑔𝑘+1(−8 − 2Δ𝑟 𝛼𝑘

𝑝𝑠 + 2Δ𝑟2 𝛽𝑘
𝑝𝑠 + Δ𝑟3 𝛾𝑘

𝑝𝑠)

+ 𝑔𝑘(12 − 4Δ𝑟2 𝛽𝑘
𝑝𝑠 + 2Δ𝑟4 𝛿𝑘

𝑝𝑠)

+ 𝑔𝑘−1(−8 + 2Δ𝑟 𝛼𝑘
𝑝𝑠 + 2Δ𝑟2 𝛽𝑘

𝑝𝑠 − Δ𝑟3 𝛾𝑘
𝑝𝑠)

+ 𝑔𝑘−2(2 − Δ𝑟 𝛼𝑘
𝑝𝑠) = 0 . 

𝑘 = 3,4, … , 𝐾 − 2 (21) 

Also here, the terms 𝛼𝑘
𝑝𝑠, 𝛽𝑘

𝑝𝑠, 𝛾𝑘
𝑝𝑠 and 𝛿𝑘

𝑝𝑠 can be derived by using the derivative 254 

approximations in Table 1 of their expressions. Finally, boundary conditions (12a-d), with 255 

the aid of Eqs. (10a-c), can be approximated as follows 256 

 1

𝑎

𝑔3 + 4𝑔2 − 3𝑔1

2Δ𝑟
−

4𝑔1

𝑎2
= 0 , 

(22a-d) 

1

𝑎

𝑔3 + 4𝑔2 − 3𝑔1

2Δ𝑟
−

𝑔1

𝑎2
= 0 , 

1

𝐴

𝑔𝐾−2 − 4𝑔𝐾−1 + 3𝑔𝐾

2Δ𝑟
−

4𝑔𝐾

𝐴2
=

𝜎0

2
 , 

1

𝐴

𝑔𝐾−2 − 4𝑔𝐾−1 + 3𝑔𝐾

2Δ𝑟
−

4𝑔𝐾

𝐴2
= −

𝜎0

4
 , 



 
 

14 
 

respectively, where the far-field boundary conditions have been evaluated at the last 257 

discretization point 𝑟𝐾 = 𝐴 ≫ 𝑎 = 𝑟1. The resulting system of equations can be recast in 258 

the matrix form 259 

 𝐁 𝚪 = 𝐧 , (23) 

where 𝐁 ∈ ℝ𝐾×𝐾 is the a square pentadiagonal matrix, 𝚪 ∈ ℝ𝐾 is a column vector whose 260 

elements are the variables 𝑔1, 𝑔2, … , 𝑔𝐾 and 𝐧 ∈ ℝ𝐾 is a column vector whose first 𝐾 − 2 261 

elements are zeros and the last two are 𝜎0/2 and −𝜎0/4, respectively. Elastic uniform 262 

biaxial and pure shear stresses are embedded into Eqs. (20) and (23), respectively, whose 263 

solutions are given by 264 

 𝚺 = inv(𝐀) 𝐦 , (24) 

and 265 

 𝚪 = inv(𝐁) 𝐧 . (25) 

where inv(∙) is the inverse operator for square matrices. 266 

The finite difference method has been implemented successfully for the 267 

computation of stresses arising in functionally graded bodies in several circumstances, e.g., 268 

[46,47]. Nevertheless, before proceeding with the solution of the optimization problem, an 269 

example showing the validation of the method is necessary. Analytical solutions for the 270 

stresses are thus borrowed from the literature and compared to the numerical results. 271 

Among others, closed-form solutions derived in [15] are taken into account, where 272 

mechanical properties are described by the general power-law (14) for 𝛽 = ±0.9 and 𝑛 =273 

−5. Figure 4a shows the analytical solutions for the radial and hoop stresses (solid lines) 274 

in the plate along MN and the numerical solutions (scatter points) by means of the finite 275 

difference method. A mesh convergence study has been carried out for the Young’s 276 

modulus variation (14) adopted in [15] with 𝛽 = ±0.9 and 𝑛 = −5. In particular, it was 277 

found that the maximum values of the occurring stresses satisfy the convergence criterion 278 

𝜎𝑗,max
(𝐾𝑖+1)

− 𝜎𝑗,max
(𝐾𝑖)

≤ 10−2MPa beyond 𝐾 = 300, being 𝑖 and 𝑖 + 1 two numerical forecasts 279 

employing 𝐾𝑖 and 𝐾𝑖+1 nodes, respectively, and 𝑗 = 𝑟, 𝜃 (see Figure 4b). 280 

  281 
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(a)                                   (b) 

Fig. 4: (a) Analytical (solid lines) versus numerical (scatter points) solutions for the normalized radial and 
hoop stresses along the vertical line MN associated with the Young’s modulus distribution in Eq. (14) with 
𝛽 = ±0.9 and 𝑛 = −5. The parameters adopted for the simulation are 𝜈 = 0.3 and 𝐴/𝑎 = 20. (b) 
Convergence study for the maximum radial and hoop stresses as functions of 𝐾. 

Eventually, the maximum operator appearing in Eq. (17) is replaced by its 𝑝-norm 282 

approximation (where 𝑝 is an even number greater than or equal 2), given by 283 

 𝜎𝜃,max ≈ (∫ 𝜎̌𝜃(𝑟)𝑝𝑑𝑟
𝐴

𝑎

)

1
𝑝

 (26) 

and evaluated by means of the well-known trapezoidal rule, namely 284 

 𝜎̌𝜃,max ≈ [Δ𝑟 (𝜎̌𝜃(𝑎)𝑝  + 𝜎̌𝜃(𝐴)𝑝 + ∑ 𝜎̌𝜃(𝑟𝑖)
𝑝

𝐾−1

𝑖=2

)]

1
𝑝

. (27) 

Thus, Problem 1 can be transcribed into the following NLP problem. 285 

Problem 2. min 
𝜎̌𝜃,max ≈ [Δ𝑟(𝜎̌𝜃 1

𝑝
+ 𝜎̌𝜃 𝐾

𝑝
+ ∑ 𝜎̌𝜃 𝑖

𝑝𝐾−1
𝑖=2 )]

1

𝑝   
𝐕 ∈ ℝ𝐾 

 s.t. 𝐸𝑗 = 𝐸̃1(1 − 𝑉𝑗) + 𝐸̃2𝑉𝑗  ,                                                   𝑗 = 1, 2, … , 𝐾  

 ∑ 𝐴𝑗𝑖 σ𝑟 𝑖
𝑏𝑥𝐾

𝑖=1 − 𝑚𝑗 = 0 ,                                                     𝑗 = 1, 2, … , 𝐾  

 ∑ 𝐵𝑗𝑖  𝑔𝑖
𝐾
𝑖=1 − 𝑛𝑗 = 0 ,                                                         𝑗 = 1, 2, … , 𝐾  

 𝜎̌𝜃 𝑗 − σ𝑟 𝑗
𝑏𝑥 + 𝑟𝑗

σ𝑟 𝑗+1
𝑏𝑥 −σ𝑟 𝑗−1

𝑏𝑥

2Δ𝑟
−

𝑔𝑗+1−2𝑔𝑗+𝑔𝑗−1

Δ𝑟2 = 0 ,                   𝑗 = 2, 3, … , 𝐾 − 1  

 𝜎̌𝜃 1 − σ𝑟 1
𝑏𝑥 + 𝑎

−3𝜎𝑟 1
𝑏𝑥+4𝜎𝑟 2

𝑏𝑥−𝜎𝑟 3
𝑏𝑥

2𝛥𝑟
−

2𝑔1−5𝑔2+4𝑔3−𝑔4

𝛥𝑟2 = 0 ,   

 𝜎̌𝜃 𝐾 − σ𝑟 𝐾
𝑏𝑥 + 𝐴

𝜎𝑟 𝐾−2
𝑏𝑥 −4𝜎𝑟 𝐾−1

𝑏𝑥 +3𝜎𝑟 𝐾
𝑏𝑥

2𝛥𝑟
−

−𝑔𝐾−3+4𝑔𝐾−2−5𝑔𝐾−1+2𝑔𝐾

𝛥𝑟2 = 0 ,   

where the volume fraction has been replaced by a finite-dimensional vector 𝐕 =286 

(𝑉1, 𝑉2, … , 𝑉𝐾) ∈ ℝ𝐾, linked to Young’s modulus through Eq. (1), being fixed the stiffness 287 
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ratio 𝐸̃2/𝐸̃1 and the exponent 𝑝 for the objective function evaluation. The vector of the 288 

decision variables of the NLP problem consists of the 𝐾 discrete variables 𝑉1, 𝑉2, … , 𝑉𝐾. 289 

The constraints are the discrete equations for the elastic problems (6a-c) and (11)-(12a-d). 290 

The optimal solution therefore yields the optimal variation of the volume fraction and the 291 

corresponding stress behavior throughout the plate. 292 

5. Results and discussion 293 

In this Section, numerical optimal solutions for Problem 2 are illustrated and 294 

discussed. Hereinafter, the exponent 𝑝 was taken to be equal to 200 (higher values 295 

generally lead to results too large to represent as conventional floating-point values during 296 

the iteration process), which yields a good approximation of the maximum hoop stress 297 

associated with the optimal solution, as confirmed by numerical results below. A gradient-298 

based solver has been employed to numerically compute the optimal decision variable such 299 

that the maximum hoop stress reaches its minimum value. The algorithm used in this study 300 

is the well-known sequential quadratic programming algorithm [48]. Termination 301 

tolerances on both the function value as well as on the first-order condition for optimality 302 

have been imposed as 10−6. In the light of conclusions made in [49], a linear volume 303 

fraction has been chosen as an initial guess and the numerical optimal solution has been 304 

sought iteratively. 305 

 

  
(a) (b) 

Fig. 5: (a) The linear initial guess (dashed line) as well as optimal numerical solutions (dotted and solid lines) 
for the volume fraction as 𝐾 increases considering 𝐸2/𝐸1 = 10. (b) Optimal solutions for the Young’s 
modulus distribution considering different stiffness ratios. Numerical forecasts have been performed with 
𝑝 = 200 and 𝐴/𝑎 = 20. The history of the iterations is also reported in the lower-right angle of each figure. 
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For the sake of comparison with the result obtained in [15], a first simulation has 306 

been performed with a stiffness ratio 𝐸̃2/𝐸̃1 = 10. The initial target is therefore to compare 307 

numerical results with the stress performance associated with the Young’s modulus 308 

distribution obtained with 𝛽 = −0.9 and 𝑛 = −5 (see Figures 2a,b or 4). Figure 5a shows 309 

the initial guess (dashed line) and numerical optimal volume fractions with the same load 310 

and geometrical parameters as those employed for the validation example. More precisely, 311 

successive numerical solutions were obtained for increasing 𝐾 values (dotted lines) until a 312 

prefixed convergence criterion between consecutive optimal solutions is achieved. In 313 

particular, the considered optimal solution (𝐾 = 200, solid line) was chosen instead of 314 

another ones associated with lower nodes (e.g., 𝐾 = 100) as the norm of their difference 315 

is less than 10−2. It is worth noting that the optimal volume fraction increases throughout 316 

the radial direction, indicating the optimality of adopting a softer material at the rim of the 317 

circular hole. This finding is in agreement with the literature reporting enhancement studies 318 

for the SCF for plates with circular holes (see, e.g., [10]). The resulting optimal Young’s 319 

modulus distribution is following a sort of sigmoid function around the linear distribution. 320 

Moreover, the optimal material distribution does not necessarily assume, as base materials, 321 

the functionally graded material constituents at the boundaries of the plate. Similar 322 

forecasts have been performed for different stiffness ratios 𝐸̃2/𝐸̃1, leading to the same 323 

conclusion (see Figure 5b). 324 

 To assess the stress performance of the optimal solution, the associated elastic 325 

hoop, radial and shear stresses are respectively illustrated in Figures 6a,b,c (dotted lines). 326 

It is worth appreciating that the hoop stress is uniform throughout the plate and free of 327 

stress peaks, yielding a plateaued stress behavior and thus making the stress concentration 328 

vanish throughout the radial domain. Moreover, the radial and shear stresses obey the 329 

boundary conditions of the problem. It is worth noting that the optimization output is the 330 

same if the uniaxial load direction is rotated by 𝜋/2, provided that the optimization 331 

problem is formulated on the line associated with 𝜃 = 0. To further assess the correctness 332 

of the stress field obtained by the optimal Young’s modulus distribution, a finite element 333 

(FE) forecast was carried out by a commercial software (ANSYS Mechanical APDL 2022 334 

R1). Due to symmetrical load and geometrical considerations, the geometrical domain 335 

consists of the quarter of the plate and is discretized by means of second-order quadrilateral 336 
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plane stress elements (PLANE 183). Necessary symmetric boundary conditions and the 337 

uniaxial load have been suitably applied to the model. The radial direction has been 338 

discretized into 200 radial strips (the same discretization points used in the transcription 339 

procedure), each of which is isotropic and homogeneous and has the same mechanical 340 

properties. Adjacent layers present different properties such that the resulting piecewise 341 

constant variation approximates the optimal Young’s modulus distribution displayed in 342 

Figure 5b. The FE stress behavior has been represented by scatter points, showing a 343 

remarkable fit with the optimization solver outputs, compared to the material modeling 344 

simplifications necessary for the FE forecast, and confirming the uniformity of the hoop 345 

stress on the line MN. Furthermore, a comparison between stresses obtained by the present 346 

approach alongside with those analytically derived in [15] (associated with 𝛽 = −0.9 and 347 

𝑛 = −5) and in [16] for two different ring geometries (𝑏/𝑎 = 3 and 5) is made (see solid 348 

lines). It is clear that the present approach leads to Young’s modulus distributions 349 

(sigmoid-like curves) associated with the most uniform hoop stress (and consequently the 350 

minimum peak hoop stress) throughout the plate. 351 

6. Conclusions 352 

The optimization of the volume fraction distribution to minimize peak hoop stresses in 353 

functionally graded infinite plates with a circular hole and subjected to uniaxial traction is 354 

numerically addressed. The optimization problem has been stated and formulated as a 355 

dynamic optimization problem, where the variation of the decision variable, namely the 356 

volume fraction and consequently the Young’s modulus through the rule of mixture, is 357 

unknown beforehand and not limited to specified functions along the radial direction. The 358 

problem has been divided into two sub-problems, i.e., occurring stresses have been 359 

assumed as the superposition of those resulting from the biaxial and from the pure shear 360 

deformations. Optimality conditions for the best distribution of the volume fraction could 361 

not be solved analytically, hence numerical methods were necessary. 362 
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The transcription procedure consisted in approximating the peak stress by the 363 

trapezoidal rule and converting the differential equations accounting for the elastic problem 364 

into two systems of algebraic equations describing the two sub-problems by means of the 365 

finite difference method due to the simplicity of the employed boundary conditions which 366 

permitted the solution with reduced computational costs. The obtained numerical solutions 367 

for the Young’s modulus follow a sigmoidal behavior. The associated hoop stress revealed 368 

uniform along the radius and has been validated by the finite element method.  369 

The Young’s modulus distribution has been assumed to follow the rule of mixture; 370 

however, other models for the effective Young’s modulus can be fitted in the same 371 

framework. The present article can be considered as a preliminary study whose results can 372 

be further extended as follows. For instance, other geometrical discontinuities such as 373 

   
(a) 

  

(b) (c) 

Fig. 6 Stresses associated with the optimal numerical solution (dotted lines) and finite element results (scatter 
points). (a) Hoop and (b) radial stresses along the vertical line MN and the (c) shear stress along 𝜃 = 𝜋/4. 
Comparison between optimized stresses with results in literature (solid lines) [15,16]. 
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elliptic or rounded-square holes can be taken into account, provided that the transcription 374 

of the differential elastic equations into algebraic equations is replaced by a suitable finite 375 

element approach. 376 
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Abstract

Dislocations in Laser Powder Bed Fusion (L-PBF) AISI 316L closely relates to the material’s

stress state, response and damage at the inter- and intra-granular scales. Assessing the dis-

location state and activity at these scales helps understand the material behaviour at larger

length-scales. Nevertheless, most experimental studies have utilised surface or destructive

methods, unable to probe the bulk non-invasively. We conduct the first Dark-Field X-ray

Microscopy (DFXM) investigation to non-destructively assess the intra-granular dislocation

density within an L-PBF AISI 316L grain in the bulk. The research unveiled sub-granular

cells with orientation spread up to 4◦, and intra-granular dislocation arrangements, signalling

Type III Residual Stress (RS) in the bulk. Additional texture analysis indicated a predom-

inant {110} orientation within the grain. Computed tomography on a miniaturised sample

(200 × 200 µm2 cross-section) enabled the statistical characterisation of its porosity. Pores

were found close to the sample surface and geometrically regular, with sphericity mostly

greater than 0.5.

Keywords: Dark field X-Ray Microscopy (DFXM); Laser Powder Bed Fusion (L-PBF);

AISI 316L; Mosaicity; Dislocation Density.
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Metal Additive Manufacturing (AM) has redefined the industrial fabrication scenario,

offering numerous advantages and exceptional versatility over conventional manufacturing

methods [1, 2]. Laser Powder Bed Fusion (L-PBF) is a renowned AM technique that cur-

rently handles a variety of metallic materials [3]. Among these, AISI 316L has gained

considerable industrial relevance given its favourable cost-effective processability, thermo-

mechanical properties, and chemical resistance [4]. Although the fabrication of L-PBF AISI

316L has reached a mature technological state, several unwanted features spanning multiple

length scales affect the produced parts, thereby influencing their mechanical response.

The complex thermodynamic conditions within the AM melt pool give rise to defects of

diverse morphologies, which reportedly scatters the resulting fatigue behaviour [5–7]. AM

parts predominantly experience heat transfer along the build direction, leading to elongated

columnar grains within intra-granular cells and, therefore, anisotropic microstructure and

mechanical properties [8–11]. Depending on the AM process parameters, a fibre ⟨100⟩ or

⟨110⟩ crystallographic texture can be observed in L-PBF AISI 316L [12]. However, a random

texture can be found for specific process parameters [13, 14].

Dislocation density strongly influences the mechanical properties of materials [15, 16].

Specifically, the dislocations in wall-like structures surrounding dislocation-free channels

within the grains modulate plastic deformation mechanisms [17, 18]. This phenomenon

results in higher yield stress than the conventionally manufactured counterpart [19], while

leads to ultimate tensile strengths comparable to wrought materials without a pronounced

reduction in elongation [20].

The build-up of dislocations and lattice mismatches also contributes to residual stress

(RS) at the intra-granular level [21]. Moreover, local inhomogeneous of L-PBF thermal gra-

dients triggers RS across the scales as in other conventional fabrication methods and joining
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processes [22–24]. Despite targeted post-fabrication treatment [25], RS appears unavoidable.

Hence, gaining an in-depth comprehension of RS arising from AM is of capital importance.

For instance, the relief of AM-induced Type I (macro-scale) RS through post-fabrication

treatments led to increased fatigue strength in the high-cycle fatigue regime [26]. Another

study investigated the interplay between Type II (inter-granular) RS and dislocation density

in as-built L-PBF AISI 316L samples. Therein, dislocations were also proven to produce

tension-compression asymmetries in yield strength and work hardening [27]. The study

principally provided experimental evidence of RS, without direct insights into dislocation

distributions. Based on Electron Backscattered Diffraction (EBSD) investigations, some of

the present authors demonstrated that RS play a marginal role in low-cycle fatigue regime,

mainly due its relaxation, grain refinement, and dislocation rearrangement as the number of

reversals increased [28]. L-PBF AISI 316L also exhibits a hierarchical sub-granular structure

with a high density of dislocation, local plastic deformation at the intra-granular level, and

therefore, Type III (intra-granular) RS [29–31].

Evidently, the experimental evaluation of dislocation density at the intra-granular would

be pivotal to understand its interaction with RS formation in L-PBF AISI 316L, and there-

fore its mechanical response. Moreover, the above-discussed microstructural investigations

were conducted through destructive experimental methods, e.g. EBSD. Since these tech-

niques require sample or surface preparation, the experimental outcome can be biased [32].

To gain direct access to three-dimensional intra-granular information in the bulk in a non-

invasive, one can resort to Dark-Field X-ray Microscopy (DFXM) [33]. This high-resolution,

non-destructive 3D imaging technique employs full-field illumination and collects reflections

from a selected crystallographic plane to reconstruct morphology, mosaicity, lattice strain,

and stress within individual crystals [34, 35]. Notably, DFXM has permitted intra-granular

characterisation of several metallic materials and alloys [36, 37], including in-situ experi-

ments [38, 39]. Nevertheless, the literature currently lacks applications of DFXM to L-PBF

AISI 316L.

In this work, we address the outstanding gaps outlined above by characterising, for

the first time, the intra-granular orientation and dislocation density in an individual grain
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located in the bulk of an L-PBF AISI 316L sample via DFXM. The same method is also

leveraged for texture mapping, whereas Computed Tomography (CT) is exploited to quantify

the porosity of the samples, enabling a multi-modal characterisation of the bulk material.

A monolithic L-PBF AISI 316L specimen was fabricated by a Concept Laser M2 Cusing

with parameters listed in Table 1. The specimen subsequently underwent Wire Electrical

Discharge Machining to produce a batch of comb-like sheets, whose teeth are the sample for

the experimental activity with dimensions 200× 200× 3500 µm3, whose schematic is shown

in Fig. 1(a). Specifically, labels S1 and S2 shall be used hereinafter to label to the two

samples contained in the comb-like material used in this work. The experimental activity

was entirely carried out at beamline ID03 of the European Synchrotron Radiation Facility

(Grenoble, France) [40].

Table 1: Process parameters used to fabricate the monolithic AISI 316L sample in this study. The same

parameters were used by some of the present authors in a previous work [41], where the feedstock was also

characterised.

Parameter Value

Laser power 180 W

Scanning speed 600 mm/s

Spot diameter 120 µm

Hatch distance 105 µm

Layer thickness 25 µm

Sample S1 was characterised by X-ray CT to assess the pore population. CT was per-

formed on a near-field PCO detector coupled to a scintillator, mirror, and visible-light

objective, yielding an effective pixel size of 0.65 µm. The detector was positioned approx-

imately 100mm downstream of the sample. A 17.0 keV beam box beam of approximately

1×1mm2 was used to illuminate the sample. A total of 2000 projections were acquired over

a 360◦ scan range. The CT reconstruction was carried out by tomware [42], the resulting

image stack was segmented using the 3D ImageJ Suite [43], and the segmented data were

post-processed using custom Python scripts.
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Sample S1 was also probed to quantify the volume-averaged texture by collecting diffrac-

tions from a statistically representative population of grains within the illuminated gauge

volume priorly CT-scanned. The analysis was performed at the same sample position as

the CT without repositioning the specimen. The sample was illuminated using a box beam

of approximately 300 × 300 µm2 at a photon energy of 55.12 keV. The detector geometry

was calibrated using a Si single crystal and a Si powder standard. Diffraction images were

recorded on a FReLoN detector (pixel size 47.3 µm) positioned 283mm downstream of the

sample. Texture data were acquired during an ω-rotation about the laboratory z-axis over

360 angular positions, with 0.5 s exposure per point and an effective angular integration of 1◦

per step. The recorded Debye–Scherrer rings were subsequently analysed to derive volume-

averaged pole figures and the corresponding orientation distribution function (ODF) from

the integrated diffraction intensities associated with the {111} and {200} reflection fam-

ilies [44]. The integration was done using pyFAI [45], whereas MTEX [46] was utilised for

texture data post-processing and visualisation.

Sample S2 was examined through DFXM, and Fig. 1(a) portrays the simplified schematic

of the experimental setup. The setup provided an X-ray magnification of 13.8×, correspond-

ing to an effective pixel size of 47 nm on the detector. DFXM local orientation (mosaicity)

scans were performed around the 002 diffraction vector, i.e. by tilting the sample about

Φ and χ at constant 2θ. A series of mosaicity scans were collected at successive sample

heights to probe the variation along the grain. The scans were spaced by 2 µm in the

vertical direction, thus effectively capturing a stack of virtual 2D slices through the diffract-

ing 3D grain volume, whose reconstruction is presented in Fig. 1(b). Data processing and

analysis were performed using darfix [47] and custom MATLAB routines, whereas the data

post-processing was carried out with Pyvista and Paraview [48, 49]. Please note that the

DFXM measurements reported in this work were conducted during a previous beamtime on

a sample extracted from the same L-PBF batch, enabling direct comparison of intra-granular

information with the present volume-averaged texture and porosity characterisation.

We start by showing the millimetre-scale X-ray CT results to visualise the overall mor-

phology and porosity of the sample, before moving to texture and intragranular imaging. The
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Figure 1: (a) Schematic of the setup for DFXM employed for the present experiment, along with a close-up of

the sample (dimensions are in µm), and the laboratory frame {x, y, z}. Slits were 1mm open horizontally and

0.15mm open vertically, thus giving an incident 1000× 0.5µm2 monochromatic beam with a photon energy

of 19.2 keV. The beam was focused vertically onto the sample using Compound Refractive Lenses (CRLs)

having 58 Be parabolic lenslets with 100µm radius, forming a line beam with a height of approximately

500 nm at Full-width at Half-maximum (FWHM). A grain of interest was selected from the bulk material,

and its 002 diffraction vector, Q, was aligned vertically so that it passed through the X-ray CRL objective

composed of 87 two-dimensional Be with 50µm radius. The diffracted beam through the objective was

imaged using a PCO detector coupled with a scintillator located roughly at 5.25m from the sample. (b)

Reconstructed layer-wise morphology of the selected grain. The z-scale is magnified for aiding visualisation.

result of the segmentation of CT images for S2 is given in Fig. 2(a). The data post-processing

indicates a total porosity of approximately 0.02%. Fig. 2(b)-(c) illustrates the distributions

of pores’ descriptors, including the minimum distance to the free surface, sphericity, and

Murakami’s
√
area [50], which is frequently to define the fatigue crack driving force in di-

verse semi-empirical models [51]. Fig. 2(b) demonstrates that pores are mostly located

close to the sample surface, whereas Fig. 2(c) shows that pore exhibits predominantly reg-

ular morphology (S > 0.5), which likely originated from gas entrapment or keyhole-related

mechanisms [7, 52]. Fig. 2(d) illustrates the distribution of S as a function of
√
area, which

is broadly consistent with findings by other authors [53, 54], although an exhaustive com-

parison is limited by the much larger gauge volumes used in those studies. Despite the small
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number of pores detected in the sample (17 in total), the pore shape and size distributions

observed in this work aligns with those reported for similar ranges of S and
√
area.

From a structural integrity perspective, the characteristics of the detected pore popu-

lation suggest a limited detrimental impact on the bulk performance of the material. In

particular, the low overall porosity, the predominance of near-spherical morphologies, and

the small values of
√
area indicate a comparatively low potential stress concentration to

irregular lack-of-fusion defects. Moreover, the proximity of the pores to the free surface may

render them preferential sites for fatigue crack initiation under cyclic loading [50, 52, 55].

Next, we move to the volume-averaged diffraction mapping in order to establish the

texture of the sample. Fig. 3 reports {110}, {200}, and {111} pole figures obtained from

the ODF of sample S2. Despite the small investigated sample volume, a texture pattern can

be observed. The {110} pole figure exhibits the maximum intensity near the z-direction.

A slight difference, however, arises from the tilted sample orientation during the diffraction

analysis, leading to ODF maximum intensities not perfectly aligned with the sample axes.

Nevertheless, the pattern discovered over {110} pole figure matches the results by some of the

authors of this work [28, 56], albeit obtained via EBSD and neutron diffraction. As concerns

{200} pole figure, maximum intensities were found close to the x- and y-directions, which

is corroborated by the EBSD analyses in [12]. Furthermore, the {111} pole figure reveals

that the intensity maxima are distributed at off-axis positions, indicating that the dominant

crystallographic orientations are inclined with respect to the principal sample directions.

This observation is consistent with previous results from the literature [12, 28, 56].

We now zoom in on a grain of interest employing DFXM to reveal grain morphology

and intra-granular dislocation structure. Specifically, the grain of interest was selected from

the higher textured region in the {200} pole. The data herein are presented as 3D-stacked

views. The reader can refer to Appendix A for the 2D representation of the data.

Fig. 4(a)-(c) illustrates the distribution of the local crystal orientation, namely CoMΦ

and CoMχ. A qualitative inspection reveals pronounced local lattice tilts up to 4◦. Alongside

this, the histograms (Fig. 4(c)) displays considerable intra-granular orientation spread across

the layers. Fig. 4(d) illustrates the mosaicity inferred from the CoMs over each grain layer,

7
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Figure 2: Results of the segmentation of CT images. (a) Segmented volume. The outer surface of the sample

is rendered in transparent grey, whereas the detected pores are shown in black. The portion of the surface

cavity labelled with P does not qualify as a pore, but it represents a surface cavity generated during the AM

process. (b) Distribution of the minimum distance between the pores and outer surface, h. (c) Distribution

of sphericity, S, computed as S = π1/3(6V )2/3/A, where V and A are the volume and external surface of

each detected pore. (d) Distribution of S vs
√
area. This

√
area is usually defined as the projection of A

onto a plane of interest, e.g. the plane normal to the externally applied cyclic load. In this case,
√
area is

computed as the projection of A with respect to the x− y plane, i.e. normal to the build direction.

representing spatial variations within intra-granular regions of similar orientation. Areas

with distinct colour variations may indicate the formation of sub-grains cells, revealing

heterogeneity at the inter-granular scale. Intuitively, regions with varying crystallographic

orientations are linked with lattice distortions and can be linked to changes in lattice spacing,
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(a) (b) (c)

Figure 3: Pole figures of the ODF obtained from texture analysis. (a) {110}. (b) {200}. (c) {111}. Please

note that the z-axis of the sample reference frame, which should nominally coincide with the sample build

direction, was instead slightly misaligned, resulting in a small deviation between the reference frame and

the actual build direction.

i.e. RS [8]. This phenomenon may result from both the accrual of local strains due to AM

inhomogeneous thermal gradients, or differences in strain between grain interior and its

boundary [57].

DFXM data was also post-processed to compute the misorientation (N ) according to [8,

38] (Fig. 5(a)), whereby the Geometrically Necessary Dislocations (GND) density, ρGND,

was estimated (Fig. 5(b)). The misorientation turned out to be mostly confined in the

range [0◦, 1◦], which is corroborated by other studies in the literature [58, 59]. A closer in-

spection, shows the presence of areas with N ∼ 0.6◦–seemingly low-angle grain boundaries–

separating domains characterised by lower misorientation in qualitative agreement with [28].

Globally, this outcome suggests a uniform relative crystallographic orientation within the

grain. Nonetheless, the retention of misorientation seems to indicate the continuation of local

strain gradients, arising both from the fabrication process and from lattice incompatibilities

amongst adjacent grains [60]. The organisation of ρGND is consistent with [28], although

the previous investigation relied on EBSD measurements, hence ρGND solely referred to the

surface of the sample. Similar to the misorientation distribution, ρGND arranges as regions

of low density interspersed with areas exhibiting larger values of ρGND. Therefore, the 3D

maps outline internal grain boundaries, where dislocations gathered, hinting at considerable
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Figure 4: Results of the mosaicity scans. (a)-(b) Local crystal orientation quantified in terms of the centre-

of-mass (CoM) at FWHM of the pixel-wise intensity distribution of the (200) reflection, recorded on the

far-field detector as a function of the rocking angles Φ and χ, namely CoMΦ and CoMχ. (c) Histogram of

CoMχ and CoMϕ across all layers. (d) Mosaicity RGB map obtained by combining the previous CoMs data.

work-hardening and accumulated plastic strain, hence intra-granular RS [8]. Since the sam-

ple was in as-built condition, these features can primarily be attributed to the fabrication

process itself. Furthermore, the characterisation of intra-granular dislocation density is of
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particular relevance, as ρGND is frequently adopted to describe the strengthening mecha-

nisms in crystal plasticity models, both contributing to increasing the critical resolved shear

stress and governing long-range internal stress (back stress) [61–64].

(a) (b)

Figure 5: (a) 3D map of misorientation distribution computed according to [8, 38], i.e. N =
√

∆Φ2 +∆χ2,

where ∆Φ and ∆χ are the differences in local orientation computed with respect to the pixel size. (b) 3D

map of Geometrically Necessary Dislocation density (ρGND) distribution estimated through N by ρGND =

N/(1014 · b t), where b = 2.5 · 10−10 m is the Burgers vector and t = 100 · 10−9 nm is the characteristic

length scale over which the misorientation is measured, typically taken as the step size or thickness of the

analysed region.

The experimental evidence indicates that RS is retained in the as-built material condi-

tion. As mentioned earlier, RS together with defects play a pivotal role in fatigue. Therefore,

upon further targeted DFXM experiment a prospective development route would be the in-

ference of RS descriptors, similarly to what proposed in [65]. When combined with prior
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information on pore and defect populations obtained from CT, these descriptors can be fed

into predictive models to assess how the interplay between RS and defects governs fatigue

behaviour, as well as how process parameters influence fatigue performance [66, 67].

In conclusion, the present work employed DFXM to investigate the orientation spread

of a representative L-PBF AISI 316 grain in the bulk material. The analyses unveiled ori-

entation spread across the grains up to 4◦, together with mosaicity, whereby sub-granular

structures with deviations in crystal lattice were identified. The processing of the data en-

abled the computation of misorientation and its correlation with dislocation density, showing

elevated ρGND both within grains and along grain boundaries, in qualitative agreement with

the authors’ previous observations [28]. Besides proving the applicability of DFXM to this

sort of material, the findings also provide, for the first time, insight into the intra-granular

distribution of dislocation density in the bulk, which is not accessible with surface or de-

structive methods in a non-invasive manner. Texture analysis was conducted to characterise

the orientation of the probed grain, showing {110} as a preferred crystal orientational, which

is substantiated by earlier findings [12, 28, 56]. Furthermore, additional CT investigation

were carried out to segment the sample volume and statistically characterise its porosity.

The pores are mainly located near the surface of the sample. Given their predominantly

regular morphology, they were regarded as gas pores or key-hole defects. The output of

this research represents valuable information for modelling the mechanical behaviour of the

material, disclosing ρGND as a potential indicator of RS, which, in turn, warrants further

quantitative assessment through dedicated DFXM axial strain scans.
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Appendix A. 2D Layer-wise Maps of the Results
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Figure A.6: Layer-wise orientation in terms of CoMϕ.
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Figure A.7: Layer-wise orientation in terms of CoMχ.
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Figure A.8: Layer-wise mosaicity inferred from CoMϕ and CoMχ
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Figure A.9: Layer-wise misorientation.
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Figure A.10: Layer-wise misorientation Geometrically Necessary Dislocations density (ρGND).

18



PR
EP
RI
NT

References

[1] William E. Frazier. Metal Additive Manufacturing: A Review. Journal of Materials Engineering and

Performance, 23(6):1917–1928, June 2014. doi: 10.1007/s11665-014-0958-z.

[2] Byron Blakey-Milner, Paul Gradl, Glen Snedden, Michael Brooks, Jean Pitot, Elena Lopez, Martin

Leary, Filippo Berto, and Anton Du Plessis. Metal additive manufacturing in aerospace: A review.

Materials & Design, 209:110008, November 2021. doi: 10.1016/j.matdes.2021.110008.

[3] P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E.A. Jägle. Steels in additive manufac-
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and C. Detlefs. darfix – data analysis for dark-field X-ray microscopy. Journal of Synchrotron Radiation,

30(3):527–537, May 2023. ISSN 1600-5775. doi: 10.1107/S1600577523001674.

[48] Bane Sullivan and Alexander Kaszynski. PyVista: 3D plotting and mesh analysis through a streamlined

interface for the Visualization Toolkit (VTK). Journal of Open Source Software, 4(37):1450, May 2019.

doi: 10.21105/joss.01450. URL https://doi.org/10.21105/joss.01450.

[49] James Ahrens, Berk Geveci, and Charles Law. ParaView: An End-User Tool for Large-Data Visualiza-

tion. In Visualization Handbook, pages 717–731. Elsevier, 2005. doi: 10.1016/B978-012387582-2/50038-

23



PR
EP
RI
NT

1.

[50] Y. Murakami and M. Endo. Effects of defects, inclusions and inhomogeneities on fatigue strength.

International Journal of Fatigue, 16(3):163–182, April 1994. ISSN 0142-1123. doi: 10.1016/0142-

1123(94)90001-9.

[51] Uwe Zerbst, Giovanni Bruno, Jean-Yves Buffière, Thomas Wegener, Thomas Niendorf, Tao Wu, Xi-

ang Zhang, Nikolai Kashaev, Giovanni Meneghetti, Nik Hrabe, Mauro Madia, Tiago Werner, Kai

Hilgenberg, Martina Koukoĺıková, Radek Procházka, Jan Džugan, Benjamin Möller, Stefano Beretta,
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