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Optimization of functionally graded materials to make stress
concentration vanish in a plate with circular hole

Hassan Mohamed Abdelalim Abdalla!, Francesco De Bona?, Daniele Casagrande®

Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206,
33100 Udine, Italy.

Abstract: This paper is devoted to the minimization of the stress concentration factor in
infinite plates with circular hole made of functionally graded materials and subjected to a
far-field uniform uniaxial tension. Despite the vast literature on the versatility of these
materials, the novelty of the results is that the optimal material distribution is not limited
to prefixed laws, as in many works available in the literature. It is assumed to be an
unknown piecewise constant function, thus aiming to derive the material distribution by
exploiting, at best, the inhomogeneity concept associated with functionally graded
materials. After a brief review of the governing equations, the motivation, the statement
and the mathematical formulation of the optimization problem are given under the
hypothesis of axisymmetric material distribution. Still, the problem could not be solved
analytically, therefore a direct transcription approach by the aid of finite difference method
has been followed to convert it into a nonlinear programming problem, whose solution has
been obtained numerically by dedicated gradient-based solvers. Numerical solutions are
reported in graphical forms, thoroughly discussed and validated by means of the finite
element method. The developed numerical approach yields a material inhomogeneity
obeying a sigmoid-like function and a uniform hoop stress along the radial direction, thus
making the stress concentration factor at the rim of the circular hole vanish.

Keywords: Functionally graded materials; stress concentration factor; direct transcription;
optimization; nonlinear programming; plates.

1. Introduction

The study of the stress concentration in panels due to the presence of circular holes
constitutes one of the classic problems in mechanics. It is known that if the panel is
infinitely large and made of a homogenous, linearly elastic and isotropic material and

subjected to a uniform uniaxial tension, then the stress concentration factor (hereinafter
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abbreviated by SCF) is identically 3. In literature, this result is commonly referred to as the
Kirsch solution, named after the German engineer who first described the elastic stresses
around the hole [1]. Since then, engineers and researchers have been interested in reducing
such a factor by abandoning the aforementioned isotropic and homogeneity assumptions
and the shape of the geometrical discontinuity (see, e.g., [2,3] for an exhaustive literature
review on various analytical methods).

The adoption of functionally graded materials has propounded its application to
numerous mechanical and geotechnical models [4-6], where the microstructure was
allowed to vary along one or several directions by employing isotropic, orthotropic or even
anisotropic constituent materials (see, e.g., [7-9]). Among all, the stress analysis of
functionally graded panels with holes has been investigated. Several analytical and
numerical efforts have been carried out aiming at reducing the stress concentration by
taking advantage of different inhomogeneity models. For instance, the effect of the material
inhomogeneity on the SCF due to circular and elliptic holes are predicted in [10] and [11],
respectively, both by means of the finite element method. In particular, Young’s modulus
has been allowed to vary spatially. Authors have shown that a reduction in the SCF can be
obtained by properly choosing the tuning parameters of the heterogeneity factors
associated with the property variations (e.g., the exponents in the power- and exponential
laws). In [12], the SCF around a circular hole in an infinite plate subjected to uniform
biaxial tension and pure shear is analytically solved by exploiting Frobenius series. Closed-
form solutions are derived for an exponential variation of Young’s modulus along the
radius. By dividing the functionally graded plate into a series of piecewise homogeneous
radial layers, Ref. [13,14] report the SCFs due to circular holes and under constant loads
by means of Muskhelishvili method of the complex variable functions. In [15], closed-
form solutions for the SCF at a circular hole in functionally graded panels subject to a
uniform far-field tensile traction are derived by using hypergeometric functions and
Frobenius series. Authors show that the SCF at the circular hole can be considerably
reduced by appropriately grading the mechanical properties along the radial direction. The
elastic response of a functionally graded annular ring inserted in a hole of a homogeneous
plate is derived analytically in [16,17] under different far-field loading conditions. All the
aforementioned works report a considerable stress concentration reduction only when the

Young’s modulus progressively increases away from the hole. Moreover, it is observed
2
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that the variation of the Poisson’s ratio on the stress distribution in the plate is negligible
[15-17].

The aforementioned considerations bring into mind the possibility of exploiting
optimization theory to enhance the elastic performance of such structures. Many solutions
have been proposed to different problems [18,19], some of which are capable of handling
only one-dimensional material distribution with one-dimensional geometry and simple
loads, while others can tackle more sophisticated problems. Interesting results in terms of
stress reduction have been achieved when considering models such as beams, cylindrical
shells, rotating disks, pressure vessels and plates (see, e.g., [20-34]), however by imposing
prefixed laws for the variation of mechanical properties. In this way, the optimization
problems reduce to the search for the heterogeneity factors associated with functional
models describing these property variations. On the other hand, other works dealt with the
search for the best material distribution to enhance the elastic stress performance without
prefixing the functional model. Some of these are developed within an analytical tailoring
framework [35,36], whereas others rely on phase-field and topology optimization [37,38]
or exploit principles from the optimal control theory [39-41]. As far as infinite plates with
a circular hole are concerned, the overwhelming research works impose the Young’s
modulus a priori to forecast the stress concentration near the hole. Only in Ref. [35], an
analytical solution is proposed for the cylinder under pressure, whose validity can
equivalently hold for the case of biaxially loaded plates. In the uniaxial load case, to the
extent of the authors’ knowledge, Ref. [42] is the only work where the unknown Young’s
modulus distribution is sought in plates with different holes and cutouts, in which enhanced
stress results have been obtained by developing an evolutionary algorithm combined with
the finite element method. It is worth noting that the iteration process for updating the
Young’s modulus in each element was governed by a power-law function of local and
global stress measures. The stiffness was thus reduced only in the elements whose stresses
were higher than an imposed threshold. Although this rule-of-thumb stiffness modification
led to enhanced SCFs, we strongly believe that optimal solutions can be achieved if the
stiffness optimization is carried out in a more global sense. Accordingly, the objective of
the present article is to seek the Young’s modulus distribution around the circular hole such

that the hoop stress reaches its minimum value along prescribed directions.



95 The article is organized as follows. Section 2 recalls the governing equations for the
96 plane stresses in linearly elastic, isotropic and inhomogeneous plates. Section 3 aims at
97  presenting the motivation of the work as well as the formulation of the optimization
98  problem. Section 4 illustrates the direct transcription approach as a numerical procedure to
99  convert the optimization problem into a nonlinear programming problem, whose solution
100  has been computed by resorting to a solver available in the literature. The optimal solution
101  of a study case, its validation by a finite element model and its discussion are shown in

102  Section 5 and conclusions are drawn in Section 6.

103 2. Governing equations

104 Consider a linearly elastic, isotropic and functionally graded infinite plate with a
105  circular hole of radius a. Let the thickness of the plate be sufficiently small to the point
106  that the stress state is two-dimensional (plane-stress condition). Let the plate be subject to
107  afar-field uniaxial traction oy, as shown in Figure 1a, where the generic point P is described
108 by the polar coordinate system (r, 8), whose origin is at the center of the circular hole, and
109  MN denotes the vertical line associated with the polar angle 8 = m/2. Moreover, let the
110  inhomogeneity be described by the radial variation of the volume fraction V(r) of one of
111  the two constituents of the functionally graded material (e.g. material #2), which in turn
112 are linked to the effective Young’s modulus E () by the well-known rule of mixture
E(r) =E(1-V() +EV(@), (1)

113 where E; and E, denote the Young’s moduli of the constituents (e.g., metallic and ceramic
114  materials), while the Poisson’s ratio v is assumed to be constant and not affected by the
115  volume fraction. It is worthwhile to note Eq. (1) is adopted in this study since it can be
116  considered as the simplest homogenization technique among the several approaches in

117  micromechanics [43].

118  2.1. Equilibrium, constitutive and compatibility equations

119 Next, equations describing the mechanical behavior of the plate are listed. In the

120  absence of body forces, the equilibrium equations read [44]

do,.(r,0) N laarg (r,0) N o,(r,0) —ag(r,0) _ 0

) (2a,b)
or T a0 T
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Fig. 1: A schematic representation of (a) an infinite plate with a circular hole subject to a far-field uniaxial
traction and its split into (b) uniform biaxial and (c) pure shear sub-problems.

where 0,., gg and 0,9 are the radial, hoop and shear stresses, respectively, all functions of
the radial r and circumferential 8 coordinates. The elastic stresses are related to the
corresponding strains by the plane-stress constitutive equations, namely [44]

E(r) &.(r,0) = a.(r,0) —vag(r,0),

E(r) eg(r,0) = og(r,0) —vo,.(r,0), (3a-c)

E(r) &r(r,0) = 2(1 +v) 0,9(r,0),
where &, g9 and &,¢ are the radial, hoop and shear strains, respectively, which obey the
following compatibility equation [44]

0%y 1 0%, 20gy 10s 1 0% 1 9erg

— — _— = — 4
Jr? +r2662+r or r Or r 0rd8 12 060 ° “)

2.2. Superposition of stresses

Due to the linearity hypothesis, if the elastic problem is split into two sub-problems,
namely the biaxial problem (Figure 1b) and the pure shear problem (Figure 1c), the
superposition of their solutions leads to the solution of the original one. In other words,
letting superscripts “bx”" and “ps”” denote respectively the uniform biaxial and pure shear
terms, stresses can be written as

0,(r,0) = a*(r) + o7°(r,6),,
0o(r,0) = og*(r) + ab°(r,0), (5a-c)

or(r,0) = aly(r,6),
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where it is emphasized that stresses for the biaxial problem depend on the radial coordinate
only, since the geometry of the problem, the assumed nature of the inhomogeneity and the

b

far-field loading are axisymmetric (and therefore o) is identically zero). Substitution of

the constitutive relations (3a-c) into the compatibility equation (4) yields the following
boundary-value problem for the radial stress

BX(cP*(r)) =0, as<r<oo

or*(a) =0, (6a-c)

llm ab*(r) = —

where the differential operator BX () is given by + bx (r) d() + Bb*(r) (+) with

bx 3 _14E bx _ 1 dE
a T r  Edr and 7% = (v 1)rEdr'
Moreover, the hoop stress can be obtained from the equilibrium equation (2a)
doP*(r
od*(r) = o2*(r) + rrd—r()' (7)

In parallel, and similar to the Kirsch solution, the pure shear problem can be solved
by introducing the Airy stress function ¢(r, 8) as follows [44]
10¢(r,0) 1 0%¢p(r,0)

ps - —
or (T, 9)_ or +r2 002 '’
02<P(T, 6)
oy (r,0) = —Q5z (8a-c)
d (10¢p(r,0)
o (,0) = or <r 20 >'
where ¢ has the form [44]
o(r,0) = g(r) cos 26. 9)
Consequently, Egs. (8a-c) read
ldg(r) 4g()
ps _
o, (r,0) = (r Ir 2 cos 26,
o) (r,0) = @9(r) cos 26, (10a-c)

dr?
b (r,0) =2 <1dg(r) g(r)) sin 26.
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Combining Egs. (10a-c) and (3a-c), the compatibility equation (4) reduces to the following
differential equation
PS(g(r)) =0, asr<oo (11)

) d()+ﬁps()d()

d@) . 2 2dE 1 d%E 2 (dE v dE 2 dE
PS(r)—=+ 6P5(r)(*) with aP$ == —-=—, ps:———+—(—) —_—————
|4 ( ) dr ( )( ) r Edr’ 'B E dr? E2 \dr rEdr rEdr
9 ps_ VAE _ 2v (dE)Z 9 dE + and 575 = — 2V LE | 8Y (dE)Z 12 dE
r2’ T rEdr?  rE? \dr r2E dr T r2Edr? ' r2E2 \dr r3E dr’

Relation (11) is a fourth-order linear differential equation with variable coefficients, and it
is solved by considering the following boundary conditions

a/°(a,0) =0,

ohs(a,0)=0,

o, ;
lim 67°(r,0) = -2 cos 26, (12a-d)
r—00 2
o
llm 1% e(r 0) = - sin 26 .

The set of the above equations for the two sub-problems can be found in [15].

3. The optimization problem: Motivation and formulation

Stresses for the case of a homogeneous infinite plate with a circular hole and subject
to a uniaxial traction can be determined by taking Young’s modulus as constant in the

aforementioned equations, leading to the well-known Kirsch stress field [44]

o a?\ o, 3a* 4a?
o,(r,0) = — 1_r_2 +— 1+7_r_ cos 26,

2 2
2 O-O 3 4
ogp(r,0) =—|1 + > 1 + —— | cos 26, (13a-c)
3a* 2a?
0y9(1,0) = —? 1_r_+_ sin 26.

It can be easily shown that the SCF at the rim of the circular hole is identically 3 by taking
the limit of Eq. (13b) for r - a and 8 = /2 and dividing by g,. This value has been
drastically reduced by replacing homogeneous materials by functionally graded ones. For

instance, according to [15], one can reduce the SCF at the rim of the hole by suitably
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varying the two heterogeneity factors n and f3, linked to the Young’s modulus through the

relation

E(r)=E [1+ (r)n]

r)=E, B AL

where E,, = lim E(r), —1 < f < 1 and n < 0 (Figure 2a shows the radial distribution of
T—00

Young’s modulus for n = —5 and for different instances of § < 0). A similar relation for
Poisson’s ratio has been employed with different heterogeneity factors, but it was found
that it does not affect stresses significantly (for this problem, the order of discrepancy is
less than 1%). Expressions for the associated stress field on MN are lengthy and therefore
omitted in this article, but represented in a graphical form in Figure 2b (see [15]). It is
important to notice that although the SCF may arbitrarily tend to 0%, an increase of the hoop
stress occurs elsewhere along the radius, say at r = d. Denoting here after by dg(r) the

hoop stress along the vertical line MN, such inevitable increase takes place as the improper

integral lim far dg(t) dt, resulting from the equilibrium between the applied load and
T—>00

occurring hoop stresses, is constant regardless of the Young’s modulus distribution.

3t | | —_—3 =01
! —_—=—0.3
1t f=-05
—pf=-01 —_—3=-07
0.8 F — 3 = —0.3] — 3 = —0.9
g B=-05 227 = ==Homogeneous |+
Mol —f=-07 | &
o —f3=-09 S
04+¢
1 L
0.2
0
0 1 5 10 0 1 5 10
r/a r/a
(a) (b)

Fig. 2: (a) Variation of Young’s modulus with r/a for n = —5 and for different values of § < 0. (b) The
associated hoop stresses (solid lines) alongside with Kirsch solution (dashed line) on the vertical line MN.
Stresses associated with other Young’s modulus distributions are addressed in [15].

Thus, the optimum scenario, for the Young’s modulus distribution (14), occurs when the
heterogeneity factors lead to a constant hoop stress for r € [a, @], or, lato sensu, to a hoop
stress whose standard deviation (or statistical variation) is as minimum as possible. This

problem has not been addressed in [15], as authors focused on finding analytical solutions

8
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for stresses. The formulation of the SCF minimization problem without remarkably
increasing the hoop stress along the radius has been addressed in [16], albeit for a
homogeneous isotropic infinite plate endowed with a functionally graded ring of radius

b > a , where the Young’s modulus distribution is given by

m

EM) =E(3)

where E}, is the Young’s modulus at v = b and m is a real positive number playing the role

of the heterogeneity factor (see Figure 3a where different Young’s modulus distributions

are shown).
1l 3 Homogeneous
m =04
0.8 L m=0.8 m=1.5
Bj t<>: 2 / m=1.1
5 0.6 E /
04r —n = 0.4] | 1
e, = (0.8
0.2+¢ m=1.1]
—m=15 1 15
5 1
0 . . . 0.5
0o 1 3 5 10 r/a 10 0 m
r/a
(a) (b)

Y v, e m
3 ‘S
— = ] f = =
\7 416" 04
) f— -

Fig. 3: (a) Variation of Young’s modulus with b/a = 3 and for different values of m > 0. (b) The associated
hoop stresses on the vertical line MN alongside with the Kirsch solution. (¢) Contour levels for SCFs at the
rim of the circular hole (solid contours), the interface between the ring and the homogeneous media (dashed
contours) and best homogeneous factors m* (scatter points). Stresses associated with other ring radii are
addressed in [16].
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Also here, Poisson’s ratio v is assumed constant and equal to the value of the homogeneous
medium. Unlike [15], however, the author not only discussed the analytical tractability of
the stress field (whose expression is omitted in this article), but also gave hints on the
choice of the best heterogeneity factor for the optimum distribution for the hoop stress
throughout the plate. In other words, the author showed that, regardless of the ring
geometry, there exists a value of m, say m*, such that the hoop stress assumes the same
value at r = a and r = b and less elsewhere, provided that the search for m* takes place
in the range [16]
. 8(2-+3)

Oo<m < ————
v—74+4V3

to avoid complex values for the stress field. Figure 3b shows the normalized hoop stresses
along the vertical line MN for different instances of m and for b/a = 3 and compared with
(13Db). It is shown that the value of the best heterogeneity factor is approximately m* = 1.1
[16]. For completeness, it is desired to study the dependence of m* on the geometry of the
ring. A possible way is to compute contour levels for the SCFs at the rim of the circular
hole and at the interface of the ring with the homogeneous medium for a range of
admissible m, in the sense of the upper and lower limits given by Eq. (16), and for different
values of b/a. By construction, the intersection of the two contour levels thus helps the
reader identify the best heterogeneity factors m™ for fixed values of the ring geometry b/a.
This practical chart is shown in Figure 3c, where the values for m* are represented by
scatter points. It is worth noting that the optimum heterogeneity factor monotonically
decreases as b/a increases, namely a stiffer material at the circular hole is needed to
compensate for the increase in the ring radius.

Based on the aforementioned considerations, an optimization problem in which the
distribution of Young’s modulus is sought for the minimization of the SCF arises. In order
to avoid stress peaks along the radial direction the goal of minimizing the SCF can be
replaced by the minimization of the maximum hoop stress along the line MN (see Figure
la), namely

Gg,max = Maxdy (1),
as the hoop stress, for any (axisymmetric) Young’s modulus variation, is expected to reach

its peak only along this line. Hence, the optimization problem consists in finding the

10
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Young’s modulus distribution (or, through Eq. (1), the volume fraction) along the radial
direction such that the maximum value for the hoop stress along MN reaches its minimum

value, namely

Problem 1. min (17),

V(r)
s.t. (2),
(5a-c),
(6a-c),
(11),
(12a-d) .
Consequently, Problem 1 does not assume any a priori functional form of Young’s modulus
along the radial direction.

In the parlance of optimization theory, Problem 1 is referred to as dynamic
optimization problem, namely an optimization problem whose decision variables are
unknown piecewise continuous functions living in a certain domain, and constraints are
differential relations. Solution to Problem 1 is cumbersome from the analytical viewpoint,
requiring one to resort to numerical methods. Among all, the so-called direct transcription
approach is used, which helps convert the dynamic optimization problem into a nonlinear
programming (NLP) problem, namely to an optimization problem whose decision
variables are collected in a finite-dimensional vector and constraints consist in equality or
inequality algebraic relations. The conversion of algebraic and differential constraints (5a-
c)-(6a-c) and (11)-(12a-d) into algebraic ones can be carried out by classic numerical
methods in mechanics such as the finite- element, volume, or difference methods. In this
article, the latter method is employed due to the simplicity of the boundary conditions of
the problem under consideration. Hence, the governing equations for the biaxial and pure
shear problems are solved by the finite difference method, which is recalled in the next
Section for the sake of a self-contained work. Subsequently, to validate the finite difference
code, an infinite functionally graded plate with a prefixed Young’s modulus distribution of

the form (14) is numerically solved and compared to analytical solutions in [15].

11
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4. Direct transcription approach

Hereinafter, the discretization scheme and matrices assembly are performed along
the vertical line MN (i.e., with 8 = m/2) up to a limit radius A sufficiently large (namely
a < A < o). Denoting by K the number of (equally distant) discretization points 7, (k =
1,2,...,K) and letting ; = a and 1, = A, Table 1 lists the finite difference expressions
employed to substitute the different derivatives appearing in the governing equations at the

generic node 73, where ¥ generically represents the unknown variable, i.e., either 2¥ in
Eq. (6a) or g in Eq. (11), and Ar = g denotes the radial step. Finite difference

approximation terms have been chosen to guarantee a second-order accuracy.

Tab. 1: Second-order accuracy expressions for the finite difference terms for the approximation of the
different derivatives [45]. Here, ¥}, denotes the value of ¥ at the generic node 7y.

Node Derivative Approximation
First Forward 1% derivative av W ta¥,-3%
dr 24r
Forward 2™ derivative d2¥ 29 -5¥,+4¥-¥,
dr? Ar2
Last Backward 1% derivative a¥  ¥r—2—4¥g-1+3¥k
dr 24r
Backward 2" derivative d*¥ Wk 3+4Wk_—5¥k-_1+2¥k
dr? Ar?
Intermediate Central 1% derivative ¥ Prr1= Ve
dr 24r
ivati o Vi1 2+ Wg—1
Central 2™ derivative ay 29 +Y
dr? Ar?2
ivati o P2 2W g1 +2W5—1 ¥k
Central 3" derivative ady 2Wp+2W 7
dr3 2413
ivativ o P2 41 6P —4¥ g1+ ¥k—
Central 4™ derivative AV Wiy =AW F6W— AW+
dr# Art

12
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Firstly, the finite difference method is applied to Egs. (6a-c). Taking into account
the different expressions in Table 1, and after some algebra, Eq. (6a) can be rewritten as
the following system of K — 2 algebraic equations

0l%e1(2 + Ar al®) + o (—4 + 2472 BPX)
+oli_(2—Arap®) =0,

while boundary conditions (6b,c) are simply replaced by their approximations

ol =0,
bx _ @ (193,b)
O—TK - 2

Equations (18)-(19a,b) can thus be written in the matrix form
AX=m, (20)
where A € R¥*K is a square tridiagonal matrix, £ € RX is a column vector whose elements
are the variables ¢%,02%,...,062% and m € RX is a column vector whose first K — 1
elements are zeros and the last one is 0, /2.
The same considerations can be taken into account for Egs. (11)-(12a-d). Equation
(11) can be rewritten as the following system of K — 4 algebraic equations
Ir+2(2 + A1 al®) + gry1(—8 — 241 al® + 2412 BY¥ + Ar y[°)
+ gr(12 — 4472 BE° + 24r* 87°)
k=34.,K-2 (21)
+ gr_1(—8+ 241 ab® + 2412 BP° — AT y7¥)
+ gra(2—Aral®) =0.
Also here, the terms ak’, Br°, y¥° and 6F° can be derived by using the derivative
approximations in Table 1 of their expressions. Finally, boundary conditions (12a-d), with
the aid of Egs. (10a-c), can be approximated as follows

193 +4g, — 391 B 49,

=0 ,
a 2Ar a?
1g3+4g9,—391 91
a 201 2=

(22a-d)

ng—Z —49gk_1 + 39k _ 49k _ @
A 2Ar A2 2’
ng—Z —49k-1+ 39k _ 49k __%
A 2Ar A2 4"’

13



257
258
259

260
261
262
263
264

265

266
267
268
269
270
271
272
273
274
275
276
277
278

279

280
281

respectively, where the far-field boundary conditions have been evaluated at the last
discretization point rx = A > a = ry. The resulting system of equations can be recast in
the matrix form
BI' =n,

where B € RE*K is the a square pentadiagonal matrix, I' € RX is a column vector whose
elements are the variables gy, g,, ..., gk and n € RX is a column vector whose first K — 2
elements are zeros and the last two are gy/2 and —a,/4, respectively. Elastic uniform
biaxial and pure shear stresses are embedded into Egs. (20) and (23), respectively, whose
solutions are given by

X =inv(A) m,
and

I'=inv(B) n.
where inv(+) is the inverse operator for square matrices.

The finite difference method has been implemented successfully for the
computation of stresses arising in functionally graded bodies in several circumstances, e.g.,
[46,47]. Nevertheless, before proceeding with the solution of the optimization problem, an
example showing the validation of the method is necessary. Analytical solutions for the
stresses are thus borrowed from the literature and compared to the numerical results.
Among others, closed-form solutions derived in [15] are taken into account, where
mechanical properties are described by the general power-law (14) for § = £0.9 andn =
—5. Figure 4a shows the analytical solutions for the radial and hoop stresses (solid lines)
in the plate along MN and the numerical solutions (scatter points) by means of the finite
difference method. A mesh convergence study has been carried out for the Young’s
modulus variation (14) adopted in [15] with § = 0.9 and n = —5. In particular, it was

found that the maximum values of the occurring stresses satisfy the convergence criterion
oc&ir) _ ;KD < 10-2)\pa beyond K = 300, being i and i + 1 two numerical forecasts

j,max j,max —

employing K; and K; 4 nodes, respectively, and j = r, 8 (see Figure 4b).
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Fig. 4: (a) Analytical (solid lines) versus numerical (scatter points) solutions for the normalized radial and
hoop stresses along the vertical line MN associated with the Young’s modulus distribution in Eq. (14) with
B =109 and n = —5. The parameters adopted for the simulation are v = 0.3 and A/a = 20. (b)
Convergence study for the maximum radial and hoop stresses as functions of K.

282 Eventually, the maximum operator appearing in Eq. (17) is replaced by its p-norm

283  approximation (where p is an even number greater than or equal 2), given by

1

A p
09 max ~ (f 59 (r)pdr>
a

284  and evaluated by means of the well-known trapezoidal rule, namely

1
K-1 ?
Fomax = |1 ( 5o (@) + (AP + > Fy(r)?
i=2
285  Thus, Problem 1 can be transcribed into the following NLP problem.
min
xD -1 xp
Problem 2. V € R Oo,max ~ [Ar(dg, + 55 + XI5 6 1)]p
s.t. E =E(1-V)+EYV, j=12.,K
Ki4jio2—m; =0, ji=12,..,K
f(l i gi—n =0, j=12,..,K
bx bx
~ _ bx Orj+17C%rj-1 _ 9j+1729j*Gj-1 _ . _
Ogj— 0y 175 AT v =0, j=23.,K-1
5, . — ob% + 30191"'4011-”2“01133 291-592+493—94 _ 0
%1~ 0r1T4a 247 Ar? -
S GrK +A<’r1( 2400k 14307k _gK—3+4gK—2;59K—1+ZgK =0,
24r Ar

286  where the volume fraction has been replaced by a finite-dimensional vector V =

287  (V, Vs, ..., V) € RE| linked to Young’s modulus through Eq. (1), being fixed the stiffness
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ratio E,/E, and the exponent p for the objective function evaluation. The vector of the
decision variables of the NLP problem consists of the K discrete variables V;,V,, ..., Vk.
The constraints are the discrete equations for the elastic problems (6a-c) and (11)-(12a-d).
The optimal solution therefore yields the optimal variation of the volume fraction and the

corresponding stress behavior throughout the plate.

5. Results and discussion

In this Section, numerical optimal solutions for Problem 2 are illustrated and
discussed. Hereinafter, the exponent p was taken to be equal to 200 (higher values
generally lead to results too large to represent as conventional floating-point values during
the iteration process), which yields a good approximation of the maximum hoop stress
associated with the optimal solution, as confirmed by numerical results below. A gradient-
based solver has been employed to numerically compute the optimal decision variable such
that the maximum hoop stress reaches its minimum value. The algorithm used in this study
is the well-known sequential quadratic programming algorithm [48]. Termination
tolerances on both the function value as well as on the first-order condition for optimality
have been imposed as 107°. In the light of conclusions made in [49], a linear volume
fraction has been chosen as an initial guess and the numerical optimal solution has been

sought iteratively.

1 i u r ; < 10 — ;
- - -Initial guess ==s== K =100 <~" —
K=50 =K =200 L K =200
0.8 « f===== K =80 {,"
7 [ ~ ~
06k o0 Ey,/E, =10,9,7,6
Lo e &
~ o
0.4Ff alry
w §
0.2 @4 g
S 1.05 T 105
0 . N 0 . Iteration number 250 \ . . 0 . lteration number 250
01 4 8 / 12 16 Ala 01 4 8 12 16 Ala
r/a r/a
(a) (b)

Fig. 5: (a) The linear initial guess (dashed line) as well as optimal numerical solutions (dotted and solid lines)
for the volume fraction as K increases considering E,/FE; = 10. (b) Optimal solutions for the Young’s
modulus distribution considering different stiffness ratios. Numerical forecasts have been performed with
p = 200 and A/a = 20. The history of the iterations is also reported in the lower-right angle of each figure.
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For the sake of comparison with the result obtained in [15], a first simulation has
been performed with a stiffness ratio £, /E; = 10. The initial target is therefore to compare
numerical results with the stress performance associated with the Young’s modulus
distribution obtained with f = —0.9 and n = —5 (see Figures 2a,b or 4). Figure 5a shows
the initial guess (dashed line) and numerical optimal volume fractions with the same load
and geometrical parameters as those employed for the validation example. More precisely,
successive numerical solutions were obtained for increasing K values (dotted lines) until a
prefixed convergence criterion between consecutive optimal solutions is achieved. In
particular, the considered optimal solution (K = 200, solid line) was chosen instead of
another ones associated with lower nodes (e.g., K = 100) as the norm of their difference
is less than 1072, It is worth noting that the optimal volume fraction increases throughout
the radial direction, indicating the optimality of adopting a softer material at the rim of the
circular hole. This finding is in agreement with the literature reporting enhancement studies
for the SCF for plates with circular holes (see, e.g., [10]). The resulting optimal Young’s
modulus distribution is following a sort of sigmoid function around the linear distribution.
Moreover, the optimal material distribution does not necessarily assume, as base materials,
the functionally graded material constituents at the boundaries of the plate. Similar
forecasts have been performed for different stiffness ratios E,/E;, leading to the same
conclusion (see Figure 5b).

To assess the stress performance of the optimal solution, the associated elastic
hoop, radial and shear stresses are respectively illustrated in Figures 6a,b,c (dotted lines).
It is worth appreciating that the hoop stress is uniform throughout the plate and free of
stress peaks, yielding a plateaued stress behavior and thus making the stress concentration
vanish throughout the radial domain. Moreover, the radial and shear stresses obey the
boundary conditions of the problem. It is worth noting that the optimization output is the
same if the uniaxial load direction is rotated by m/2, provided that the optimization
problem is formulated on the line associated with 8 = 0. To further assess the correctness
of the stress field obtained by the optimal Young’s modulus distribution, a finite element
(FE) forecast was carried out by a commercial software (ANSYS Mechanical APDL 2022
R1). Due to symmetrical load and geometrical considerations, the geometrical domain

consists of the quarter of the plate and is discretized by means of second-order quadrilateral
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plane stress elements (PLANE 183). Necessary symmetric boundary conditions and the
uniaxial load have been suitably applied to the model. The radial direction has been
discretized into 200 radial strips (the same discretization points used in the transcription
procedure), each of which is isotropic and homogeneous and has the same mechanical
properties. Adjacent layers present different properties such that the resulting piecewise
constant variation approximates the optimal Young’s modulus distribution displayed in
Figure 5b. The FE stress behavior has been represented by scatter points, showing a
remarkable fit with the optimization solver outputs, compared to the material modeling
simplifications necessary for the FE forecast, and confirming the uniformity of the hoop
stress on the line MN. Furthermore, a comparison between stresses obtained by the present
approach alongside with those analytically derived in [15] (associated with § = —0.9 and
n = —5) and in [16] for two different ring geometries (b/a = 3 and 5) is made (see solid
lines). It is clear that the present approach leads to Young’s modulus distributions
(sigmoid-like curves) associated with the most uniform hoop stress (and consequently the

minimum peak hoop stress) throughout the plate.

6. Conclusions

The optimization of the volume fraction distribution to minimize peak hoop stresses in
functionally graded infinite plates with a circular hole and subjected to uniaxial traction is
numerically addressed. The optimization problem has been stated and formulated as a
dynamic optimization problem, where the variation of the decision variable, namely the
volume fraction and consequently the Young’s modulus through the rule of mixture, is
unknown beforehand and not limited to specified functions along the radial direction. The
problem has been divided into two sub-problems, i.e., occurring stresses have been
assumed as the superposition of those resulting from the biaxial and from the pure shear
deformations. Optimality conditions for the best distribution of the volume fraction could

not be solved analytically, hence numerical methods were necessary.
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Fig. 6 Stresses associated with the optimal numerical solution (dotted lines) and finite element results (scatter
points). (a) Hoop and (b) radial stresses along the vertical line MN and the (c) shear stress along 6 = /4.
Comparison between optimized stresses with results in literature (solid lines) [15,16].

The transcription procedure consisted in approximating the peak stress by the
trapezoidal rule and converting the differential equations accounting for the elastic problem
into two systems of algebraic equations describing the two sub-problems by means of the
finite difference method due to the simplicity of the employed boundary conditions which
permitted the solution with reduced computational costs. The obtained numerical solutions
for the Young’s modulus follow a sigmoidal behavior. The associated hoop stress revealed
uniform along the radius and has been validated by the finite element method.

The Young’s modulus distribution has been assumed to follow the rule of mixture;
however, other models for the effective Young’s modulus can be fitted in the same
framework. The present article can be considered as a preliminary study whose results can

be further extended as follows. For instance, other geometrical discontinuities such as
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elliptic or rounded-square holes can be taken into account, provided that the transcription
of the differential elastic equations into algebraic equations is replaced by a suitable finite

element approach.
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3D Dark-field X-ray Microscopy Intra-granular Dislocation
Mapping in L-PBF AISI 316L Coupled with Texture Analysis and
Computed Tomography
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Abstract

Dislocations in Laser Powder Bed Fusion (L-PBF) AISI 316L closely relates to the material’s
stress state, response and damage at the inter- and intra-granular scales. Assessing the dis-
location state and activity at these scales helps understand the material behaviour at larger
length-scales. Nevertheless, most experimental studies have utilised surface or destructive
methods, unable to probe the bulk non-invasively. We conduct the first Dark-Field X-ray
Microscopy (DFXM) investigation to non-destructively assess the intra-granular dislocation
density within an L-PBF AISI 316L grain in the bulk. The research unveiled sub-granular
cells with orientation spread up to 4°, and intra-granular dislocation arrangements, signalling
Type IIT Residual Stress (RS) in the bulk. Additional texture analysis indicated a predom-
inant {110} orientation within the grain. Computed tomography on a miniaturised sample
(200 x 200 um? cross-section) enabled the statistical characterisation of its porosity. Pores
were found close to the sample surface and geometrically regular, with sphericity mostly
greater than 0.5.

Keywords: Dark field X-Ray Microscopy (DFXM); Laser Powder Bed Fusion (L-PBF);
AISI 316L; Mosaicity; Dislocation Density.
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Metal Additive Manufacturing (AM) has redefined the industrial fabrication scenario,
offering numerous advantages and exceptional versatility over conventional manufacturing
methods [1, 2]. Laser Powder Bed Fusion (L-PBF) is a renowned AM technique that cur-
rently handles a variety of metallic materials [3]. Among these, AISI 316L has gained
considerable industrial relevance given its favourable cost-effective processability, thermo-
mechanical properties, and chemical resistance [4]. Although the fabrication of L-PBF AISI
316L has reached a mature technological state, several unwanted features spanning multiple
length scales affect the produced parts, thereby influencing their mechanical response.

The complex thermodynamic conditions within the AM melt pool give rise to defects of
diverse morphologies, which reportedly scatters the resulting fatigue behaviour [5-7]. AM
parts predominantly experience heat transfer along the build direction, leading to elongated
columnar grains within intra-granular cells and, therefore, anisotropic microstructure and
mechanical properties [8-11]. Depending on the AM process parameters, a fibre (100) or
(110) crystallographic texture can be observed in L-PBF AISI 316L [12]. However, a random
texture can be found for specific process parameters [13, 14].

Dislocation density strongly influences the mechanical properties of materials [15, 16].
Specifically, the dislocations in wall-like structures surrounding dislocation-free channels
within the grains modulate plastic deformation mechanisms [17, 18]. This phenomenon
results in higher yield stress than the conventionally manufactured counterpart [19], while
leads to ultimate tensile strengths comparable to wrought materials without a pronounced
reduction in elongation [20].

The build-up of dislocations and lattice mismatches also contributes to residual stress
(RS) at the intra-granular level [21]. Moreover, local inhomogeneous of L-PBF thermal gra-

dients triggers RS across the scales as in other conventional fabrication methods and joining
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processes [22-24]. Despite targeted post-fabrication treatment [25], RS appears unavoidable.
Hence, gaining an in-depth comprehension of RS arising from AM is of capital importance.
For instance, the relief of AM-induced Type I (macro-scale) RS through post-fabrication
treatments led to increased fatigue strength in the high-cycle fatigue regime [26]. Another
study investigated the interplay between Type II (inter-granular) RS and dislocation density
in as-built L-PBF AISI 316L samples. Therein, dislocations were also proven to produce
tension-compression asymmetries in yield strength and work hardening [27]. The study
principally provided experimental evidence of RS, without direct insights into dislocation
distributions. Based on Electron Backscattered Diffraction (EBSD) investigations, some of
the present authors demonstrated that RS play a marginal role in low-cycle fatigue regime,
mainly due its relaxation, grain refinement, and dislocation rearrangement as the number of
reversals increased [28]. L-PBF AISI 316L also exhibits a hierarchical sub-granular structure
with a high density of dislocation, local plastic deformation at the intra-granular level, and
therefore, Type III (intra-granular) RS [29-31].

Evidently, the experimental evaluation of dislocation density at the intra-granular would
be pivotal to understand its interaction with RS formation in L-PBF AISI 316L, and there-
fore its mechanical response. Moreover, the above-discussed microstructural investigations
were conducted through destructive experimental methods, e.g. EBSD. Since these tech-
niques require sample or surface preparation, the experimental outcome can be biased [32].
To gain direct access to three-dimensional intra-granular information in the bulk in a non-
invasive, one can resort to Dark-Field X-ray Microscopy (DFXM) [33]. This high-resolution,
non-destructive 3D imaging technique employs full-field illumination and collects reflections
from a selected crystallographic plane to reconstruct morphology, mosaicity, lattice strain,
and stress within individual crystals [34, 35]. Notably, DFXM has permitted intra-granular
characterisation of several metallic materials and alloys [36, 37], including in-situ experi-
ments [38, 39]. Nevertheless, the literature currently lacks applications of DFXM to L-PBF
AISI 316L.

In this work, we address the outstanding gaps outlined above by characterising, for

the first time, the intra-granular orientation and dislocation density in an individual grain
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located in the bulk of an L-PBF AISI 316L sample via DFXM. The same method is also
leveraged for texture mapping, whereas Computed Tomography (CT) is exploited to quantify
the porosity of the samples, enabling a multi-modal characterisation of the bulk material.
A monolithic L-PBF AISI 316L specimen was fabricated by a Concept Laser M2 Cusing
with parameters listed in Table 1. The specimen subsequently underwent Wire Electrical
Discharge Machining to produce a batch of comb-like sheets, whose teeth are the sample for
the experimental activity with dimensions 200 x 200 x 3500 pm?, whose schematic is shown
in Fig. 1(a). Specifically, labels S1 and S2 shall be used hereinafter to label to the two
samples contained in the comb-like material used in this work. The experimental activity
was entirely carried out at beamline ID03 of the Furopean Synchrotron Radiation Facility

(Grenoble, France) [40].

Table 1: Process parameters used to fabricate the monolithic AISI 316L sample in this study. The same
parameters were used by some of the present authors in a previous work [41], where the feedstock was also

characterised.

Parameter Value

Laser power 180 W
Scanning speed 600 mm/s
Spot diameter 120 pm
Hatch distance 105 pm

Layer thickness 25 pm

Sample S1 was characterised by X-ray CT to assess the pore population. CT was per-
formed on a near-field PCO detector coupled to a scintillator, mirror, and visible-light
objective, yielding an effective pixel size of 0.65 pm. The detector was positioned approx-
imately 100 mm downstream of the sample. A 17.0keV beam box beam of approximately
1 x 1mm? was used to illuminate the sample. A total of 2000 projections were acquired over
a 360° scan range. The CT reconstruction was carried out by tomware [42], the resulting
image stack was segmented using the 3D ImageJ Suite [43], and the segmented data were

post-processed using custom Python scripts.
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Sample S1 was also probed to quantify the volume-averaged texture by collecting diffrac-
tions from a statistically representative population of grains within the illuminated gauge
volume priorly CT-scanned. The analysis was performed at the same sample position as
the CT without repositioning the specimen. The sample was illuminated using a box beam
of approximately 300 x 300 pm? at a photon energy of 55.12keV. The detector geometry
was calibrated using a Si single crystal and a Si powder standard. Diffraction images were
recorded on a FReLoN detector (pixel size 47.3 pm) positioned 283 mm downstream of the
sample. Texture data were acquired during an w-rotation about the laboratory z-axis over
360 angular positions, with 0.5 s exposure per point and an effective angular integration of 1°
per step. The recorded Debye—Scherrer rings were subsequently analysed to derive volume-
averaged pole figures and the corresponding orientation distribution function (ODF) from
the integrated diffraction intensities associated with the {111} and {200} reflection fam-
ilies [44]. The integration was done using pyFAI [45], whereas MTEX [46] was utilised for
texture data post-processing and visualisation.

Sample S2 was examined through DFXM, and Fig. 1(a) portrays the simplified schematic
of the experimental setup. The setup provided an X-ray magnification of 13.8x, correspond-
ing to an effective pixel size of 47nm on the detector. DFXM local orientation (mosaicity)
scans were performed around the 002 diffraction vector, i.e. by tilting the sample about
® and y at constant 20. A series of mosaicity scans were collected at successive sample
heights to probe the variation along the grain. The scans were spaced by 2pm in the
vertical direction, thus effectively capturing a stack of virtual 2D slices through the diffract-
ing 3D grain volume, whose reconstruction is presented in Fig. 1(b). Data processing and
analysis were performed using darfix [47] and custom MATLAB routines, whereas the data
post-processing was carried out with Pyvista and Paraview [48, 49]. Please note that the
DFXM measurements reported in this work were conducted during a previous beamtime on
a sample extracted from the same L-PBF batch, enabling direct comparison of intra-granular
information with the present volume-averaged texture and porosity characterisation.

We start by showing the millimetre-scale X-ray CT results to visualise the overall mor-

phology and porosity of the sample, before moving to texture and intragranular imaging. The
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the sample (dimensions are in pm), and the laboratory frame {z, y, z}. Slits were 1 mm open horizontally and
0.15mm open vertically, thus giving an incident 1000 x 0.5 pm? monochromatic beam with a photon energy
of 19.2keV. The beam was focused vertically onto the sample using Compound Refractive Lenses (CRLs)
having 58 Be parabolic lenslets with 100 pm radius, forming a line beam with a height of approximately
500 nm at Full-width at Half-maximum (FWHM). A grain of interest was selected from the bulk material,
and its 002 diffraction vector, Q, was aligned vertically so that it passed through the X-ray CRL objective
composed of 87 two-dimensional Be with 50 pm radius. The diffracted beam through the objective was
imaged using a PCO detector coupled with a scintillator located roughly at 5.25m from the sample. (b)

Reconstructed layer-wise morphology of the selected grain. The z-scale is magnified for aiding visualisation.

result of the segmentation of CT images for 82 is given in Fig. 2(a). The data post-processing
indicates a total porosity of approximately 0.02%. Fig. 2(b)-(c) illustrates the distributions
of pores’ descriptors, including the minimum distance to the free surface, sphericity, and
Murakami’s y/area [50], which is frequently to define the fatigue crack driving force in di-
verse semi-empirical models [51]. Fig. 2(b) demonstrates that pores are mostly located
close to the sample surface, whereas Fig. 2(c) shows that pore exhibits predominantly reg-
ular morphology (S > 0.5), which likely originated from gas entrapment or keyhole-related
mechanisms [7, 52]. Fig. 2(d) illustrates the distribution of S as a function of /area, which
is broadly consistent with findings by other authors [53, 54|, although an exhaustive com-

parison is limited by the much larger gauge volumes used in those studies. Despite the small



number of pores detected in the sample (17 in total), the pore shape and size distributions
observed in this work aligns with those reported for similar ranges of S and /area.

From a structural integrity perspective, the characteristics of the detected pore popu-
lation suggest a limited detrimental impact on the bulk performance of the material. In
particular, the low overall porosity, the predominance of near-spherical morphologies, and
the small values of y/area indicate a comparatively low potential stress concentration to
irregular lack-of-fusion defects. Moreover, the proximity of the pores to the free surface may
render them preferential sites for fatigue crack initiation under cyclic loading [50, 52, 55].

Next, we move to the volume-averaged diffraction mapping in order to establish the
texture of the sample. Fig. 3 reports {110}, {200}, and {111} pole figures obtained from
the ODF of sample S2. Despite the small investigated sample volume, a texture pattern can
be observed. The {110} pole figure exhibits the maximum intensity near the z-direction.
A slight difference, however, arises from the tilted sample orientation during the diffraction
analysis, leading to ODF maximum intensities not perfectly aligned with the sample axes.
Nevertheless, the pattern discovered over {110} pole figure matches the results by some of the
authors of this work [28, 56|, albeit obtained via EBSD and neutron diffraction. As concerns
{200} pole figure, maximum intensities were found close to the z- and y-directions, which
is corroborated by the EBSD analyses in [12]. Furthermore, the {111} pole figure reveals
that the intensity maxima are distributed at off-axis positions, indicating that the dominant
crystallographic orientations are inclined with respect to the principal sample directions.
This observation is consistent with previous results from the literature [12, 28, 56].

We now zoom in on a grain of interest employing DFXM to reveal grain morphology
and intra-granular dislocation structure. Specifically, the grain of interest was selected from
the higher textured region in the {200} pole. The data herein are presented as 3D-stacked
views. The reader can refer to Appendix A for the 2D representation of the data.

Fig. 4(a)-(c) illustrates the distribution of the local crystal orientation, namely CoMg
and CoM,.. A qualitative inspection reveals pronounced local lattice tilts up to 4°. Alongside
this, the histograms (Fig. 4(c)) displays considerable intra-granular orientation spread across

the layers. Fig. 4(d) illustrates the mosaicity inferred from the CoMs over each grain layer,
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Figure 2: Results of the segmentation of CT images. (a) Segmented volume. The outer surface of the sample
is rendered in transparent grey, whereas the detected pores are shown in black. The portion of the surface
cavity labelled with P does not qualify as a pore, but it represents a surface cavity generated during the AM
process. (b) Distribution of the minimum distance between the pores and outer surface, h. (¢) Distribution
of sphericity, S, computed as S = 7/3(6V)?/3 /A, where V and A are the volume and external surface of
each detected pore. (d) Distribution of S vs y/area. This y/area is usually defined as the projection of A
onto a plane of interest, e.g. the plane normal to the externally applied cyclic load. In this case, \/area is

computed as the projection of A with respect to the x — y plane, i.e. normal to the build direction.

representing spatial variations within intra-granular regions of similar orientation. Areas
with distinct colour variations may indicate the formation of sub-grains cells, revealing
heterogeneity at the inter-granular scale. Intuitively, regions with varying crystallographic

orientations are linked with lattice distortions and can be linked to changes in lattice spacing,
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(a) (b) ()

Figure 3: Pole figures of the ODF obtained from texture analysis. (a) {110}. (b) {200}. (c) {111}. Please

note that the z-axis of the sample reference frame, which should nominally coincide with the sample build
direction, was instead slightly misaligned, resulting in a small deviation between the reference frame and

the actual build direction.

i.e. RS [8]. This phenomenon may result from both the accrual of local strains due to AM
inhomogeneous thermal gradients, or differences in strain between grain interior and its
boundary [57].

DFXM data was also post-processed to compute the misorientation (N') according to [8,
38] (Fig. 5(a)), whereby the Geometrically Necessary Dislocations (GND) density, panp,
was estimated (Fig. 5(b)). The misorientation turned out to be mostly confined in the
range [0°,1°], which is corroborated by other studies in the literature [58, 59]. A closer in-
spection, shows the presence of areas with N ~ 0.6°—seemingly low-angle grain boundaries—
separating domains characterised by lower misorientation in qualitative agreement with [28].
Globally, this outcome suggests a uniform relative crystallographic orientation within the
grain. Nonetheless, the retention of misorientation seems to indicate the continuation of local
strain gradients, arising both from the fabrication process and from lattice incompatibilities
amongst adjacent grains [60]. The organisation of pgnp is consistent with [28], although
the previous investigation relied on EBSD measurements, hence pgnp solely referred to the
surface of the sample. Similar to the misorientation distribution, pgnp arranges as regions
of low density interspersed with areas exhibiting larger values of pgnp. Therefore, the 3D

maps outline internal grain boundaries, where dislocations gathered, hinting at considerable
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(d)

Figure 4: Results of the mosaicity scans. (a)-(b) Local crystal orientation quantified in terms of the centre-

of-mass (CoM) at FWHM of the pixel-wise intensity distribution of the (200) reflection, recorded on the
far-field detector as a function of the rocking angles ® and x, namely CoMg and CoM,,. (c) Histogram of
CoM, and CoMy across all layers. (d) Mosaicity RGB map obtained by combining the previous CoMs data.

work-hardening and accumulated plastic strain, hence intra-granular RS [8]. Since the sam-
ple was in as-built condition, these features can primarily be attributed to the fabrication

process itself. Furthermore, the characterisation of intra-granular dislocation density is of
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particular relevance, as pgnp is frequently adopted to describe the strengthening mecha-
nisms in crystal plasticity models, both contributing to increasing the critical resolved shear

stress and governing long-range internal stress (back stress) [61-64].
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(a) (b)
Figure 5: (a) 3D map of misorientation distribution computed according to [8, 38], i.e. N' = \/m,
where A® and Ax are the differences in local orientation computed with respect to the pixel size. (b) 3D
map of Geometrically Necessary Dislocation density (pgnp) distribution estimated through A by pagnp =
N/(10* - bt), where b = 2.5- 10710 m is the Burgers vector and ¢ = 100 - 10~? nm is the characteristic
length scale over which the misorientation is measured, typically taken as the step size or thickness of the

analysed region.

The experimental evidence indicates that RS is retained in the as-built material condi-
tion. As mentioned earlier, RS together with defects play a pivotal role in fatigue. Therefore,
upon further targeted DFXM experiment a prospective development route would be the in-

ference of RS descriptors, similarly to what proposed in [65]. When combined with prior
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information on pore and defect populations obtained from CT, these descriptors can be fed
into predictive models to assess how the interplay between RS and defects governs fatigue
behaviour, as well as how process parameters influence fatigue performance [66, 67].

In conclusion, the present work employed DFXM to investigate the orientation spread
of a representative L-PBF AISI 316 grain in the bulk material. The analyses unveiled ori-
entation spread across the grains up to 4°, together with mosaicity, whereby sub-granular
structures with deviations in crystal lattice were identified. The processing of the data en-
abled the computation of misorientation and its correlation with dislocation density, showing
elevated pgnp both within grains and along grain boundaries, in qualitative agreement with
the authors’ previous observations [28]. Besides proving the applicability of DFXM to this
sort of material, the findings also provide, for the first time, insight into the intra-granular
distribution of dislocation density in the bulk, which is not accessible with surface or de-
structive methods in a non-invasive manner. Texture analysis was conducted to characterise
the orientation of the probed grain, showing {110} as a preferred crystal orientational, which
is substantiated by earlier findings [12, 28, 56]. Furthermore, additional CT investigation
were carried out to segment the sample volume and statistically characterise its porosity.
The pores are mainly located near the surface of the sample. Given their predominantly
regular morphology, they were regarded as gas pores or key-hole defects. The output of
this research represents valuable information for modelling the mechanical behaviour of the
material, disclosing pagnp as a potential indicator of RS, which, in turn, warrants further

quantitative assessment through dedicated DFXM axial strain scans.
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Appendix A. 2D Layer-wise Maps of the Results
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