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R. Vignjević, S. Mastilović
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Preface

This book is mainly based on the material initially published in Serbian, in 2021,
by the University of Belgrade, Faculty of Mining and Geology, under the title
Mathematical Physics (Theory and Examples). For the purpose of this book the
material from the Serbian edition was reviewed, amended, and translated, with new
material added in two final chapters in the second volume. We have divided text
into two separate volumes:

Mathematics of Physics - Analytical Methods and
Mathematics of Physics - Numerical Methods.

The first volume consists of 8 chapters:
- The first 7 chapters were written by Dragoslav Kuzmanović, Dobrica Nikolić

and Ivan Obradović, and correspond to the text from Chapters 1-8 of the
Serbian edition, translated by Ivan Obradović.

- The material of Chapter 8, which is of a monographic character, corresponds
to the material of Chapter 9 in the Serbian edition, but was thoroughly
reviewed and rewritten in English by Mihailo Lazarević.

The second volume consists of 6 chapters:
- The first 3 chapters were written by Aleksandar Sedmak and correspond

to Chapter 10 of the Serbian edition, restructured and reviewed, and then
translated by Simon Sedmak.
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- Chapter 4 corresponds to the text of Chapter 11 of the Serbian edition,
written and translated by Nikola Mladenović.

- Chapters 5 and 6, written by Rade Vignjević and Sreten Mastilović, respec-
tively, offer completely new material.

Chapters 4,5 and 6 are of a monographic character.
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1. Finite difference method and Finite
element method

1.1 Finite difference method

The basic idea behind the finite difference method is to replace the derivatives
of a given function with their approximate values. In order to achieve this goal,
points which form a mesh of nodes are introduced, and the solution is determined
for them.

The basic concept of finite different method and its realization will be shown us-
ing examples which involve parabolic, hyperbolic and elliptical partial differential
equations.

1.1.1 Finite difference method for parabolic partial differential equations

A mesh in plane xt is a set of points (xn, t j) = (x0 +nh, t0 + jk), where n and
j are integers, (x0, t0) is the referent point, and (xn, t j) are called mesh points or
nodes. Positive numbers h and k are mesh steps along the x and t directions,
respectively. If h and k are constants, the mesh is uniform, and if they are equal,
the mesh is quadratic. If we use the compact designation

un j = u(xn, t j). (1.1)
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We can now write the following

ut(xn, t j) =
un, j+1 −un j

k
+O(k), (1.2)

uxx(xn, t j) =
un+1, j −2un j +un−1, j

h2 +O(h2)≡
δ 2

x un j

h2 +O(h2), (1.3)

which introduce the differential difference operator δ 2
x which is analogous to the

differential operator
∂ 2

∂x2 . Equation (1.2) is a two-level equation with respect to t,
since it only includes two subsequent values of j.

Let area Ω within the plane xt be covered by a mesh (xn, t j). If all derivatives
in a partial differential equation, given by:

L[u] = f (x, t) ∈ Ω. (1.4)

Replaced with their finite differences, we obtain the finite difference equation:

D[Un j] = fn j (xn, t j) ∈ Ω. (1.5)

We can say that equation (1.4) was discretized in order to obtain (1.5). Whose
solution, Un j, approximately represents the unknown u(x, t) in element nodes
(xn, t j)

1.1.2 Consistency and convergence
In order to obtain good approximation via discretization, the solution of (1.4)

needs to be as close as possible to satisfying the condition given by (1.5), for
sufficiently small h and k. Local rounding error is represented by the following
difference:

Tn j = D[un j]− fn j. (1.6)

Finite difference equation is consistent with the partial differential equation
(1.4) under the following condition:

lim
k,h→0

Tn j = 0. (1.7)

Besides consistency, it is necessary for the approximate solution accuracy to
increase when h,k → 0. If Un j is the exact solution of (1.5), and un j is the solution
of (1.4) at point (xn, t j), discretization error is defined as the difference Un j −un j..
Finite difference method is considered convergent if:

lim
h,k→0

∣∣Un j −un j
∣∣= 0 (xn, t j) ∈ Ω. (1.8)
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1.1.3 Stability

Let Un j be the solution of equation (1.5), with initial values of Un0 and certain
boundary values. Let Vn j be the solution of a system of finite difference equations,
which differs from (1.5) only in the sense of initial values, i.e. the relation Vn0 ≡
Un0 +En0, holds, where En0 is the "error", i.e. the initial difference (deviation). It
can be show that En0 propagates with an increase in j, towards a homogeneous
partial differential equation, with given homogeneous boundary conditions:

D[En j] = 0.

When the finite difference equation (1.5) is applied to approximate determining
of u(x,T ) for a fixed T = to + jk, it is clear that h,k → 0 requires that j → ∞. In
addition, in order for equation (1.5) to be applicable to a fixed mesh for the purpose
of approximate determining of u(xn, t j), for increasing t j, it is once again necessary
for j → ∞. For partial equations with limited solutions, it is said that the solution
of (1.5) is stable if En j is uniformly limited along n when j → ∞, i.e. when the
following holds:

|En j|< M ( j > J) (1.9)

where M is an arbitrary constant, and J is a positive integer. If h and k are
functionally dependent in order to ensure that (1.9) is fulfilled, than the solution of
the finite difference equation is conditionally stable. The stability of this solution
also implies its convergence.

Let us also define the matrix criteria for stability. For this purpose, we will con-
sider a boundary problem with the initial condition including N nodes along the x di-
rection, and let us define a vector-column of errors at level j, E j = (E1 j, . . . ,EN j)

T .
For a two-level finite difference method, errors at levels j and j+1 are related by
the following expression:

E j+1 = CE j, (1.10)

where C is a matrix of N ×N order. Let ρ(C), the spectral radius of C, denote the
highest eigenvalue of matrixC. In this case, the matrix criteria of stability can be
defined as:

a two-level finite difference method for a boundary problem with an initial
condition with a limited solution is stable (in matrix terms) if ρ(C)≤ 1.

Matrix criteria is a necessary condition for two-level finite difference method
stability, but also becomes a sufficient condition if C is symmetrical or nearly
symmetrical, whereas all of its eigenvalues are real.
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1.1.4 Parabolic equations – application to diffusion equation
One-dimensional diffusion equation:

ut = a2uxx (1.11)

is used as a typical parabolic partial differential equation, for which we will derive
the corresponding finite difference equation. For a mesh (xn, t j) = (nh, jk), there
are several possible finite difference equations. Here we will consider three of the
most commonly used two-level equations, whose solution is known during step j,
and is explicitly or implicitly used in order to determine a new solution in j+1:

1) Explicit method ("forward difference")

Un, j+1 −Un j

k
= a2Un+1, j −2Un j +Un−1, j

h2 (1.12)

or, in short:
Un, j+1 = (1+ rδ

2
x )Un j (r = a2k/h2).

2) Implicit method ("backward difference")

Un, j+1 −Un j

k
= a2Un+1, j+1 −2Un, j+1 +Un−1, j+1

h2 (1.13)

or, in short:
(1− rδ

2
x )Un, j+1 =Un j (r = a2k/h2).

3) Implicit method (Crank - Nicolson)

Un, j+1 −Un j

k
=

a2

2
δ 2

x Un j +δ 2
x Un, j+1

h2 (1.14)

or, in short:
(1− r

2
δ

2
x )Un, j+1 = (1+

r
2

δ
2
x )Un j.

Implicit methods are unconditionally stable with local rounding error of O(k+
h2) for the forward method and O(k2 + h2) for the Crank – Nicolson method,
whereas the explicit method is conditionally stable (r ≤ 1/2) and has a local
rounding error of O(k+h2). Fir two-dimensional diffusion equation:

ut = a2(uxx +uyy) (1.15)

the mesh is (xm,yn, t j) = (mh,nh, jk) i Umn j ≈ umn j = u(xm,yn, t j). Analogous to
the previous equations, we now have the following:

Umn, j+1 = [1+ r(δ 2
x +δ

2
y )]Umn j (1.16)

[1− r(δ 2
x +δ

2
y )]Umn, j+1 =Umn j (1.17)

[1− r
2
(δ 2

x +δ
2
y )]Umn, j+1 = [1+

r
2
(δ 2

x +δ
2
y )]Umn j (1.18)
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Local rounding errors and stability are the same as in the case of the one-
dimensional diffusion equation, with the only difference being that the explicit
method is stable for r ≤ 1/4.

Under the condition that it is stable, the explicit method has a considerable
advantage over the implicit ones, since it directly provides a step-by-step solution.
Implicit method, even though unconditionally stable, require the inversion of
corresponding matrices in each time step, i.e. the solving of corresponding equation
systems, which requires a far greater computing capacity.

1.1.5 Explicit finite difference method

We will now perform a thorough analysis in order to show that expression
given for explicit finite difference method hold, including error estimation and
stability conditions. For this purpose, we will write the expressions for ut and uxx,
obtained by deriving function u(x, t) into a Taylor series:

u(x, t + k) = u(x, t)+ut(x, t)k+utt(x, t̃)
k2

2
, (1.19)

series:

u(x, t + k) = u(x, t)+ut(x, t)k+utt(x, t̃)
k2

2
, (1.20)

i.e.

un, j+1 = un j +ut(xn, t j)k+utt(xn, t̃ j)
k2

2
, (1.21)

from which follows that:

ut(xn, t j) =
un, j+1 −un j

k
−utt(xn, t̃ j)

k
2

(1.22)

where utt(x̃n, t̃ j)
k
2 = O(k) is the local rounding error.

Expression for uxx can also be obtained by deriving u(x, t) into a Taylor series:

u(x+h, t) = u(x, t)+ux(x, t)h+uxx(x, t)
h2

2
+

+uxxx(x, t)
h3

6
+uxxxx(x̃, t)

h4

24

(1.23)

where x < x̃ < x+h; i.e.

u(x−h, t) = u(x, t)−ux(x, t)h+uxx(x, t)
h2

2
−uxxx(x, t)

h3

6
+uxxxx(x̄, t)

h4

24
(1.24)
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where x−h < x̄ < x. By adding the above, we obtain:

un+1, j +un−1, j = 2un, j +h2uxx(xn, t j)+
h4

24
[uxxxx(x̃, t)+uxxxx(x̄, t)]

from which follows that:

uxx(xn, t j) =
un+1, j −2un j +un−1, j

h2 +
h2

12
uxxxx(x̂, t) =

=
δ 2

x un j

h2 +O(h2)

(1.25)

where x̄ < x̂ < x̃. In this way it was also shown that the local rounding error is
O(k+ h2). It can now be shown that the local rounding error is O(k2 + h2), if
k = h2/6a2, where a is the diffusion coefficient. For this purpose, we write the
following:

(ut −a2uxx)n j =
un, j+1 −un j

k
−a2 δ 2

x un j

h2 − k
2

utt(xn, t̄ j)+a2 h2

12
uxxxx(x̄n, t j) (1.26)

where t j < t̄ j < t j+1 and xn−1 < x̄n < xn+1. Solution error is:

Tn j =
k
2

utt(xn, t̄ j)−a2 h2

12
uxxxx(x̄n, t j) = O(k+h2) (1.27)

if utt and uxxxx are limited. By applying the expression for Taylor series and the
condition that (ut −a2uxx)n j = 0, we obtain:

un, j+1 −un j

k
−a2 δ 2

x un j

h2 =

[
k
2

utt −a2 h2

12
uxxxx

]
n j
+O(k2)+O(h4) (1.28)

since ut = a2uxx, utt = a2uxxt = a2(ut)xx = a2(a2uxx)xx = a4uxxxx, which shows that
the expression

[
k
2 utt −a2 h2

12 uxxxx

]
n j

can be written as:(
k
2

a4 −a2 h2

12

)
uxxxx(xn, t j), (1.29)

which is equal to 0 for k = h2/6a2.
We will now apply the matrix criteria of stability in order to show that the

explicit method is stable if and only if r ≤ 1/2. As an example, we will use the
boundary problem given by:

ut = a2uxx 0 < x < 1, t > 0,

u(x,0) = f (x) 0 < x < 1,

u(0, t) = u(1, t) = 0 t > 0.

(1.30)
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Let (xn, t j) = (nh, jk) (n = 0,1, . . . ,N; j = 0,1,2 . . .) with Nh = 1, and let
the vector column U j be defined as:

U j = [U1 j, . . . ,UN−1, j]
T .

Explicit method can be expressed as the following matrix equations:

U j+1 = CU j ( j = 0,1,2, . . .), (1.31)

where U0 = [ f1, f2, . . . , fN−1]
T , and C is the three-diagonal square matrix of the

N˘1 order. 

1−2r r 0 0 0 0
r 1−2r r 0 0 0

r 1−2r r 0 0

r 1−2r
. . . 0

0 . . . . . . r
r 1−2r


(1.32)

Let us assume that error En j was introduced at xn in time step j, ((n= 1, . . . ,N−
1), such that the solution of equation (1.31) becomes U j +E j, where E j is the
vector-column whose n-th component is En j. In this case, the following holds:

U j+1 +E j+1 = CU j +CE j or E j+1 = CE j (1.33)

i.e., after a total of m steps
E j+m = CmE j (1.34)

λ1, . . . ,λN−1 and V1, . . . ,VN−1 be the eigenvalues and their respective linearly
independent eigenvectors of a symmetrical matrix C. If E j is written as a linear
combination of Vk:

E j =
N−1

∑
k=1

akVk, (1.35)

and if the following is used
CVk = λkVk (1.36)

we obtain:

E j+m =
N−1

∑
k=1

λ
m
k akVk (1.37)

Equation (1.37) indicates that the error En j remains limited if and only if
|λk| ≤ 1 for k = 1, . . . ,N −1. Knowing that the eigenvalues of a real symmetrical
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triangular matrix of the N ×N order are all within the interval (p−|2q|, p+ |2q|),
where p = 1−2r, q = r, we obtain:

λmax ≈ (1−2r)+ |2r|= 1, (1.38)

λmin ≈ (1−2r)−|2r|= 1−4r, (1.39)

from which follows that 1−4r ≥−1, i.e r ≤ 1/2.

1.1.6 The program
The simplicity of the finite difference method will be illustrated using a com-

puter program which solved the following problem:

ut = uxx 0 < x < 1 t > 0, (1.40)

u(x,0) = 100sin(πx) 0 < x < 1, (1.41)

u(0, t) = u(1, t) = 0 t > 0. (1.42)

For t = 0.5, the result will be compared to the exact solution: u= 100e−π2t sin(π x).
Application of the explicit method is reduced to using the expression (1.12),

whereas the application of implicit methods requires additional analysis. If we
introduce the weight factor W , we can write the following:

Un, j+1 −Un j = r[(1−W )δ 2
x Un j +Wδ

2
x Un, j+1] (1.43)

which is reduced to the backward method for W = 1, and to the Crank-Nicolson
method for W = 0.5. By introducing contour and initial conditions in (1.43), we
obtain a three-diagonal system of equations:

1+2Wr −Wr 0 0 0
−Wr 1+2Wr −Wr 0 0

0 −Wr 1+2Wr −Wr 0
. . . . . . . . . . . . . . .
0 0 −Wr 1+2Wr −Wr
0 0 0 −Wr 1+2Wr





U1, j+1
U2, j+1
U3, j+1
. . .

UN−2, j+1
UN−1, j+1

=

=



D1
D2
D3
. . .

DN−2
DN−1

 (1.44)
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where

Dn =Un j +(1−W )rδ
2
x Un j (n = 2,3, . . . ,N −2), (1.45)

D1 =U1 j +(1−W )rδ
2
x U1 j +WrU0, j+1, (1.46)

DN−1 =UN−1, j +(1−W )rδ
2
x UN−1, j +WrUN, j+1. (1.47)

Programs for implicit and explicit method are shown in the following section,
along with their corresponding results. In the case of the explicit method, a total of
ten steps were used and parameter r was equal to 1/6, and 1/2, whereas for the
implicit method (W = 0.5, and W = 1), this parameter was r = 1/2, with the same
number of steps. Results have shown that the best compliance was obtained for r
equal to 1/6, in the case of the explicit method.

W = .50 W = 1.00
N = 10 V K = .005000 N = 10 V K = .005000
T = .50 NUMERICKI TAČNO T = .50 NUMERICKI TAČNO
Z = .0 .000000 .000000 Z = .0 .000000 .000000
Z = .1 .231190 .222242 Z = .1 .259880 .222242
Z = .2 .439749 .422730 Z = .2 .494321 .422730
Z = .3 .605263 .581837 Z = .3 .680375 .581837
Z = .4 .711529 .683991 Z = .4 .799828 .683991
Z = .5 .748146 .719190 Z = .5 .840989 .719190
Z = .6 .711529 .683991 Z = .6 .799828 .683991
Z = .7 .605263 .581837 Z = .7 .680375 .581837
Z = .8 .439749 .422729 Z = .8 .494321 .422729
Z = .9 .231190 .222242 Z = .9 .259880 .222242
Z = 1.0 .000000 .000000 Z = 1.0 .000000 .000000

PROGRAM i1djd
DIMENSION a(101) , b(101) , c(101) , d(101) , u(0:101)
OPEN (1,FILE=’ULAZ’)
OPEN (2,FILE=’IZLAZ’)
pi = 4.*atan(1.)
READ (1,99005) n , vk , w
DO 100 i = 0 , n

h = 1./n
z = i*h
u(i) = 100.*sin(pi*z)

100 CONTINUE
l = n - 1

200 DO 300 i = 1 , l
a(i) = -w*vk*n*n
b(i) = 1. + 2.*w*vk*n*n
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c(i) = -w*vk*n*n
d(i) = u(i) + (1-w)*vk*n*n*(u(i+1)-2*u(i)+u(i-1))

300 CONTINUE
CALL tridi(a,b,c,d,l)
t = t + vk
DO 400 i = 1 , n - 1

u(i) = d(i)
400 CONTINUE

u(0) = 0.
u(n) = 0.
IF ( abs(0.5-t).GT.vk/2 ) GOTO 200
WRITE (2,99001) w
WRITE (2,99002) n , vk
WRITE (2,99003) t
DO 500 i = 0 , n

h = 1./n
z = i*h
WRITE (2,99004) z , u(i) , 100.*exp(-pi*pi*t)*sin(pi*z)

500 CONTINUE
STOP

99001 FORMAT (’W=’,F5.2)
99002 FORMAT (’N=’,I5,T18,’VK=’,F10.6)
99003 FORMAT (’T=’,F5.2,T18,’NUMERICKI’,T35,’TACNO’,)
99004 FORMAT (’Z=’,F4.1,T13,F13.6,T30,F13.6)
99005 FORMAT (I5,F15.6,F5.2)

END

SUBROUTINE tridi(a,b,c,d,l)
DIMENSION a(101) , b(101) , c(101) , d(101)
DO 100 i = 2 , l

rt = -a(i)/b(i-1)
b(i) = b(i) + rt*c(i-1)
d(i) = d(i) + rt*d(i-1)

100 CONTINUE
d(l) = d(l)/b(l)
DO 200 i = l - 1 , 1 , -1

d(i) = (d(i)-c(i)*d(i+1))/b(i)
200 CONTINUE

RETURN
END
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N = 10 V K = .001667 N = 10 V K = .005000
T = .50 NUMERICKI TAČNO T = .50 NUMERICKI TAČNO
Z = .0 .000000 .000000 Z = .0 .000000 .000000
Z = .1 .222040 .222022 Z = .1 .204463 .222241
Z = .2 .422346 .422311 Z = .2 .388912 .422728
Z = .3 .581309 .581261 Z = .3 .535292 .581835
Z = .4 .683370 .683314 Z = .4 .629273 .683989
Z = .5 .718537 .718479 Z = .5 .661657 .719188
Z = .6 .683370 .683314 Z = .6 .629273 .683989
Z = .7 .581309 .581261 Z = .7 .535292 .581835
Z = .8 .422346 .422311 Z = .8 .388912 .422728
Z = .9 .222040 .222022 Z = .9 .204463 .222241
Z = 1.0 .000000 .000000 Z = 1.0 .000000 .000000

PROGRAM e1djd
DIMENSION u(0:101) , v(0:101)
OPEN (1,FILE=’ULAZ’)
OPEN (2,FILE=’IZLAZ’)
pi = 4.*atan(1.)
READ (1,99004) n , vk
DO 100 i = 0 , n

h = 1./n
z = i*h
v(i) = 100.*sin(pi*z)

100 CONTINUE
200 DO 300 i = 1 , n - 1

u(i) = v(i) + vk*n*n*(v(i+1)-2*v(i)+v(i-1))
300 CONTINUE

t = t + vk
u(0) = 0.
u(n) = 0.
DO 400 i = 1 , n + 1

v(i-1) = u(i-1)
400 CONTINUE

IF ( abs(0.5-t).GT.vk/2 ) GOTO 200
WRITE (2,99001) n , vk
WRITE (2,99002) t
DO 500 i = 0 , n

h = 1./n
z = i*h
WRITE (2,99003) z , u(i) , 100.*exp(-pi*pi*t)*sin(pi*z)

500 CONTINUE
STOP

99001 FORMAT (’N=’,I5,T18,’VK=’,F10.6)
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99002 FORMAT (’T=’,F5.2,T18,’NUMERICKI’,T35,’TACNO’,/)
99003 FORMAT (’Z=’,F4.1,T13,F13.6,T30,F13.6)
99004 FORMAT (I5,F15.6)

END

1.1.7 Application of the finite difference method to hyperbolic partial differential
equations – one-dimensional wavelength

Let us now consider a one-dimensional wavelength equation, as a typical representative
of hyperbolic partial differential equations:

utt = c2uxx (1.48)

let (xn, t j) = (nh, jk) (n, j = 0,1,2...) and s = k/h. We will used the following equations:

Un, j+1 −2Un j +Un, j−1

k2 = c2 Un+1, j −2Un j +Un−1, j

h2 (1.49)

i.e.
δ

2
t Un j = c2s2

δ
2
x Un j

for explicit method:

δ
2
t Un j = c2s2 δ 2

x Un, j+1 +δ 2
x Un, j−1

2
(1.50)

i.e.

−c2s2Un−1, j+1 +(2+2c2s2)Un, j+1 − c2s2Un+1, j+1 = 4Un j −2Un, j−1 + c2s2
δ

2
x Un j

for the implicit method.
Herein local rounding errors in both cases are O(k2 +h2); the explicit method is con-

ditionally stable iff c2s2 ≤ 1, and the implicit method is unconditionally stable. Attention
should be paid to conditions u(x,0) = f (x) and ut(x,0) = g(x), which, unlike the previous
ones, also include ut(x,0), and are defined in accordance with the principle that the error
introduced here must not be greater than the local rounding error, which in this case is
O(k2 + h2). It is obvious that this condition is fulfilled for Un0 = f (xn), since the error
is equal to 0. As far as Un1 is concerned, let us assume that f is contained in c2 and that
(1.49) also holds for t = 0, and then apply the Taylor theorem:

u(xn, t1) = u(xn,0)+ kut(xn,0)+
k2

2
utt(xn,0)+O(k3) =

= u(xn,0)+ kg(xn)+
k2

2
c2 f ′′(xn)+O(k3) =

= u(xn,0)+ kg(xn)+
k2c2

2
[ f (xn−1)−2 f (xn)+ f (xn+1)]+O(k2h2 + k3)

(1.51)

Where f ′′(xn) was approximated in the final step using a second-order finite difference,
see (1.50). It can now be seen that the expression

g(xn) =
Un1 −Un0

k
− kc2

2h2 [ f (xn−1)−2 f (xn)+ f (xn+1)] (1.52)
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is satisfied by an exact solution u with an error of O(h2 + k2); in other words, if the
expression (1.49) determines Un1, we obtain an error whose order is higher than O(k2+h2).

1.1.8 Application of the finite difference method to elliptical differential equations
For a linear elliptical contour problem, if all derivatives are replaced by their finite

differences, we obtain a system of linear algebraic equations, as is the case with the
Dirichlet problem over a domain Ω (0 < x < l; 0 < y < l):

uxx +uyy = f (x,y) (1.53)

with the following boundary conditions:

u = g(x,y) on the boundary S. (1.54)

If we chose a mesh step of h = l/4, we obtain the following mesh:

(xm,ym) = (mh,nh) (m,n = 0,1,2,3,4). (1.55)

By using the central differences, we obtain:

Um+1,n −2Umn +Um−1,n

h2 +
Um,n+1 −2Umn +Um,n−1

h2 = fmn, (1.56)

where fmn = f (xm,yn), a Umn = gmn za m,n = 0 or 4. In this case, the following is
obtained:

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4





U1
U2
U3
U4
U5
U6
U7
U8
U9


=



B1
B2
B3
B4
B5
B6
B7
B8
B9


(1.57)

where for g = 0, B j = −h2 f j. Based on this example, it can be seen that for a general 2D linear
elliptical contour problem, we can obtain a system of linear algebraic equations:

AU = B (1.58)

wherein the following holds:
(1) Dimensions of vectors U and B correspond to the number of nodes for which the solution is

sought.
(2) Vector B is defined by its contour conditions and terms in the partial differential equation

that are not dependent from u.
(3) Matrix A is square and contains no more than 5 terms per row or column which are not 0.

With a fixed Ω, the order of matrix A is a decreasing function of the number of mesh steps, h
(higher step – coarser mesh, lower order of A). Hence the eigenvalues of matrix A (necessary
for the iterative solving of a system of linear algebraic equations) are dependent of h.
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(4) If the contour problem has a unique solution, and h is sufficiently small, A is a non-singular
matrix, thus the system of linear algebraic equations has a unique solution.

The rounding error in the case the central differences are used to approximate a Laplacian,
uxx +uyy on a rectangular mesh, (xm,yn) = (mh,nk), can be expressed as (assuming that uxxxx and
uyyyy:

− h2

12
Uxxxx(x̃,yn)−

k2

12
Uyyyy(xm, ỹ) = O(h2 + k2) (1.59)

It follows from the above that if the solution of a contour problem for the Poisson equation has
fourth-order derivatives equal to ≡ 0, as in the case of u = xy, then the solution obtained by finite
differences is exact.

1.1.9 Neumann problem

Let us now also consider the Neumann problem, given as:

uxx +uyy = f (x,y) on the domain Ω (1.60)

and
∂u
∂n

= g(x,y) on the boundary S, (1.61)

where Ω represents a rectangle 0 < x < a, 0 < y < b. Mesh nodes will be selected so that Mh = a
and Nh = b. Based on (1.61) it follows that:

−Um−1,n −Um,n−1 +4Umn −Um+1,n −Um,n+1 =−h2 fmn, (1.62)

wherein the rounding error is O(h2), m = 0,1, . . . ,M and n = 0,1, . . . ,N, and f (x,y) is defined in S as

well. The main characteristic of Neumann problem solution is that the derivative
∂u
∂n

representation
via central differences is achieved by introducing primary nodes (Figure 1.1), which are not located
in the mesh nodes (domain):

UM+1,n −UM−1,n = 2hgMn (n = 1,2, . . . ,N −1), (1.63)

Um,N+1 −Um,N−1 = 2hgmN (m = 1,2, . . . ,M−1), (1.64)

U−1,n −U1n = 2hg0n (n = 1,2, . . . ,N −1) (1.65)

Um,−1 −Um1 = 2hgm0 (m = 1,2, . . . ,M−1). (1.66)

In mesh nodes, where the normal is not determined, we will adopt the mean value of the two
nearest normal, which provides additional four boundary conditions:

U−1,0 +U0,−1 =U10 +U01 +4hg00, (1.67)

UM,−1 +UM+1,0 =UM1 +UM−1,0 +4hgM0, (1.68)

UM+1,N +UM,N+1 =UM−1,N +UM,N−1 +4hgMN , (1.69)

U0,N+1 +U−1,N =U0,N−1 +U1,N +4hg0N . (1.70)



1.1 Finite difference method 25
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Figure 1.1: Finite difference mesh.

If we now assume that n = N = 2 and g = 0, we can solve the system of linear algebraic
equations AU = B, which includes equations (1.63)-(1.70) and is given below:

4 −2 0 −2 0 0 0 0 0
−1 4 −1 0 −2 0 0 0 0

0 −2 4 0 0 −2 0 0 0
−1 0 0 4 −2 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −2 4 0 0 −1
0 0 0 −2 0 0 4 −2 0
0 0 0 0 −2 0 −1 4 −1
0 0 0 0 0 −2 0 −2 4





U1
U2
U3
U4
U5
U6
U7
U8
U9


=−h2



f1
f2
f3
f4
f5
f6
f7
f8
f9


(1.71)

Since the sum of matrix terms in each row is 0, the unit vector column C = [1,1, . . . ,1]T satisfies the
condition that AC = 0. Thus, the equationAU = 0 has a solution different from zero, which implies
that A is singular. Hence, Neumann problem might not have a solution, but could also have an
infinite amount of them, in the form of U = U∗+αC. By dividing the I, III, VII and IX rows of
matrices A and B by 2, and multiplying row V by 2, we obtain a new system of linear algebraic
equations, A′U = B′: as follows:

2 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −2 0 0 0 0

0 −1 2 0 0 −1 0 0 0
−1 0 0 4 −2 0 −1 0 0

0 −2 0 −2 8 −2 0 −2 0
0 0 −1 0 −2 4 0 0 −1
0 0 0 −1 0 0 2 −1 0
0 0 0 0 −2 0 −1 4 −1
0 0 0 0 0 −1 0 −1 2





U1
U2
U3
U4
U5
U6
U7
U8
U9


=−h2



f1/2
f2
f3
f4

2 f5
f6
f7
f8

f9/2


. (1.72)

Since for this system of linear algebraic equations we have that A′ = A′T and A′C = 0, if the
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solution U exists, then the following holds:

B′C = (A′U)
T C = UT (A′C) = 0, (1.73)

which suggests that the sum of B′
terms is zero. This condition is equivalent to:∫

Ω

f (x,y)dxdy = 0, (1.74)

if the integral is calculated using the trapeze rule in nine introduced nodal points (fig. 1.1) Thus,
this condition (

∫
Ω

f dΩ =
∫

S gds = 0) is sufficient for the existence of a (non-unique) solution of the
system A′U = B′.

1.1.10 Curvilinear boundaries
We will now demonstrate how to apply finite differences to the following problem:

uxx +uyy = f (x,y) nad Ω (1.75)

u = g(x,y) na S (1.76)

in the case that S represents a curvilinear boundary of domain Ω. In each node of mesh defined
in Ω, which is surrounded by four nodes also within the same domain, usual expressions for finite
difference method are applied.

Let us now consider nodes for which at least one adjacent node is not in Ω, e.g. P = (xm,yn),
fig. 1.2.

y

x

h

h

R

Q

r
q

P

Figure 1.2: Finite difference mesh for curvilinear domain.

Coordinates o points r and q on contour S, obtained by drawing a horizontal and an orthogonal
line through P, are (xm +αh,yn) and (xm,yn +βh), respectively, where 0 < α, β < 1. Since u is
known at S, u(r) and u(q) are also known. By deriving into a Taylor series, we obtain:

u(q) = u(P)+αhux(P)+
αh2

2
uxx(P)+O(h3), (1.77)

u(Q) = u(P)−hux(P)+
h2

2
uxx(P)+O(h3). (1.78)

By summing we obtain:

uxx(P) =
αu(Q)− (1+α)u(P)+u(q)

h2α(α +1)/2
+O(h). (1.79)
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In an analogous manner, we obtain

uyy(P) =
βu(R)− (1+β )u(P)+u(r)

h2β (β +1)/2
+O(h). (1.80)

By summing we obtain an approximation of O(h) order of Poisson’s equations in P:

U(Q)

α +1
+

U(R)
β +1

−
(

1
α
+

1
β

)
U(P)+

U(q)
α(α +1)

+
U(r)

β (β +1)
=

h2

2
f (P). (1.81)

Based on the expression derived above, the problem can be solved as follows:

uxx +uyy = 0 na x2 + y2 < 1 y > 0, (1.82)

u(x,y) = 100 x2 + y2 = 1 y > 0, (1.83)

u(x,y) = 0 y = 0 −1 < x < 1, (1.84)

By using a square mesh, with h = 0.5. Thanks to its y-axis symmetry, the number of unknowns
in the problem is reduced from three to two, since the semi-circular domain can be reduced to a
quarter-circle, Fig. 1.3.

Based on boundary conditions, we obtain:

U00 = 0 ,U10 = 0 ,U02 = 100 ,U(q) = 100 ,U(r) = 100 ,U11 =U−1,1.

y

xx
1

x
-1

x
0

x =1
2

R

u = 0

y
1

u = 0x

1 = y
2

u = 100

Q
q

r

P

S

Figure 1.3: Half circle domain, reduced to circle quarter.

The only nodes in the mesh where the solution needs to be approximated are P(x1,y1) and
Q(x0,y1), which is achieved by using a finite difference method in Q:

U11 +100−4U01 +U−1,1 +0 = 0.

Taking into account the boundary conditions, we obtain

2U01 −U11 = 50.

Coordinates q and r are (
√

3h,h) and (h,h
√

3)⇒ α = β =
√

3−1, thus the following is obtained:

U01√
3
+

U10√
3
− 2U11√

3−1
+

U(q)
3−

√
3
+

U(r)
3−

√
3
= 0,
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from which follows that
(1−

√
3)U01 +2

√
3U11 = 200.

By solving the previous system of equations, we obtain:

U01 ≡U(Q) =
100(2+

√
3)

1+3
√

3
,

U11 ≡U(P) =
50(7+

√
3)

1+3
√

3
.



2. Finite element method

Finite element method is one of the basic methods for obtaining approximate solutions for
various types of boundary problems. It involves the discretization of the solution domain into
subdomains called finite elements. Approximate solutions in these finite element sets is then obtained
using variation principles. Thanks to this general approach, finite element method became a widely
used tool in solving numerous problems in various fields, such as mathematical physics, aerospace
engineering, structural analysis, etc.

The best way to understand the concepts of finite element method is to start with a one-
dimensional problem, hence such problems will be the first to be analysed here.

2.1 Finite element application to solving of one-dimensional prob-
lems

In physics, most problems can be represented using two functions which need to be determined,
the state variable u and the flux P. These two functions are related to each other via constitutive
equations, which contain all necessary data about the material wherein the process takes place. These
equations can be related to various laws of physics, but are always of the same mathematical shape,
which can be represented in the following way, for the case of elastic stresses in a bar, where u is the
displacement, and P is the stress:

P(z) =−k(z)
du(z)

dz
. (2.1)

The constitutive equation shown above is known as Hooke’s law modulus (material property
related to its stiffness). This equation (2.1) indicates that the non-uniformity of a state variable
(displacement) results in the occurrence of a flux (stress in this case), i.e. that this flux is proportional
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to the rate of change of variable (u). According to conservation laws, the total flux entering each
subdomain is equal to zero, and the flux can enter the subdomain of a body in one of two ways:

• As an internal source, defined by function f and
• Through an external boundary.

Depending on the nature of the problem, internal sources of flux include volumetric forces f
(our case), heat sources, fluid sources, etc. In order for the constitutive equations to hold, the state
variable u (displacement), needs to be a continuous function of z, with defined values at both ends of
its one-dimensional domain.

Now, let us explain the process of discretization into finite elements, using a one-dimensional
body (bar), on a domain 0 < z < ℓ (along the length of the bar). The bar is made of two materials,
one of which has a domain of 0 < z < z1 and the other has z1 < z < ℓ. Material modulus k has a
simple discontinuity in point z1, but it remains continuous in all points left and right of it. Internal
source distribution (function) f (z) also has a discontinuity at a point z2 where a concentrated force
with magnitude f̄ , represented by a Dirac delta function is acting. In addition, let us assume there is
a simple source distribution discontinuity at point z3. Thus, in order to preserve the continuity of
the domain, we can divide it into four subdomains, and 5 nodes connecting them. In this way, the
quantities within the subdomain are continuous, since their corresponding discontinuities are located
within the nodes between them.

Let us now consider some of the basic terms of mathematical physics:

(1) The flux must be maintained in every point within a body (bar).

Let z̄ be an arbitrary point within a subdomain in the interval a < z̄ < b, Fig. 2.1b. Boundary
fluxes in this area are denoted by arrows in the figure, and this area also contains internal force
sources f (z). Thus, the conservation law is given by:

P(b)−P(a) =
b∫

a

f (z)dz. (2.2)

(2) The flux is continuous in all subdomain points.

The limit value of expression (2.2) when a → z̄− and b → z̄+ (limits a and b are contracted into
point z̄) is:

lim
b→z̄+

P(b)− lim
a→z̄−

P(a) = 0, (2.3)

since f (z) is a limited function within the a < z < b interval. If the term jump function is introduced
at point z̄

∥P(z̄)∥= lim
b→z̄+

P(b)− lim
a→z̄−

P(a) (2.4)

we can write the following:

∥P(z̄)∥= 0, (2.5)

which indicates that, in the case there are no jumps, the flux is continuous in all point within a
subdomain Ωi, i = 1,2,3,4.
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Figure 2.1: One-dimensional problem with 5 nodes and 4 elements.

(3) Equation describing this problem is a second-order ordinary differential equation.
Since f (z) is continuous, it follows in accordance with the mean integral values theorem that:

b∫
a

f (z)dz = (b−a) f (ξ ), where a < ξ < b and f (ξ ) is the mean value of f (z) at the (a,b) interval.

It follows that:
P(b)−P(a) = (b−a) f (ξ ), (2.6)

i.e.

lim
a→z̄−
b→z̄+

P(b)−P(a)
b−a

= lim
a→z̄−
b→z̄+

f (ξ ).

As f (z) is continuous, we have:

lim
a→z̄−
b→z̄+

f (ξ ) = f (z̄).

In addition:

lim
a→z̄−
b→z̄+

P(b)−P(a)
b−a

=
dP(z̄)

dz
,



2.1 Finite element application to solving of one-dimensional
problems 33

hence we obtain the balance equation:

dP(z)
dz

= f (z). (2.7)

By replacing the constitutive equation (2.1) into the balance equation (2.6), we obtain an ordinary
differential equation for the observed one-dimensional elliptical problem:

− d
dz

[
k(z)

du(z)
dz

]
= f (z). (2.8)

At the points where the material module k is continuous, equation (2.8) can be represented as a
second-order linear differential equation in the following way:

−k(z)
d2u(z)

dz2 − dk(z)
dz

du(z)
dz

= f (z). (2.9)

(4) Let us now consider nodes with discontinuities, starting with z = z3.
We have previously shown that there are no jumps in the flux:

[|P(z3)|] = 0 z = z3. (2.10)

Mean value theorem cannot be applied in this case, due to integrand discontinuity: ku
′

is
continuous, but (ku

′
)
′

is not defined. Thus, there is no differential equation for z = z3!.
At point (node) z = z1, where f is continuous, but k is not, the flux zero jump condition,

∥P(z1)∥ = 0, also holds. Equation (2.7) is satisfied, however since k(z) is not differentiable at z1,
equation (2.8) cannot be transformed into (2.9).

(5) At point z = z2, where a concentrated force f = f̂ δ (z− z2) is acting, flux balance equation
for the area around z2 is given by:

P(b)−P(a) =
b∫

a

f (z)dz =
b∫

a

f̄ (z)dz =
b∫

a

f̂ δ (z− z2)dz (2.11)

where f̄ represents the smooth part of f . Same as in the previous case, we obtain a homogeneous
jump condition (integral with respect to f̄ has a limit of 0):

∥∥= f̂ for z = z2 (2.12)

where f̂ does not depend on a and b. This is the exact reason why we cannot obtain a differential
equation at z = z2.

(6) Finally, let us consider the boundary conditions, i.e. conditions at point z = z0 and z = z4.
In reality, al physical systems must have some kind of interaction with their environment, which

is usually included in the system equations by defining the flux or state variable values on body’s
boundaries. Hence, in a general case, approximate modelling of the body’s is necessary in order to
define the boundary conditions.

Shown in Figure 2.1c, is a small area of a bar which contains the left boundary, where the flux
is defined as P0. Flux in this area is conserved if the following holds:

P(a)−P(0) =
a∫

0

f (z)dz, (2.13)

since in the boundary case, when a → 0, P(0) = P0. When defining the flux in the boundary points,
we must take into account that it is necessary to know the direction of displacement change rate in
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these points, in order to know whether the flux is entering or exiting the body. In other words, we
define the following:

−k(0)
(
−du(0)

dz

)
= P0, (2.14)

−k(ℓ)
du(ℓ)

dz
= Pℓ, (2.15)

where
du(0)

dz
and

du(ℓ)
dz

is obviously derived from the same side.

In many cases, the boundary flux is known, thus equations (2.14) and (2.15) become boundary
conditions themselves. For second-order equation (e.g. equation (2.9)), these boundary conditions,
which contain the first derivative of the unknown u are called natural boundary condition. In
some other cases, it is assumed that the boundary flux is proportional to the difference in values of
state variables at the boundaries and it values at a certain distance in its vicinity, which requires a
simplified constitutive equation for the environment. For example, for z = z0 = 0, this conditions is
given in the following form:

P0 = p0[u(0)−u0], (2.16)
where p0 is a known constant dependent on the material module of the environment, and u0 is the
known value of environment state variable. By replacing equation (2.16) into (2.14), we obtain:

k(0)
du(0)

dz
= p0 [u(0)−u0] .. (2.17)

Since u′(0) once again appears here, the above equation is also a natural boundary condition for
equation (2.8).

The selection of boundary conditions in a boundary problem is, of course, influenced by its
physical nature. For elastic deformation, this selection involves:

• Essential boundary conditions, which define the boundary displacements.
• Natural boundary conditions, which define:

(a) boundary stresses, equations (2.14) and (2.15) or
(b) linear combination of stresses and displacement at the boundary, Eq. (2.17).

It should be noted that when the problem requires a stress-related boundary condition (flux) at
both boundaries, the defined value of boundary stress must fulfil the global conservation condition:

Pl +P0 =

l∫
0

f (z)dz. (2.18)

We can now formulate the general physical problem:

− d
dz

[
k(z)

du(z)
dz

]
= f (x), z ∈ Ωi, i = 1,2,3,4, (2.19)

with the following jump conditions in discontinuity points:

∥P(z1)∥= 0, ∥P(z2)∥= f̂ , ∥P(z3)∥= 0 (2.20)

and the following boundary conditions:

u(z) = u0 or ul for z = 0 or z = l

P(z) =−P0 for z = 0

P(z) = Pl for z = l (2.21)

P(z)− p0u(z) =−p0u0 for z = 0

P(z)− plu(z) =−plul for z = l.
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2.1.1 Variation formulation
Classic representation of boundary problems using equations (2.18)-(2.20) requires solution

regularity which is to strong for most real problems. In addition, equation (2.18) itself is not satisfied
in discontinuity points (z1,z2,z3), hence practical needs of numerical solving require nothing more
than the use of weaker conditions for function u and its derivatives. Such approach to problem
solving is referred to as weak or variation formulation, and is applicable to non-smooth data and
solutions. Of course, if a smooth ("classical") solution to the problem exists, it also represents the
solution of the weak problem. Hence, using this approach does not result in any loses, and allows the
solving of most commonly encountered practical problems.

Variation formulation is based on the need to find a function u, such that differential equation
(2.18) and boundary conditions (2.20) are satisfied in the sense of pondered mean values:∫ l

0
−(ku′)′vdz =

∫ l

0
f vdz∫ l

0
−(ku′)′vdz =

∫ l

0
−(ku′v)′ dz+

∫ l

0
ku′v′ dz =

= − ku′v
∣∣∣∣l
0
+
∫ l

0
ku′v′ dz.

(2.22)

In expression (2.21), v is the weight function of z which is sufficient to ensure that integrals in
this expression are of finite value. The set of all weight functions will be denoted as H. With this, we
can provide a compact problem formulation as follows:∫ l

0
[(ku′)′+ f ]vdz = 0 za v ∈ H, (2.23)

u(0) = u0 u(l) = ul . (2.24)

If u and v functions are sufficiently smooth (at least in their subdomains), then partial integration
provides the following: ∫ l

0
−(ku′)′vdz =

∫ l

0
ku′v′,dz− ku′v

∣∣∣∣l
0
. (2.25)

Having in mind the constitutive equation (??) we can replace ku′ with P, and by further replacing
(2.25) into (2.23), we obtain: ∫ l

0
ku′v′ dz = Pv

∣∣∣∣l
0
+
∫ l

0
f vdz. (2.26)

Solution u belongs to a set H̃, called the test function class. This class’s functions must fulfil
the essential boundary conditions, whereas natural boundary conditions occur automatically during
the variation formulation of this problem. It should be noted that weight functions in points where
essential BCs are defined equal zero.

Taking into account that functions u and v appear in equation (2.26), they can be chose from the
same class of allowable functions

H = H̃ = H1. (2.27)

Since v can represent any given function from the allowable function set, we will consider a
variant where u = v(= w). For simplicity’s sake, we will consider a case where k = const. Obviously,
H1 represents a class of functions w, where "1" denoted that all of its terms have first derivatives,
whose squares are integrable at the interval of 0 < z < ℓ:∫ l

0
(w′)2 dz < ∞. (2.28)
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2.1.2 Galerkin’s method
Assuming that weak (variation) formulation given by (2.26), which holds for all functions

v ∈ H1. Function H1, in addition to its aforementioned properties, is a linear function space, with an
infinite number of dimensions.

The term linear space means that any linear combination of functions from H1 is also a function
from H1. Thus, if v1 and v2 are weight functions, then αv1 +βv2 is also a weight function.

The term infinitely dimensional means that determining of function v in a space requires an
infinite number of parameters.

Let us assume that an infinite set of functions φ1(z),φ2(z) . . . in H1, wherein every weight
function can be expressed as a linear combination of functions φi(z).

v(z) =
∞

∑
i=1

βiφi(z), (2.29)

where βi are constants, and series defined by (2.29) converges "in the sense of H1". Set of functions
Pi, which satisfy this condition, provides a base for H1, hence such functions are referred to as base
functions. If we assume a finite number of series terms N, instead of an infinite amount, we obtain
the approximation function of v, denoted as vN :

vN(z) =
N

∑
i=1

βiφi(z). (2.30)

In the case vN is given by (2.30), then vN converges towards v "in the sense of H1", if the
following holds:

lim
N→∞

∫ l

0
(v′− v′N)

2 dz = 0. (2.31)

A total of N base functions {φ1,φ2 . . .φN} defines an N-dimensional subspace H(N) of space
H1, since every function φi, i = 1, . . . ,N is a member of H1. Additionally, let us assume that these
functions are linearly independent. In this case, we can formulate Galerkin’s method as a means of
determining the approximate solution of equation (2.26) in a finite-dimensional subspace H(N) of
space H1, which contains allowable functions (rather than the entire H1 space). Thus, instead of
observing an infinitely-dimensional problem, we seek an approximate solution in the following form:

uN(z) =
N

∑
i=1

αiφi(z) φi(z) ∈ H(N), (2.32)

the above form satisfies the conditions given by (2.26) in the case H1 is replaced by H(N), where
αi represent approximation degrees of freedom. We can now formulate the variation base fr the
approximate problem: find a function uN ∈ H(N), so that the following holds:∫ l

0
ku′Nv′N dz = PvN

∣∣∣∣l
0
+
∫ l

0
f vN dz for all vN ∈ H(N). (2.33)

By replacing (2.30) and (2.32) into (2.33), we obtain:

∫ l

0
k

(
N

∑
i=1

βiφi

)′( N

∑
j=1

α jφ j

)′

dz = P
N

∑
i=1

(βiφi)

∣∣∣∣∣
l

0

+
∫ l

0
f

N

∑
i=1

βiφi dz, (2.34)

In other words, we have:

N

∑
i=1

βi

(
N

∑
1

∫ l

0
kφ

′
i φ

′
j dzα j −Pφi

∣∣∣∣l
0
−
∫ l

0
f φi dz

)
= 0, za∀βi, (2.35)
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for arbitrary βi.
This expression can also be represented in a simplified form

N

∑
i=1

βi

(
N

∑
j=1

Ki jα j −Fi

)
= 0, (2.36)

where

Ki j =
∫ l

0
kφ

′
i φ

′
j dz (2.37)

Fi = Pφi

∣∣∣∣l0 +∫ l

0
f φi dz. (2.38)

Ki, j is the stiffness matrix of the problem for base functions φi, of N×N-th order, and Fi is the load
vector, for the same base functions, of the N-th order. Since βi values are arbitrary, the condition
below needs to be fulfilled in order for equation (2.36) to hold:

N

∑
j=1

Ki jα j = Fi i = 1,2, . . . ,N. (2.39)

Since functions φi were selected as independent, equations (2.39) are also independent, hence
matrix Ki j is invertible, and coefficients α j now become:

α j =
N

∑
i=1

(K)i j
−1Fi. (2.40)

Once these coefficients are obtained, the approximate solution uN are also known, based on
equation (2.32). Thus, it can be seen that Galerkin’s method represents a very powerful tool, but
only if a systematic technique for constructing of base functions is present. Hence, this method only
became widely applied once finite element method was introduced, as will be shown in the following
paragraphs.

2.1.3 Finite element base functions

There are significant difficulties in selecting of base functions, since apart from the fact that the
members of space H1

0 are independent, nothing else is known about them. The situation is further
complicated with the increase of the number of dimensions of the boundary problem, since this
makes the boundary conditions considerably more complex. Additionally, taking into account the
dependence of the solution and the finite element on the selected functions φi, it is clear that the
selection of base functions is of crucial importance in practical applications of the Galerkin’s method.
In order to demonstrate how these base functions are determined, we will start by considering a
homogeneous differential equation:

(ku′)′ = 0 z ∈ Ωi Ωi = [−h/2,h/2], (2.41)

The exact solution of this equation is given as:

ku+C1z+C0 = 0. (2.42)

If we introduce the following boundary conditions:

u = ui for z =−h/ (2.43)

u = ui+1 for z = h/2, (2.44)
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we obtain the following expressions for constants C1 and C0:

C1 =− k
h
(ui+1 −ui) (2.45)

C0 =− k
2
(ui +ui+1), (2.46)

hence the exact solution is:

u =
1
2

(
1+

2z
h

)
ui+1 +

1
2

(
1− 2z

h

)
ui (2.47)

If we now introduce the non-dimensional constant ξ =
2z
h

(for z = −h/2, ξ = −1; z = h/2,

ξ = 1), it follows that:

u =
[ 1

2 (1−ξ ) 1
2 (1+ξ )

][ ui
ui+1

]
. (2.48)

If we introduce the so-called interpolation functions, defined as ψ1 = 1
2 (1− ξ ) and ψ2 =

1
2 (1+ξ ), we can observe that they define a linear interpolation of displacement u (state variable)
between nodes i and i+1 in a system, i.e. elements 1 and 2, Fig. 2.2. It is easily noticeable that
these two functions have values of 1 on one end, and 0 on the other.

1 1

21

2

ψ (ξ)
1

ψ (ξ)

Figure 2.2: Linear interpolation function.

It is also evident that these two functions are linearly independent and continuous at the element
boundaries. The second conclusion follows from the fact that two base functions, constructed from
two adjacent segments of an interpolation function in a node, have the ordinate value of 1 in their
own corresponding nodes.

Let us now observe the non-homogeneous differential equation with a constant term:

(ku′)
′
=C2. (2.49)

This equation physically corresponds to the elastic stress state problem with a constant volumet-
ric force.

The exact solution of equation (2.49-53) is:

ku+
1
2

C2z2 +C1z+C0 = 0. (2.50)

Formally, we can consider C2 as the unknown, as long as the displacement value u is defined in
one of the points within the interval, e.g. in its middle, in addition to the previously defined boundary
conditions. Boundary conditions in this case can be written as:

u = ui−1 for z =−h/2 (2.51)

u = ui for z = 0 (2.52)

u = ui+1 for z = h/2. (2.53)
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By replacing the boundary conditions (2.51) - (2.53) into equation (2.50), and solving for C0,
C1 and C2, we obtain:

C0 =−kui, (2.54)

C1 =− k
h
(ui+1 −ui−1), (2.55)

C2 =−(
2
h
)2k(ui+1 −2ui +ui−1). (2.56)

By replacing (2.54) - (2.56) into (2.50) and introducing ξ = 2z/h we obtain:

u =
[
− 1

2 ξ (1−ξ ) (1−ξ )(1+ξ ) 1
2 ξ (1+ξ )

]
·

 ui−1
ui

ui+1

 . (2.57)

We can now introduce ψ1 =− 1
2 ξ (1−ξ ), ψ2 = (1−ξ )(1+ξ ), and ψ3 =

1
2 ξ (1+ξ ), i.e. the

square interpolation functions, Fig. 2.3.

1 2 3

ψ (ξ)
1

ψ (ξ)
3

ψ (ξ)
2

ξ

1 1

Figure 2.3: Quadratic interpolation function.

It is possible to introduce higher order interpolation functions in the same way, i.e. in the
general case, Lagrange interpolation can be applied to an interval of [−1,1], wherein we adopted a
non-dimensional coordinate system ξ = 2z/h in the case that all elements have the same length h. In
this general case, the non-dimensional coordinate ξ is introduced using the following expression:

ξ =
2z− (zk+1 + z1)

zk+1 − z1
. (2.58)

In accordance with designations shown in Fig. 2.4.

1 2 3 4 k k+1
ξ

ξ=+1ξ=-1 0

. . .

Figure 2.4: Non-dimensional coordinates ξ .

In the general case, the i-th Lagrange interpolation function of the k-th order is:

ψi(ξ ) =
(ξ −ξ1)(ξ −ξ2) . . .(ξ −ξi−1)(ξ −ξi+1) . . .(ξ −ξk+1)

(ξi −ξ1)(ξi −ξ2) . . .(ξi −ξi−1)(ξi −ξi+1) . . .(ξi −ξk+1)
. (2.59)

Apparently, the following holds:

ψi(ξ j) =

{
1 for i = j
0 for i ̸= j

, (2.60)
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From which it follows that functions ψi are linearly independent. This total of k+1 functions
define the base for the set of k-th order polynomials, as well as for those of lesser order, hence we can
say that this base is complete, which means that any and all polynomials of the k-th order (or lower)
can be uniquely represented using the Lagrange interpolation functions. In other words, Lagrange
interpolation functions can be used as the base functions for the finite element.

Example 2.2

For k = 1 (ξ1 =−1,ξ2 = 1)

ψ1 =
ξ −ξ2

ξ1 −ξ2
=

1
2
(1−ξ ) (2.61)

ψ2 =
ξ −ξ1

ξ2 −ξ1
=

1
2
(1+ξ ), (2.62)

(2.63)

For k = 2 (ξ1 =−1,ξ2 = 0,ξ3 = 1)

ψ1 =
(ξ −ξ2)(ξ −ξ3)

(ξ1 −ξ2)(ξ1 −ξ3)
=

ξ (ξ −1)
−1(−2)

=
1
2

ξ (ξ −1), (2.64)

ψ2 =
(ξ −ξ1)(ξ −ξ3)

(ξ2 −ξ1)(ξ2 −ξ3)
=

(ξ +1)(ξ −1)
1(−1)

= (1−ξ
2), (2.65)

ψ3 =
(ξ −ξ1)(ξ −ξ2)

(ξ3 −ξ1)(ξ3 −ξ2)
=

(ξ +1)ξ
2 ·1

=
1
2

ξ (1+ξ ). (2.66)

2.2.1 Interpolation error
Lagrange linear interpolation error can be determined as the difference in the values of the

interpolated function g and the Lagrange interpolation function gh:

E = g−gh. (2.67)

Let us observe an arbitrary element Ωe(z) defined within a mesh as zi < z < zi+1 and derive a
Taylor series from error E, within an element in the vicinity of an arbitrary point z̄ in the following
way:

E(z) = E(z̄)+E ′(z̄)(z− z̄)+
1
2

E ′′(ζ )(z− z̄)2, (2.68)

where ζ ∈ [z, z̄], and E(zi) = E(zi+1) = 0. Let u now select z̄ as a point where the error reaches its
maximum value, such that E ′(z̄) = 0

E(z) = E(z̄)+
1
2

E ′′(ζ )(z− z̄)2. (2.69)

Now, let us consider the boundary point z, which is closest to z̄, e.g. zi:

E(zi) = E(z̄)+
1
2

E ′′(ζ )(zi − z̄)2 = 0, (2.70)

It follows from the above expression that the absolute value of the error is equal to:

|E(z̄)|= 1
2
|E ′′(ζ )|(zi − z̄)2. (2.71)
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Since zi+1 − zi = h, it is clear that |z− z̄| ≤ h/2, hence we have the following:

|E(z̄)| ≤ h2

8
|E ′′(ζ )|. (2.72)

Since a linear interpolation of the second derivative is considered, we obtain:

E ′′ = g′′−g′′h = g′′ (2.73)

and by replacing into equation (2.72) and determining the maximum for all elements, we obtain:

max |E(z)| ≤ h2

8
max |g′′(z)|. (2.74)

Since the second derivative of g is limited, g′′ ≤ c ≤ ∞, we finally get that:

∥E∥
∞
= max|E(z)| ≤Ch2, (2.75)

where C is a constant, independent of h. Using an analogue method for a Lagrange interpolation of
the k-th order, the following is obtained:

∥E∥
∞
≤Chk+1. (2.76)

Since in the general case, Taylor series contains terms of every order up to k, it is necessary for
the interpolant, as well as the interpolation functions for every element, to be able to represent each
of these terms. For example, if interpolation functions contain independent terms proportional to z0

(const), z2,z3, . . . ,zk, but do not contain a term proportional to z1, the error will be proportional to h
instead of hk+1. If the constants are missing from the interpolation functions, the convergence is
non-existent. Hence, it is of great importance for the interpolation function set to contain complete
polynomials.

During the determining of the error, we assumed that function g has (continuous) derivatives
whose order is ≤ k. However, if g only has derivatives up to order s, where 0 < s < k, only the
first s terms in the interpolation polynomial will participate in the approximate representation of g,
regardless of k, hence instead of using expression (2.73) to define the error, we use the following one:

max |g(z)−gh(z)| ≤Chs. (2.77)

It is clear that the error cannot be decrease by increasing the interpolation function order, but
can still be decreased by reducing the step of mesh h.

Finally, we will give an example of finite element interpolation: for function g(h) = sin(πx)
at the interval 0 ≤ z ≤ 1, using two quadratic elements, Fig. 2.5. Nodes are given by z =
0;0,25;0,5;0,75;1, whereas function values in these nodes are g(z) = 0;0,707;1;0,707;0, such
that the interpolant gh(z) = 0,707φ2(z)+φ3(z)+0,707φ4(z).
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g z( )

g z( )
h

1 2 3 4 5 z

z = 1z = 0

Cvorovi

^ 0

0.25

0.50

0.75

1.0

Figure 2.5: Quadratic interpolation function with two elements.

In order to evaluate the error, let us notice that, max|g′′(z)| ≤ π2 hence:

|g(z)−gh(z)| ≤Ch3, gde je C = π
2/48. (2.78)

2.3 Finite element approximation

We can now divide the domain Ω into a certain number of subdomains Ωe, with lengths he
(∑he = l), which will be referred to as finite elements, as seen in Fig. 2.5, for example. Let us
assume a concentrated source in f , shown in Fig. ??, located at z = z̄ (= z2 in Fig. ??). Then flux
P = ku′ has a jump of [|P|] = f̂ in z̄. On the other hand, element shape functions have continuous
derivatives and cannot include such jumps. Hence, the finite element mesh needs to be constructed
in a way that ensures all discontinuities (including jumps) are located at the nodes. In this case,
terms such as f̂ vh(z̄), which represents a jump, are not a part of local equations that describe the
approximate behaviour within the elements.

Let us now consider the selection of shape functions ψe
i . Theoretical considerations enable

the application of shape functions of any given order, with higher order functions providing more
accurate solutions. However, due to practical reasons, only linear or quadratic elements are used, in
order to avoid complications during finite element formulation.

2.4 Determining of finite element matrices and finite element sys-
tem matrices

For any given finite element (subdomain) Ωi between nodes S1 and S2, the following holds:∫ S2

S1

ku′v′ dz =
∫ S2

S1

f̄ vdz+P(S1)v(S1)−P(S2)v(S2), (2.79)

where P(Si) is the flux in nodes S1 and S2, and represents the natural boundary condition.
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Consider a typical finite element Ωe with nodes Se
1 and Se

2. Variation formulation of equation
(2.79) for finite elements Ωe, regardless of boundary conditions in z = 0 and z = l is:∫ Se

2

Se
1

k(ue
h)

′(ve
h)

′ dz =
∫ Se

2

Se
1

f̄ ve
h dz+P(Se

1)v
e
h(S

e
1)−P(Se

2)v
e
h(S

e
2), (2.80)

where ue
h and ve

h are the limits for uh and vh in Ωe. Values of fluxes P(Se
1) and P(Se

2) are exact, rather
than approximate, and represent the natural boundary conditions in their corresponding nodes.

It should be noted that equation (2.80) is defined for global coordinate z, and not the local ξ

as usual, in order to make monitoring of the global stiffness matrix and load vector forming easier.
Stiffness matrix and load vectors are typically determined in a local coordinate system, and then are
translated into the global coordinate system using coordinate transformations, for all finite elements.

Let us observe the form of ue
h:

ue
h(z) =

Ne

∑
j=1

ue
jψ

e
j (z), (2.81)

where Ne is the number of nodes in the finite element Ωe, ψe
j is the shape function, and ue

j is the
value of ue

h and z = ze
j.

ue
j = ue

h(z
e
j) j = 1, . . . ,Ne. (2.82)

By replacing (2.81) into (2.80), and assuming that ve
h =ψe

i we obtain a system of linear algebraic
equations in the following form:

Ne

∑
j=1

ke
i ju

e
j = f e

i +P(Se
1)ψ

e
i (S

e
1)−P(Se

2)ψ
e
2(S

e
2), (2.83)

where ke
i j is the stiffness matrix, and f e

i is the load vector for finite element Ωe:

ke
i j =

∫ Se
2

Se
1

k(ψe
i )

′(ψe
j )
′ dz (2.84)

f e
i =

∫ Se
2

Se
1

f̄ ψ
e
i dz. (2.85)

In practice, integrals in (2.84-2.85) are not determined analytically, but numerically, with
sufficient accuracy. The load vector f e

i is usually determined using interpolants and not f itself; e.g.
if f̄ is the continuous part of f (no concentrated forces) and if the following holds:

f e
h (z) =

Ne

∑
i=1

f̄ (ze
i )ψ

e
i (z). (2.86)

then instead (2.85), we use:

f e
i =

∫ Se
1

Se
1

f e
h ψ

e
i dz. (2.87)

In this way, the load vector can be determined based on nodal values. Since we have determined
the necessary matrices and finite element equations, it is now necessary to form global equation
systems, which will be used to represent the body being considered here.

Let us adopt linear shape functions, i.e. two-node finite elements, defined by the following
equations:

ke
11ue

1 + ke
12ue

2 = f e
1 +P(Se

1)

ke
21ue

1 + ke
22ue

2 = f e
2 −P(Se

2),
(2.88)
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where indices 1 and 2 are related to the nodes of a finite element, and P(Se
1) and P(Se

2) are the fluxes
of stress P = ku′ in these nodes. When applied to other types of finite elements, the indices in these
equations need to be changed in accordance with the way in which the nodes are designated in that
case. For example, if the finite element is introduced between nodes 6 and 7, ue

1 becomes u6, ue
2

becomes u7, P(Se
1) is the value of ku′ when approaching node 6 from the right and P(Se

2) is its value
when approaching node 7 from the left.

Let us now consider the four finite element mesh for a bar with two nodes, Fig. ??, i.e. for a
total of 5 nodes. The global stiffness matrix will be a 5×5 matrix, and the equations needed to form
it are, in addition to the ones mentioned in (2.88):

second finite element
{

k2
11u2 + k2

12u3 = f 2
1 +P(z+1 )

k2
21u2 + k2

22u3 = f 2
2 −P(z−2 )

(2.89)

third finite element
{

k3
11u3 + k3

12u4 = f 3
1 +P(z+2 )

k3
21u3 + k3

22u4 = f 3
2 −P(z−3 )

(2.90)

fourth finite element
{

k4
11u4 + k4

12u5 = f 4
1 +P(z+3 )

k4
21u4 + k4

22u5 = f 4
2 −P(z−4 )

, (2.91)

which results in the following matrix equation:
k1

11 k1
12 0 0 0

k1
21 k1

22 + k2
11 k2

12 0 0
0 k2

21 k2
22 + k3

11 k3
12 0

0 0 k3
21 k3

22 + k4
11 k4

12
0 0 0 k4

21 k4
22




u1
u2
u3
u4
u5

=

=


f 1
1 +P(0)

f 1
2 + f 2

1 +[|P(z1)|]
f 2
2 + f 3

1 +[|P(z2)|]
f 2
3 + f 1

4 +[|P(z3)|]
f 2
4 −P(z4 = l)


(2.92)

What remains now is to incorporate displacement boundary conditions, since stress boundary
conditions are already a part of the finite element equations. If, for example, we define that u(0) = u0
and u(l) = ul then equation (2.92) has two less unknown displacements, and can be written as: k1

21 k1
22 + k2

11 k2
12 0 0

0 k2
21 k2

22 + k3
11 k3

12 0
0 0 k3

21 k3
22 + k4

11 k4
12

 u2
u3
u4

=

=

 f 2
1 + f 1

2
f 2
2 + f 3

1 + f̂
f 2
3 + f 1

4

 (2.93)

with two auxiliary equations:

k1
11u1 + k1

12u2 = f 1
1 +P(0)⇒ P(0) = k1

11u1 + k1
12u2 − f 1

1

k4
21u4 + k4

22u5 = f 2
4 −P(l)⇒ P(l) =−k4

21u4 − k4
22u5 + f 2

4 ,
(2.94)

with unknown values of P(0) and P(l).
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2.4.1 Application of finite element method to parabolic and hyperbolic partial differential
equations

Let us now consider time-dependent problems, i.e. parabolic and hyperbolic partial differential
equation. For the sake of simplicity, we will once again observe only a single space variable. By
introducing time-dependence for the state variable, we obtain the law of balance in the following
form:

∂P(z, t)
∂ z

− f (z, t)+
∂G(z, t)

∂ t
= 0 0 < z < l t > 0, (2.95)

where P is the flux, f is the density of distributed internal sources, and G is a quantity which is being

"conserved" during the process. For example, if energy conservation (balance) is in question,
∂G
∂ t

,
it can represent the rate of entropy change per unit length and unit temperature, in which case it is
related to the state variable (temperature) via the state equation:

∂G(z, t)
∂ t

=C(z, t)
∂u(z, t)

∂ t
, (2.96)

where C(z, t) is a material property – specific heat. If, for example, (2.95) represent the law of motion
quantity balance in a deformable body, and u is the displacement field, then the motion quantity G in
z at a time t is:

G(z, t) = ρ(z)
∂u(z, t)

∂ t
;

∂G(z, t)
∂ t

= ρ(z)
∂ 2u(z, t)

∂ t2 , (2.97)

where ρ(z) is the mass density in point z. The following state equation applies to flux P:

P(z, t) =−k(z)
∂u(z, t)

∂ z
(2.98)

where |k(z)| ≥ k0 = const > 0 for ∀z ∈ [0, l], wherein a convention is adopted according to which k
is considered positive in the case of heat transfer, and negative for elasticity.

By using equations (2.96)-(2.98) in order to eliminate G from (2.95), we obtain two type of
partial differential equations, one of which is parabolic:

C(z, t)
∂u(z, t)

∂ t
− ∂

∂ z

[
k(z)

∂u(z, t)
∂ z

]
− f (z, t) = 0 0 < z < l t > 0, (2.99)

which holds for state equation (2.96-98) and is related to heat conduction problems, and the second,
hyperbolic equation:

ρ(z)
∂ 2u(z, t)

∂ t2 − ∂

∂ z

[
k(z)

∂u(z, t)
∂ z

]
− f (z, t) = 0 0 < z < l t > 0. (2.100)

We will first analyse finite element method application to parabolic partial differential equation,
(2.99). For the sake of simplicity, we will assume that C(z) is independent from t, and we then have
that C(z)≥ c0 > 0 for ∀z, where c0 is a positive constant. In addition to boundary conditions, defined
in the following simple form:

u(0, t) = u(l, t) = 0 t ≥ 0,

We also need to define the initial conditions:

u(z,0) = ũ(z) 0 < z < l,
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where ũ(z) is a smooth function of z. Finally, if time is limited by 0 ≤ t ≤ T , we can define the
boundary problem as:

C(z)
∂u(z, t)

∂ t
− pizz

[
k(z)

∂u(z, t)
∂ z

]
= f (z, t) 0 ≤ z ≤ l 0 < t ≤ T

u(0, t) = u(l, t) = 0 0 ≤ t ≤ T

u(z,0) = ũ(z) 0 < z < l.

(2.101)

Of many ways in which variation formulation can be applied to problem (2.101), we will focus
on one of the simpler ones. For this purpose, we will choose a favourable smooth function v = v(z),
independent from t, and we will multiply equation (2.99) with it. Then, after partial integration (see
(2.25)), we obtain:∫ l

0

[
C(z)

∂u(z, t)
∂ t

v(z)+ k(z)
∂U(z, t)

∂ z
∂v(z)

∂ z

]
dz−

∫ l

0
f (z, t)v(z)dz = 0. (2.102)

Equation (2.102) holds for ∀v(z) ∈ H1
0 (0, l), and its solution should be found for u = u(z, t) ∈

H1
0 (0, l) for 0 ≤ t ≤ T . H1

0 (0, l) is the usual space of allowable functions with square-integral
derivatives for 0 < z < l, whose values are 0 for z = 0 and z = l.

The method for solving of equation (2.102) is analogous to the previously described one, with
one crucial difference: nodal values of an approximate solution uh are unknown functions of time.
Hence we can write:

uh(z, t) =
N

∑
j=1

u j(t)φ j(z), (2.103)

where φ j(z) are the base functions defining space Hh, u j(t) is the value of uh in node z j and at time t

uh(z j, t) =
N

∑
i=1

ui(t)φi(z j) = u j(t). (2.104)

When applied to equation (2.102), Galerkin method provides a system of N ordinary differential
equations with a total of N unknown functios u j(t):

C
dU(t)

dt
+KU(t) = f(t) 0 < t ≤ T

U(0) = Û,

(2.105)

where

Ci j =
∫ l

0
C(z)φi(z)φ j(z)dz

Ki j =
∫ l

0
K(z)

dφi(z)
dz

dφ j(z)
dz

dz

fi(t) =
∫ l

0
f (z, t)φi(z)dz.

(2.106)

Vector U, with an order of N ×1, made of nodal values N j(t) and Ũ are the interpolated values
of Ũ (i.e. the N × 1 vector of nodal values Ũ(z)). C is the heat capacity matrix, K is the typical
conductivity matrix for a stationary problem and f is the time-independent load vector. Matrices C
and K are sparse, with a narrow strip, symmetrical and invertible, and are obtained in the previously
described manner.

By applying finite element method, we obtained system of ordinary differential equations. Since
uh was no discretized with respect tot time, equation (2.103) is only discretized in space. In order to
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obtain full discretization, it is necessary to assume how U(t) behaves in time. Usual methods for this
are implicit and explicit, as was the case with the finite difference method.

In the case of the explicit method, the time domain 0 ≤ t ≤ T is divided into M equal intervals
with length of ∆t = T/M, and the following equation is used

dU(n∆t)
dt

≈ Un+1 −Un

∆t
, Un = U(n∆t) (2.107)

for the purpose of determining the first derivative of a state variable in the interval of t = n∆t to
(n+1)∆t, and by replacing this into (2.105), we obtain:

U(n+1) = (I−∆tC−1K)Un +∆tC−1fn. (2.108)

According to the above, based on known values of U0, we obtain U1 followed by U2, and so
on. As with the finite difference method, the explicit time integration is conditionally stable, which
requires limited, smaller values of ∆t, proportional to the mesh step h.

In the case of implicit methods, instead of (2.107), the following equations are used to determine
the first derivative:

dU[(n+1)∆t]
dt

≈ Un+1 −Un

∆t
, ili

dU[(n+1/2)∆t]
dt

≈ Un+1 −Un

∆t
(2.109)

which provides an unconditionally stable solution, when replaced into (2.105).
Hyperbolic partial differential equation (2.100) requires more complex initial conditions, in-

cluding first derivatives, since this equation has a second derivative with respect to time:

u(z,0) = ũ(z) i
∂u(z,0)

∂ t
= ĝ(z) 0 < z < l. (2.110)

We will once again adopt a simple-form boundary condition, as in the case of (2.101). By
multiplying (2.99) with v(z) and integrating along z, we obtain:∫ l

0

[
ρ(z)

∂ 2u(z, t)
∂ t2 v(z)dz− ∂

∂ z

[
k(z)

∂u(z, t)
∂ z

]
v(z)− f (z, t)v(z)

]
dz = 0 (2.111)

from which follows that:∫ l

0
ρ(z)

∂ 2u(z, t)
∂ t2 v(z)dz+

∫ l

0
k(z)

∂u(z, t)
∂ z

∂v(z)
∂ z

dz−
∫ l

0
f (z, t)v(z)dz =

−k(l)
∂u(l, t)

∂ z
v(l)+ k(0)

∂u(0, t)
∂ z

v(0) za ∀v ∈ H1
0 (0, l).

(2.112)

If we introduce uh(z, t) into equations (2.103) and (2.104), in the same way, we obtain:

C
d2U(t)

dt2 +KU(t) = f(t)

U(0) = Ũ dU(0)/dt = g̃
(2.113)

where

Ci j =
∫ l

0
ρ(z)φi(z)φ j(z)dz (2.114)

is the mass matrix, and stiffness matrix Ki j and force vector fi have the same form as in (2.105).
Equation (2.113) is also solved using explicit or implicit methods. In the case of explicit methods,
the second derivative with respect to time is represented as:

d2U(n∆t)
dt2 ≈ Un+1 −2Un +Un−1

∆t2 , (2.115)
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which gives us:
C(Un+1 −2Un +Un−1) = (−KUn + fn)∆t2. (2.116)

It is necessary to know U0 and U1 = U0 +∆t ∂U0

∂ t in order to calculate U2 from equation (2.116),
and then calculate U3 base on U1 and U2, . . . Thus, the solution is conditionally stable.



3. Comparison of finite element method
and finite difference method

As an example for comparing finite element method and finite difference method, we will consider
an equation describing the free oscillations of a beam:

EI
∂ 4Ω

∂x4 +m
∂ 2Ω

∂ t2 = 0, (3.1)

which will be transformed by replacing Ω(x, t) =W (x)eiωt , for the purpose of determining its exact
solution. We now have:

d4W
dx4 −λW = 0 (3.2)

where m is unit mass per unit length, ω is the eigenfrequency, E is the elasticity module and I is the
moment of inertia,

λ =
mω2

EI
= β

4. (3.3)

The general solution of (3.1) is:

W (x) =C1 sin(βx)+C2 cos(βx)+C3 sinh(βx)+C4 cosh(βx). (3.4)

Constants C1 −C4 are determined from the initial conditions:

W (0) =W (L) = 0
dW
dx

(0) =
dW
dx

(L) = 0
(3.5)

which results in four homogeneous equations with four unknowns. In order for a non-trivial solution
to exist, the system matrix needs to be equal to zero, from which we obtain the frequency equation
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as follows:
cos(βL)cosh(βL) = 1, (3.6)

which has an infinite number of solutions. By replacing its solutions in terms of β , we obtain
ω2

n =
β 4

n EI
m , i.e.:

ωn = β
2
n

√
EI
m

=
(βnL)2

L2

√
EI
m

, (3.7)

where β1L = 4,73 i β2L = 7,85,i.e. ω1 =
21,4
L2

√
EI
m ; ω2 =

61,6
L2

√
EI
m .

3.1 Approximate analytical solution
Let us assume the solution of (3.2) in the following form:

W (x) =
n

∑
i=1

Ci fi(x), (3.8)

where ci are constants, and fi(x) are functions which satisfy the boundary conditions. Since this
solution is not exact, they do not satisfy equation (3.2), hence replacing this solution into that equation
will result in a remainder R. Values of constants ci are obtained from the following condition:∫ L

x=0
fiRdx = 0 i = 1,2, . . . ,n (3.9)

which provides a system of homogeneous linear algebraic equations along unknowns Ci, whose
solutions can be used to determine the approximate solution. For example, if we assume that:

W (x) =C1 f1(x)+C2 f2(x) (3.10)

where f1(x) = cos( 2πx
L )−1 and f2(x) = cos( 4πx

L )−1, by replacing into equation (3.2), we obtain:

R =C1

[
(

2π

L
)4 −β

4
]

cos(
2πx

L
)+C1β

4 +C2

[
(

4π

L
)4 −β

4
]

cos
4πx

L
+C2β

4. (3.11)

By applying the condition defined by (3.9), the following is obtained

L∫
x=0

(
cos

2πx
L

−1
)[

C1

{(
2π

L

)4
−β

4

}
cos

2πx
L

+C1β
4+

+C2

{(
4π

L

)4
−β

4

}
cos

4πx
L

+C2β
4

]
dx = 0

(3.12)

and
L∫

x=0

(
cos

4πx
L

−1
)[

C1

{(
2π

L

)4
−β

4

}
cos

2πx
L

+C1β
4+

+C2

{(
4π

L

)4
−β

4

}
cos

4πx
L

+C2β
4

]
dx = 0. (3.13)

i.e.

C1

[
1
2

{(
2π

L

)4
−β

4

}
−β

4

]
−C2β

4 = 0, (3.14)
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and

−C1β
4 +C2

[
1
2

{(
4π

L

)4
−β

4

}
−β

4

]
= 0. (3.15)

In order for the non-trivial solution of systems (3.14) and (3.15) to exist, their determinants
must be equal to zero, from which it follows that:

β1L = 4,74

β2L = 11,14
(3.16)

ω1 =
22,48

L2

√
EI
m

ω2 =
124,1

L2

√
EI
m

.

(3.17)

3.1.1 Finite difference method solution
Finite difference method requires approximate expressions for derivatives, which can be obtained

via Taylor series:

f (x+∆x) = f (x)+
d f
dx

∆x+
d2 f
dx2

(∆x)2

2
+

d3 f
dx3

(∆x)3

6
+

d4 f
dx4

(∆x)4

24
(3.18)

f (x−∆x) = f (x)+
d f
dx

∆x− d2 f
dx2

(∆x)2

2
+

d3 f
dx3

(∆x)3

6
− d4 f

dx4
(∆x)4

24
. (3.19)

Taking into account the first two terms and subtracting of equations (3.18) and (3.19) results in:

d f
dx

∣∣∣∣
x
≈ f (x+∆x)− f (x−∆x)

2∆x
. (3.20)

Taking into account the first three terms and subtracting of equations (3.18) and (3.19) results
in:

d2 f
dx2

∣∣∣∣
x
=

f (x+∆x)−2 f (x)+ f (x−∆x)
(∆x)2 (3.21)

If f (x) in equation (3.21) is replaced with
d2 f
dx2

∣∣∣∣
x
, the following is obtained:

d4 f
dx4

∣∣∣∣
x
=

d2 f
dx2

∣∣∣∣
x+∆x

−2
d2 f
dx2

∣∣∣∣
x
+

d2 f
dx2

∣∣∣∣
x−∆x

(∆x)2 (3.22)

By replacing (3.21) into the right-hand side of equation (3.22), we obtain:

d4 f
dx4

∣∣∣∣≈ 1
(∆x)2

[
f (x+2∆x)−2 f (x+∆x)+ f (x)

(∆x)2 −

−2
f (x+∆x)−2 f (x)+ f (x−∆x)

(∆x)2 +

+
f (x)−2 f (x−∆x)+ f (x−2∆x)

(∆x)2

] (3.23)
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Now, we can apply the finite difference method in order to solve equation (204), by introducing
nodes as seen in Figure 3.1, including hypothetical nodes (−1) and (4). For nodes (1) and (2), we
obtain that:

L

3

L

3

L

3

L

3

L

3

-1 0 1 2 3 4

w w w w w w
-1 0 1 2 3 4

Figure 3.1: Finite difference mesh.

W−1 −4W0 +6W1 −4W2 +W3 = β
4
1 W1,

W0 −4W1 +6W2 −4W3 −W4 = β
4
1 W2,

(3.24)

where β1 =
L
3 β .

Boundary conditions are W0 =W3 = 0 and dW
dx = 0 in nodes (0) and (3), i.e. W−1 =W1 and

W2 =W4. By replacing boundary conditions in (3.24) we obtain a system of homogeneous linear
algebraic equations with two unknowns, W1 and W2:

7W1 −4W2 = β
4
1 W1,

−4W2 +7W2 = β
4
1 W2,

(3.25)

and by solving of the above, we obtain the following values:

ω1 =
15,59

L2

√
EI
m

{
W1
W2

}
=

{
1
1

}
ω2 =

29,85
L2

√
EI
m

{
W1
W2

}
=

{
1

−1

} (3.26)

Solution accuracy can be improved by introducing additional nodes.

3.1.2 Finite element method solution

The beam is divided into an adequate number of subdomains (finite elements), in this case two,
for which the following (cubic) interpolation is introduced:

Ω(x) =W (e)
1 (2ξ

3 −3ξ
2 +1)+W (e)

3 (3ξ
2 −2ξ

3)+

+ lW (e)
2 (ξ 3 −2ξ

2 +ξ )+ lW (e)
4 (ξ 3 −ξ

2),
(3.27)

where ξ = x/l, x is the longitudinal coordinate, l is the element length, Figure 3.2.
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Figure 3.2: Finite elements.

For potential (static) and kinetic energy of the element, the following is obtained:

Π
(e) =

1
2

∫ l

0
EI
(

∂ 2ω

∂x2

)2

dx =
1
2

W⃗ (e)T
[K(e)]W⃗ (e) (3.28)

T (e) =
1
2

∫ l

0
ρA(

∂ω

∂x
)2dx =

1
2

˙⃗W (e)T
[M(e)] ˙⃗W (e) (3.29)

where ρ is the density, A is the cross-section area, and "˙" is the derivative with respect to time. By
replacing (3.27) into (3.28) and (3.29), the stiffness matrix [K(e)] is obtained, along with the mass
matrix [M(e)]:

[K(e)] =
2EI
l3


6 3l −6 3l
3l 2l2 −3l l2

−6 −3l 6 −3l
3l l2 −3l 2l2

 (3.30)

[M(e)] =
ρAI
420


156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

 (3.31)

If finite element equations are arranged according to Figure 3.2, global stiffness matrix is
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obtained in the following form:

[K] =
2EI
l3



W1 W2 W3 W4 W5 W6
6 3l −6 3l 0 0
3l 2l2 −3l l2 0 0
−6 −3l 6+6 −3l +3l −6 3l
3l l2 −3l +3l 2l2 +2l2 −3l l2

0 0 −6 −3l 6 −3l
0 0 3l l2 −3l 2l2


where

W1 =W (1)
1

W2 =W (1)
2

W3 =W (1)
3 =W (2)

1
W4 =W (1)

4 =W (2)
2

W5 =W (2)
3

W6 =W (2)
4 ,

wherein we can remove rows and columns related to W1,W2,W5 i W6, since they equal zero due to
boundary conditions. Thus we obtain

[K] =
2EI
l3

[
12 0
0 4l2

]
=

16EI
l3

[
12 0
0 l2

]
(3.32)

Global mass matrix is obtained in the same way:

[M] =
ρAl
420

[
156 0
0 l2

]
(3.33)

If we solve the eigenvalue problem:

[K]W = λ [M]W (3.34)

where W =

{
W3
W4

}
is the eigenvalue vector, and λ is the eigenvalue. We obtain two natural

frequencies:

ω1 =
22,7
L2

√
EI
m

, ω2 =
82,0
L2

√
EI
m

. (3.35)

By comparing coefficients in the above expressions obtained by analytical and numerical
methods (finite difference and finite element methods, Table 3.1) with exact results, it can be
concluded that the finite element method is more efficient in the case of simple modeling.

Table 3.1: Result comparison.

Exact Analytical FDM FEM
21,46 22,48 15,59 22,7
61,6 124,1 29,85 82,0
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3.2 Finite element method – two-dimensional problem

3.2.1 Introduction

As was shown in the previous chapter, basic steps in finite method application are:
1. Variation formulation of the problem, with identifying of the adequate allowable function

space H.
2. Defining of a finite element mesh and polynomials in regions which establish a finite dimen-

sional space within H.
3. Defining an approximation of the variation problem of boundary values in the subspace of

finite elements Hh within H, which involves calculating of element matrices and defining of
a system of linear algebraic equations in terms of unknown node values of the approximate
solution.

4. Solving of the linear algebraic equation system, wherein zero terms and symmetry are of
great use.

5. Evaluating the properties of the solution, and if possible, determining its error.
These steps essentially apply to problems in two or three dimensions. Considering the significant

application to such problems, this chapter will present all of the important finite element equations
for two-dimensional boundary problems, i.e. differential equations which need to be satisfied on
a two-dimensional domain Ω, whose boundary is generally curvilinear. Instead of a line element,
finite elements now have simple two-dimensional forms – triangular or rectangular, and the finite
element mesh generally approximates the problem domain. Natural ability of these finite elements to
represent a domain of any shape without additional efforts is a key advantage of practical application
of finite element method.

In this chapter, we will analyse problems in which the unknown scalar function u is a function
of position, e.g. heat conduction problems (u in this case is the temperature), flow through a porous
medium (u is the pressure gradient), or transverse deflection of an elastic membrane (u is the
deflection).

3.2.2 Physical base of the problem

Let the problem domain Ω̄ consist of its interior Ω and boundary ∂Ω. We assume that this
domain is finite and has a sufficiently smooth boundary (unit boundary normal n is a continuous
function of position along the boundary, with the exception of corner points). Generally, the boundary
can be defined using parametric equations x = x(s) and y = y(s), where s is the arc length at ∂Ω,
measured from a referent point. Values of an arbitrary function g on the boundary are denoted as
g(s)≡ g(x(s),y(s)), s ∈ ∂Ω.

For state variable u(x,y), the basic requirement is that it is a smooth function in Ω, in accordance
with a specific problem and functions x(s) and y(s) which define ∂Ω, i.e. it should be as smooth as
necessary.

The physical base of the problem is based on the rate of change of the scalar filed u in terms
of its position within the Ω, which is defined by the vector function ∇u, which is referred to as a
gradient:

∇u(x,y) =
∂u(x,y)

∂x
i+

∂u(x,y)
∂y

j, (3.36)

where i, j are the unit vectors for axes x and y, respectively. The gradient defines the total scalar field
rate of change at point (x,y) in any given direction. If t is the unit vector at angle θ relative to the x
axis, and t = cosθ i+ sinθ j, then the rate of change for a scalar field at (x,y) in direction t can be
defined as:
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du
dt

= ∇u· t = ∂u
∂x

cosθ +
∂u
∂y

sinθ . (3.37)
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Figure 3.3: Flux in two-dimensional domain.

The second physical quantity we are interested in is the flux σ , which is a vector field. Flux σ

is represented by arrows in Ω̄, i.e. by vector σ(s) at point s on the boundary ∂Ω, Figure 3.3. The
flux passing through this boundary at point s is defined by its component:

σn(s) = σ(s)·n(s), (3.38)

where n(s) is the normal at the boundary ∂Ω at point s, Fig. 3.3b. Tangential component τ(s) is
given as σ(s)·τ(s), Fig. 3.3b.

Let us consider an arbitrary subregion ω , containing a point P0(x0,y0). Shown in Fig. 3.4 is
the distribution of σn(s) along the boundary ∂ω , and the total flux passing through this boundary is
given by:

Σω ≡
∫

∂ω

σn(s)ds (3.39)

If we divide Σω by the subregion Aω surface area, we obtain the mean value of flux σ which
enters ω per unit surface. The limit value of this quotient, when ω is decreasing, while containing
point P0 is referred to as the flux divergence in point P0, and is denoted as divσ(x0,y0). If we adopt
that ω is a square subregion with P0, Fig. 3.4b, we obtain that Σω = ∆σx∆y+∆σy∆x, hence the
mean value theorem gives us:

divσ =
∂σx

∂x
+

∂σy

∂y
(= ∇·σ) . (3.40)
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Figure 3.4: Flux distribution.

With his, we defined the net flux density in a point per unit area, hence the total flux in Ω is
given as:

Σ =
∫
Ω

∇·σ dxdy, (3.41)

under the condition that Ω and σ are sufficiently smooth. Based on (3.38), (3.39) and (3.41) we have
that: ∫

Ω

∇·σ dxdy =
∫

∂Ω

σ ·nds, (3.42)

which represents the Gauss divergence theorem, which applies to any and all tensor fields.

3.2.3 Two-dimensional elliptical boundary problem
In order to formulate a two-dimensional elliptical boundary problem, we will use linear constitutive
equations and conservation laws. In other words, the flux in every point is proportional to the state
variable gradient, i.e. of the unknown u:

σ(x,y) =−k(x,y)∇u(x,y), (3.43)

where k(x,y) is the material modulus (coefficient or a property) for which we assume that |k(x,y)|>
k0(= const.)> 0.

Conservation (balance) aw suggests that for each part of the domain, the net flux through its
boundary is equal to the total flux produced by the internal sources.
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Let us now apply the conservation law to a material part ω , located around point P0, wherein all
properties are smooth. If we donate a source per unit area as f , we obtain:∫

∂ω

σ ·nds =
∫
ω

f dxdy. (3.44)

By applying the divergence theorem, we obtain:∫
ω

(∇·σ − f ) dxdy = 0 (3.45)

for all subregions ω in Ω. Since ω is an arbitrary region in which ∇·σ and f are smooth, subintegral
function in (3.45) is equal to zero for all points within ω .

∇ ·σ(x,y)− f (x,y) = 0, (3.46)

which represents a local conservation law.
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Figure 3.5: Two-dimensional domain with an interface.

Conservation law changes its form on inter-surfaces and boundaries, as can be shown by the
following analysis. If we assume that body Ω̄ is made of two different materials, one in subregion
Ω1 and the other in Ω2, Fig. 3.5, we can conclude that the material modulus k is defined via
smooth function (i.e. by constants) k1 and k2. The curve which defines the boundary between
Ω1 and Ω2, will be denoted by Γ, whereas ∂Ω1 and ∂Ω2 denote parts of ∂Ω, i.e. boundaries for
which boundary conditions are defined. These boundary conditions include u = û at ∂Ω1 (essential
boundary condition), and the natural boundary conditions at ∂Ω2, which will be defined at a later
stage.
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Figure 3.6: Flux change at the interface.

Let us consider point Pi on Γ, Fig. 3.5, i.e. a material strip which contains this point, Fig 3.6.
Let us assume that this strip is narrow enough for the flux through its ends, as well as the source
(proportional to the surface) can be neglected relative to the net flux through its edges. When the
thickness of this layer tends to zero, the conservation law is as follows:

Σ =

s2∫
s1

(−σ
(−)·n+σ

(+)·n)ds = 0, (3.47)

where s1 and s2 are the ends of the strip. Since the integration area is arbitrary, local conservation
law at points lying on boundary Γ is reduced to a jump σ ·n = σn with respect to Γ:

[|σn(s)|] = σ
(+)
n (s)−σ

(−)
n (s) = 0, s ∈ Γ. (3.48)

n
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u s( )

u s( )

^

σ( )s
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2

Figure 3.7: Boundary conditions.

Now let us consider boundary conditions at ∂Ω2, i.e. the area which contains a typical boundary
point Pb, Fig. 3.7. We will assume that the normal flux σ̂(s) through the surrounding material in the
immediate vicinity of the boundary is proportional to the difference in value of u(s) at the boundary
and the defined value of û(s) in the external environment:

σ̂(s)≡ p(s)[u(s)− û(s)].
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Flux balance in the strip which contains Pb gives the following:

σn(s)≡ σ(s)·n(s) = σ̂(s), s ∈ ∂Ω2. (3.49)

Hence, the following holds:
σn(s)≡ p(s)[u(s)− û(s)]. (3.50)

If we now use the constitutive equation (3.43) to eliminate σ and σn from (3.46) - (3.50), it is
possible to mathematically formulate the boundary problem:

1. Boundaries ∂Ω1, ∂Ω2 and the inter-boundary Γ are defined by parameric equations: x = x(s),
y = y(s), s ∈ ∂Ω or s ∈ Γ;

2. Source distribution is defined as f = f (x,y) in Ωi, i = 1,2;
3. Material coefficients are defined as ki = ki(x,y) for (x,y) ∈ Ωi, i = 1,2;
4. State variable û(s) for s ∈ ∂Ωi, is given;
5. The value of boundary coefficients is p(s) and û(s) on ∂Ω2 or σ̂(s) is given for s ∈ ∂Ω2.
For a problem formulated in this way, it is necessary to find a function u = u(x,y) which fulfills

the following requirements:
1. The partial differential equation in internal points of smooth subdomains Ω1 and Ω2

−∇·k(x,y)∇u(x,y)− f (x,y) = 0 za (x,y) ∈ Ωi; (3.51)

2. The jump condition at the inter-boundary Γ

[|k∇u·n|] = 0 s ∈ Γ; (3.52)

3. Essential boundary conditions at ∂Ω1

u(s) = û(s) s ∈ ∂Ω1; (3.53)

4. Natural boundary conditions at ∂Ω2

−k(s)
∂u(s)

∂n
= σ̂(s) s ∈ ∂Ω2. (3.54)

3.3 Variation formulation of the boundary problem
As before, we will multiply equation (3.51) with a sufficiently smooth weight function v and
determine the integral with respect to all domains with smooth output:∫

Ω1

[−∇·(k∇u)− f ]vdxdy+
∫

Ω2

[−∇·(k∇u)− f ]vdxdy = 0. (3.55)

Two-dimensional partial integration is necessary in order to reduce the first terms in both
integrals to their first derivatives. By applying the derivative product we obtain:

∇·(vk∇u) = k∇u·∇v+ v∇·(k∇u)

v∇ · (k∇u) = ∇ · vk∇u− k∇u ·∇v,
(3.56)

By replacing (3.56) into (3.55), we obtain:∫
Ω1

(k∇u·∇v+buv− f v) dxdy+
∫

Ω2

(k∇u·∇v+buv− f v) dxdy−

−
∫

Ω1

∇·(vk∇u) dxdy−
∫

Ω2

∇·(vk∇u) dxdy = 0.
(3.57)
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Two last integrals in (3.57) can be transformed into linear integrals by using the divergence theory,
thus resulting in:

−
∫

Ω1

∇·(vk∇u) dxdy−
∫

Ω2

∇·(vk∇u) dxdy =

=
∫

∂ (Ω1)

k
∂u
∂n

vds−
∫

∂ (Ω2)

k
∂u
∂n

vds,
(3.58)

where∂ (Ω1) and ∂ (Ω2) are the subdomain limits for domains Ω1 and Ω2, the integration direction
is a positive mathematical direction, and ∂u/∂n =−∇u·n.

δ(Ω  )−Γ
2

δ(Ω  )−Γ
1

Γ
n n=

2

n n=
1

1k k=

k k=
2

Ω1

Ω2

S

Figure 3.8: Domain boundaries.

Figure 3.8 shows that the limit of each domain is divided into two parts - ∂ (Ωi), which do not
coincide with Γ are denoted ∂ (Ωi)−Γ, i = 1,2. In accordance with this, line integrals in (3.58) are
separated in the following way:

−
∫

∂ (Ω1)−Γ

k
∂u
∂n

vds−
∫

∂ (Ω2)−Γ

k
∂u
∂n

vds+

+
∫
Γ

(
−k

∂u
∂n

)
1

vds+
∫
Γ

(
−k

∂u
∂n

)
2

vds,

(3.59)

where (−k
∂u
∂n

)i indicates that −k
∂u
∂n

need to be determined within the region Ωi. Taking into account
the sign of the normal in the last two integrals in (3.59), we obtain:

∫
Γ

[
−k(+) ∂u(+)

∂n
+ k(−) ∂u(−)

∂n

]
vds. (3.60)

Subintegral function in (3.60) is equal to v [|σn(s)|], which is according to (3.46) equal to zero, hence
integral in (3.60) is equal to zero.
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First two integrals in (3.59) can be transformed into a single integral along the whole boundary
∂Ω. In addition, subintegral functions in the first two integral in (3.57) contain highest first derivatives
with respect to u and v, and thus can be transformed into a single integral along the whole domain Ω,
assuming that functions u and v are smooth enough:∫

Ω

(k∇u·∇v− f v)dxdy−
∫

∂Ω

k
∂u
∂n

vds = 0. (3.61)

Replacing of natural boundary conditions (3.54) into the linear integral gives:∫
Ω

(k∇u·∇v− f v) dxdy+
∫

∂Ω

σ̂vds = 0, (3.62)

Which applies to all allowable weight functions v.
If this solutio data is sufficiently smooth, the solution of equation (3.62) is also the solution of

(3.54). Vice versa, every solution of (3.54) is automatically the solution of equation (3.62).
An important question still remains about determining of the adequate class of allowable

functions for problem (3.62). Let us observe that the integrals in (3.62) are defined if functions u and
v and their partial derivatives are smooth enough for square integration with respect to Ω:∫

Ω

[(
∂v
∂x

)2
+

(
∂v
∂y

)2
+ v2

]
dxdy < ∞. (3.63)

Such class of functions will be denoted by H1(Ω), where 1 refers to the „square integrability“ of the
first derivative, and Ω is the domain of the defined functions.

As in the case of one-dimensional problems, natural boundary conditions are the integral part
of equation (3.62), and they appear in term

∫
∂Ω2

σ̂vds. Essential boundary conditions are taken into

account via allowable functions definition. For weight functions, we will select functions v from
H1(Ω) which are equal to zero at ∂Ω1, and their solution must be a function within H1(Ω), for
which u = û at ∂Ω1.

Variation formulation of the boundary condition is as follows: find a function u ∈ H1(Ω) such
that u = û at ∂Ω1 and (3.63) holds for ∀v ∈ H1(Ω), such that v = 0 at ∂Ω1. Thus, in addition to the
aforementioned variation formulation properties (see text after (3.62), the following holds:

• Constraint imposed by the variation formulation are weaker than the constraints that apply to
equation (3.54).

• The jump condition (3.52) does not require additional consideration in the case of variation
formulation

3.4 Finite element interpolation
This chapter represents a direct generalisation of the corresponding one-dimensional problem analysis
chapter, but with significant differences in certain important details. Above all, in the case of the
one-dimensional problems, the finite element mesh is defined simply be dividing a linear domain
into linear subdomains, by introducing nodes in all discontinuities. For two-dimensional problems,
discretisation is not that simple. Essentially, we still tend to represent the approximate solution uh
and weight functions vh via polynomials defined on subdomains with simple geometry, for a given
area Ωh, which is located in the plane x, y. Additionally, discretization should be general enough to
model irregular domains, while containing elements which are sufficiently simple to calculate. For
this purpose, the most favourable shapes are the triangle and the rectangle, Fig. 3.9
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Figure 3.9: Discretization of two-dimensional problem.

It was shown that for one-dimensional problems, it is possible to represent the state variable of
a unit length element in linear form:

u = u0 +u1ξ ,

Or, alternatively, in quadratic form:

u = u0 +u1ξ +u2ξ
2.

In analogous manner, we can introduce the canon triangle for a two-dimensional domain.

ξ

η

0

1

1

1 2

3

Figure 3.10: Triangular finite element.

Similar to the one-dimensional problem, wherein the unit canon length is projected into a real
arbitrary length, the unit right triangle for the two-dimensional case is projected to a real triangular
element of arbitrary shape and size.

In addition to being simple to calculate, the triangular finite element is introduced for the purpose
of natural agreement between the number of nodes and the order of the polynomial which represents
the approximate solution. Namely, a two-dimensional space linear equation has the following form:

vh = a1 +a2ξ +a3η (3.64)

with three constants (ai, i = 1,2,3). In order to determine these constants, three independent values
vh are necessary, which implies that the finite element needs three nodes. Furthermore, for two
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adjacent elements, the continuity of the function on their common side is achieved with the condition
that the linear functions of these elements have the same values in common nodes.

Similar to this, the linear function given below:

vh = a1 +a2ξ +a2η +a3ξ η (3.65)

has four constants, and thus its corresponding finite element is rectangular, and its quadratic function
is:

vh = a1 +a2ξ +a3η +a4ξ
2 +a5ξ η +a6η

2 (3.66)

which has 6 constants, and requires a six node triangle (with three nodes at its points, and three more
at each side midpoint).

In accordance with the description given in the previous chapter, we can now define interpolation
gh for function g in the following form:

gh(ξ ,η) = giφi(ξ ,η) (ξ ,η) ∈ Ωh (3.67)

where φi, i = 1, · · · ,N are the base functions defined at Ωh as:

φi(ξ j,η j) =

{
1, za i = j
0, za i ̸= j

(3.68)

where (ξ j,η j) are finite element nodes, which means that the following holds:

gh(ξ j,η j) = g j j = 1,2, · · · ,N. (3.69)

According to the above, by including g j = g(ξ j,η j), g j becomes equal to the value of g in nodes, i.e.
it becomes its interpolation. The following two conditions also need to be fulfilled:

1. Definition of local interpolation functions ψe
i for each element must be such that its fitting in

the finite element mesh results in base functions which fulfill (3.68);
2. Base functions φi should be square-integrable, along with their partial derivatives:

∫
Ωh

[(
∂φi

∂x

)2
+

(
∂φi

∂y

)2
+φ

2
i

]
dxdy < ∞. (3.70)

This requirement is fulfilled if functions φi are continual along the element boundaries.

3.4.1 Interpolation within triangles
Since the linear function:

vh(ξ ,η) = a1 +a2ξ +a3η (3.71)

defines a planar surface, linear interpolation within a triangle approximates a smooth function
(surface) v with plane (3.71), inside an arbitrary element Ωe.

Let us assume that Ωh is made of a total of E triangular elements, and that the following linear
interpolation holds:

ve
h(ξ ,η) = a1 +a2ξ +a3η . (3.72)

The following applies to triangle nodes (fig. 3.10):

v1 = ve
h(ξ1,η1) = a1

v2 = ve
h(ξ2,η2) = a1 +a2

v3 = ve
h(ξ3,η3) = a1 +a3

(3.73)
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where (ξi,ηi) are node coordinates. By solving this system of linear algebraic equation in terms of
a1, a2 and a3, we obtain:

a1 = v1,

a2 = v2 − v1,

a3 = v3 − v1,

(3.74)

By replacing (3.74) into (3.72), the following is obtained:

ve
h(ξ ,η) = v1ψ

e
1(ξ ,η)+ v2ψ

e
2(ξ ,η)+ v3ψ

e
3(ξ ,η), (3.75)

where ψe
i (ξ ,η) are element shape functions:

ψ
e
1(ξ ,η) = 1−ξ −η ,

ψ
e
2(ξ ,η) = ξ ,

ψ
e
3(ξ ,η) = η .

(3.76)
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Figure 3.11: Interpolation functions of a triangular finite element.
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These linear functions are represented in Figure 3.11, and the following applies to them:

ψ
e
i (ξ j,η j) =

{
1, i = j
0, i ̸= j.

(3.77)

In addition, we should mention that expression (3.75) can be written in condensed form as:

ve
h(ξ ,η) = viψ

e
i (ξ ,η), (3.78)

by using the aforementioned adding conventions along the same (repeated) indices. Again, observe
that the expression (3.78) is more general, since it can be used for elements with an arbitrary number
of interpolation functions, ψe

i , i = 1,2, . . . ,n.
We will now determine “global” φi(ξ ,η) , which are obtained by “arranging” shape functions

in a “pyramid”, fig. 3.11. Cartesian coordinates in this case is represented in the same way as the
state variables vi are represented using interpolation functions ψi (3.78):

x(ξ ,η) = xiψi(ξ ,η),

y(ξ ,η) = yiψi(ξ ,η),
(3.79)

where xi and yi are the Cartesian coordinates for the i-th node.
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Figure 3.12: Global base functions.
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It is clear that φi fulfill the condition given by (3.77) and that they are continuous along the
element boundaries, i.e. at Ωh; their first partial derivatives are reduced to step functions, hence their
squares are also integrable. Thus, such base functions represent an adequate choice for finite element
approximation applications.

3.4.2 Interpolation error

Let us assume that a smooth function g is interpolated by function gh, which contains complete
polynomials of the k-th order. If partial derivatives of the k+1-th order of function g are limited
within Ωe, the following applies to the interpolation error:

∥g−gh∥∞,Ωe
= max |g(x,y)−gh(x,y)|<Chk+1

e , (3.80)

where C is a positive constant, and he is the “diameter” of Ωe, i.e. the greatest distance between any
two points in the element. Similar to this, we have that:∥∥∥∥∂g

∂x
− ∂gh

∂x

∥∥∥∥
∞,Ωe

≤C1hk
e i

∥∥∥∥∂g
∂y

− ∂gh

∂y

∥∥∥∥
∞,Ωe

≤C2hk
e. (3.81)

H1 is the two-dimensional norm defined by the following expression:

∥g∥2
1 =

∫
Ω

[
g2 +

(
∂g
∂x

)2
+

(
∂g
∂y

)2
]

dxdy. (3.82)

If we assume that Ωh = Ω and that h is the greatest “diameter” of all elements, we obtain the
following (assuming that the mesh is sufficiently regular):

∥g−gh∥1 ≤C3hk (3.83)

for a sufficiently small h. In this case, it is also necessary for gh to contain a complex polynomial of
the k-th order.

3.5 Finite element approximations
Let H1(Ω) be a class of functions which satisfy expression H1(Ω), and are defined for the whole
domain Ω. The problem here involves the determining of a function u from H1(Ω), such that u = û
at boundary ∂Ω1 and that the following condition is fulfilled:∫

Ω

k∇u·∇vdxdy+
∫

∂Ω2

σ̂vds−
∫
Ω

f vdxdy = 0 (3.84)

for ∀v ∈ H1(Ω), such that v = 0 at ∂Ω1 and γ = pû.
The approximate solution of equation (3.84) requires replacing of domain Ω withΩh, which

is actually the finite element mesh (with a total of N nodes and E elements), and defining of an
N-dimensional subspace Hh in H1(Ωh) by introducing global base functions φi, i = 1, · · · ,N, along
with finite elements. In order fr these shape functions to remain continuous along each element, they
cannot be used to model jumps, e.g. a jump in material properties. Thus the finite element mesh
is generated in a way that ensures that element nodes and edges correspond to the lines where the
material modulus jump occurs, Figure 3.13.
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Figure 3.13: Two-dimensional domain (a) and its discretization (b).

The weight function can now be observed within each individual element:

vh(ξ ,η) = viφi(ξ ,η) (3.85)

where vi is the weight function value in the i-th node. In a general case, Dirichlet function û, given
on ∂Ω1 is approximated by the interpolation ûh(s) = ûiφi(s)„ wherein the summing is performed
along all nodes of the approximation ∂Ω1h (of ∂Ω1). The approximate solution for function uh in
Hh is:

uh(ξ ,η) = uiφi(ξ ,η) (3.86)

hence, ui = ûi in nodes at ∂Ω1h, and the following holds:∫
Ωh

k∇u·∇vdxdy+
∫

∂Ω2h

σ̂vh ds−
∫

Ωh

f vh dxdy = 0 (3.87)

for ∀vh ∈ Hh, such that vh = 0 at ∂Ω1h„ i.e. for the approximation ∂Ω1.
By replacing (3.85) and (3.86) into (3.87), we obtain:

Ki ju j = Fi i, j = 1,2, · · · ,N (3.88)

where Ki j are stiffness matrix terms:

Ki j =
∫

Ωh

k∇φi·∇φ j dxdy (3.89)

while Fi are the components of force vector:

Fi =
∫

Ωh

f φi dxdy−
∫

∂Ω2h

σ̂φi ds. (3.90)

Now we need to modify the equation (3.87) in order to include Dirichlet’s conditions and solve
the resulting system of unknown nodal values, u j , thus determining the finite element approximation
of the equation, (3.84) solution, u.

It is necessary to point out the similarities between this approach and the on-dimensional
problem:
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1. Stiffness matrix K is sparse, since global functions φi and φ j and their derivatives are not
equal to zero only when there are elements that contain both nodes i and j.

2. In the case being analysed, K is a symmetrical matrix (since the operator in (3.46) is self-
adjoined) and has the form of a strip in the case that the nodes were numbered in order. All
of this allows for efficient solving of linear algebraic equation system (3.88).

3. All integrals in (3.89) and (3.90) can be calculated as the sum of all mesh elements contribu-
tions, for which the exact solution of a boundary problem satisfies the condition given by the
following equation: ∫

Ωe

k∇u·∇vdxdy−
∫

Ωe

f vdxdy+
∫

∂Ωe

σ̂nvds = 0 (3.91)

for each allowed v, where σ̂n is the normal flux component at the element boundary. Let
ue

h and ve
h represent the boundaries of approximations uh and vh on Ωe. Then, the local

approximation of the variation boundary condition on Ωe has the following form:∫
Ωe

k∇uh·∇vh dxdy−
∫

Ωe

f vh dxdy+
∫

∂Ωe

σ̂nvh ds = 0, (3.92)

where σ̂n represents the real (exact) flux through ∂Ωe, which, despite not being given as data
in the initial problem, still occurs as a natural boundary condition at Ωe. Since vh = 0 at
∂Ω1h, there will be no contribution to the last integral in (3.91) by the elements whose sides
coincide with ∂Ω1h. Since ue

h and ve
h have the following form:

ue
h(ξ ,η) = ue

i ψ
e
i (ξ ,η) ve

h(ξ ,η) = ve
i ψ

e
i (ξ ,η), i = 1, . . . ,Ne (3.93)

where ψe
i are local shape functions for Ωe, and Ne is the number of nodes in Ωe. Equation

(3.91) now becomes a linear system:

ke
i ju

e
j = f e

i −σ
e
i , i, j = 1,2, . . . ,Ne (3.94)

where

ke
i j =

∫
Ωe

k∇ψ
e
i ·∇ψ

e
j dxdy. (3.95)

f e
i =

∫
Ωe

f ψ
e
i dxdy. (3.96)

Stiffness matrix and load vector components of element Ωe whereas the following expression:

σ
e
i =

∫
Ωe

σnψ
e
i ds (3.97)

Formally, global system of equations (3.88) is obtained by summing of (3.94) with respect to
all elements in the mesh, wherein matrix and vector terms (3.95), (3.96) and (3.97) are placed in
their corresponding locations in the global system matrix. As an example, stiffness matrix terms for
element Ωe are placed in columns and rows which correspond to that element’s nodes. Thus, first
terms in expressions (3.89) and (3.90) are obtained as:

E

∑
e=1

∫
Ωe

k∇φi·∇φ j dxdy =
E

∑
e=1

Ke
i j (3.98)

E

∑
e=1

∫
Ωe

f φi dxdy =
E

∑
e=1

Fe
i i, j = 1,2, · · · ,N, (3.99)
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where N is the global system matrix dimensions, i.e.:

E

∑
e=1

(Ke
i ju j −Fe

i +Σ
e
i ) = 0, i = 1, · · · ,N. (3.100)

It should be noticed that contributions from boundary conditions to matrix Ki j and vector Fi
originate from term Σe

i , which can be written in following form:

E

∑
e=1

Σ
e
i = S(0)i +S(1)i +S(2)i (3.101)

where

S(0)i =
E

∑
e=1

∫
∂Ωe−∂Ωh

σnφi ds, (3.102)

S(1)i =
∫

∂Ω1h

σnφi ds (3.103)

S(2)i =
∫

∂Ω2h

σnφi ds. (3.104)

Symbol ∂Ωe −∂Ωh denotes the segment of boundary ∂Ωe, which does not include ∂Ωh (i.e.
the part of ∂Ωe which is related to common element boundaries), hence term S(0)i is only defined in
internal nodes.
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Figure 3.14: Partition into inner elements.

For the purpose of a more thorough interpretation, figure 3.14, we will analyse four internal
elements with a common node 1, for which the following holds:

S(0)1 =
4

∑
e=1

∫
∂Ωe

σnφi ds =

=
∫
Γ1

[|σn|]φi ds+
∫
Γ2

[|σn|]φi ds+
∫
Γ3

[|σn|]φi ds+
∫
Γ4

[|σn|]φi ds.
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Based on conservation laws, [|σn|] equals zero through the inter-surface where there are no point or
line sources, hence for smooth f we have that:

S(0)1 = 0. (3.105)

On the other hand, if the source function f contains sources within a point or a line, then the jump
[|σ |]n represents a source equation and is not zero. If the source is a point, then, strictly speaking,
variation formulation is not applicable. Thus, it is assumed that f has the following form:

f (x,y) = f̄ (x,y)+ f̂ δ (x− xi,y− yi) (3.106)

where f̄ is the smooth (integrable) part of f , and f̂ δ (x− xi,y− yi) denotes the source in point
(xi,yi) ∈ Ωh, with a magnitude f . As was the case with the one-dimensional problem, mesh nodes
Ωh are placed in the source point, since then integrals (3.91) and (3.96) only contain the smooth part
of f :

S(0)1 =
4

∑
e=1

∫
∂Ωe

σnφ1 ds =
4

∑
m=1

∫
Γm

[|σn|]φ1 ds. (3.107)

The presence of the base function φ11 indicates that S(0)1 represents the weight mean of these
jumps in the internal node 1. If we (figuratively) balance these flux jumps which differ from zero,
with a source in point f̂ , we obtain:

S(0)1 = f̂ (3.108)

when (3.106). holds. It should also be noted that the point source in the case of a two-dimensional
problem provides a singular solution.

According to essential boundary conditions, values uh are given in nodes at ∂Ω1h. Since σn is
unknown at ∂Ω1h, S(1)i cannot be defined here. However, if all nodal displacements, u1, u2, · · · ,uN ,

are known, S(1)i can be approximated directly from (3.103).
On the boundary ∂Ω2h, natural boundary conditions are defined, thus the following holds:

σn(s) = σ̂(s), (3.109)

thus, we have the following approximation:

S(2)i
∼=

N

∑
i=1

∫
∂Ω2h

σ̂φi ds. (3.110)

Symbol ∂Ωe
2h refers to the part of ∂Ωe which intersects with ∂Ω2h. Now we have reached a linear

algebraic system of equations as follows:

Ki ju j = Fi −S(2)i , i, j = 1,2, . . . ,N, (3.111)

where

Ki j =
E

∑
e=1

Ke
i j

Fi =
E

∑
e=1

Fe
i .

(3.112)
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An illustration of finite element method
application to solving of two-dimensional problems
Let’s define the following problem:

−∆u(x,y) = f (x,y) na Ω

u = 0 naΓ41,
∂u
∂n

= 0 na Γ12,Γ25,Γ67 i Γ74

∂u
∂n

+βu = γ naΓ56,

(3.113)

where Ω is the polygonal domain, figure 3.15, and Γ41,Γ12 · · ·Γ74 are boundary segments. In this
case∂Ω1 = Γ41 and ∂Ω2 = Γ12 ∪Γ25 ∪Γ56 ∪Γ67 ∪Γ74. The analysis of this problem consists of:

(a)

(b)
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Figure 3.15: Two-dimensional problem (a) and division into finite element (b).

1. We divide the domain into six triangular elements with seven nodes, fig. 3.15, within which
we define a linear approximation uh for solution u of equation (3.112). Here ∂Ω1 = ∂Ω1h
and ∂Ω2 = ∂Ω2h, since the domain boundary is linear and thus identical to the finite element
boundary.

2. Next, by using (3.95) and (3.96), we calculate Ke and f e, e = 1,2, · · · ,6:

K1 =



K1
11 K1

12 K1
13 0 0 0 0

K1
21 K1

22 K1
23 0 0 0 0

K1
31 K1

32 K1
33 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


F1 =



f 1
1

f 1
2

f 1
3
0
0
0
0
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K2 =



K2
11 0 K2

12 K2
13 0 0 0

0 0 0 0 0 0 0
K2

21 0 K2
22 K2

23 0 0 0
K2

31 0 K2
32 K2

33 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


F2 =



f 2
1
0
f 2
2

f 2
3
0
0
0


(3.114)

K6 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 K6

11 0 K6
12 K6

13 0
0 0 0 0 0 0 0
0 0 K6

21 0 K6
22 K6

23 0
0 0 K6

31 0 K6
32 K6

33 0
0 0 0 0 0 0 0


F6 =



0
0
f 6
1
0
f 6
2

f 6
3
0


3. We establish the global equation system:



K11 K12 K13 K14 0 0 0
K21 K22 K23 0 K25 0 0
K31 K32 K33 K34 K35 K36 K37
K41 0 K43 K44 0 0 K47
0 K52 K53 0 K̃55 K̃56 0
0 0 K63 0 K̃65 K̃66 K67
0 0 K73 K74 0 K76 K77





u1
u2
u3
u4
u5
u6
u7


=

=



F1
F2
F3
F4
F̃5
F̃6
F7


−



Σ1
0
0

Σ4
Σ5
Σ6
0


(3.115)

where F1 = f 1
1 + f 2

1 ; F2 = f 1
2 + f 3

2 · · · , and Σi is defined based on (3.101). Terms denoted by
∼ will be modified when taking into account boundary conditions at Γ56.

4. Since non-homogeneous boundary conditions are defined only on the segment which connects
nodes 5 and 6, γ and P have the following form:

γ =



0
0
0
0
γ5
γ6
0


P =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 P55 P56 0
0 0 0 0 P65 P66 0
0 0 0 0 0 0 0


, (3.116)



74
Chapter 3. Comparison of finite element method and finite

difference method

hence the linear algebraic equation system (3.115) becomes:



K11 K12 K13 K14 0 0 0
K21 K22 K23 0 K25 0 0
K31 K32 K33 K34 K35 K36 K37
K41 0 K43 K44 0 0 K47
0 K52 K53 0 K55 K56 0
0 0 K63 0 K65 K66 K67
0 0 K73 K74 0 K76 K77





u1
u2
u3
u4
u5
u6
u7


=



F1 −Σ1
F2
F3

F4 −Σ4
F5
F6
F7


(3.117)

where K55 = K̃55 +P55, K56 = K̃56 +P56, F5 = K̃5 + γ5.
5. We can now introduce essential boundary conditions u1 = u4 = 0„ which reduces the linear

algebraic equation system (3.117) to a system of equations with five unknowns:


K22 K23 K25 0 0
K32 K33 K34 K36 K37
K52 K53 K55 K56 0
0 K63 K65 K66 K67
0 K73 0 K76 K77




u2
u3
u5
u6
u7

=


F2
F3
F5
F6
F7

 (3.118)

which is solved for unknown displacements u2, u3, u5, u6 and u7. Remaining two equationΣ1
and Σ4:

−Σ1 = K12u2 +K13u3 +K14u4 −F1,

−Σ4 = K43u3 +K47u7 −F4.
(3.119)

Other solution properties can be determined based on the completely known uh, equation (3.86).

3.5.1 Determining of the finite element matrix

The first step involves the defining of a finite element mesh, followed by determining of necessary
matrices. It should be taken into account that necessary matrices and vectors are very complex to
determined when using a global coordinate system (x,y), fig. 3.16, and that each finite element
would then require individual determining of interpolation boundaries. Thus, matrices and vectors
are determined in the local coordinate system (ξ ,η), and are then transformed into the global system.
This allows for a unique procedure for all finite elements, making this task significantly easier.
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Figure 3.16: Finite element mapping.

Local to global transformations

Let us introduce the “master” element Ω, of simple form, whose coordinates are defined as −1 ≤
ξ ≤ 1 and −1 ≤ η ≤ 1. In this case, coordinate transformation can be written as:

x = x(ξ ,η)

y = y(ξ ,η).
(3.120)

The basic idea behind introducing the “master” element is the ability to interpret is a finite
element mesh generation achieved by a series of transformations, [Te], 3.120), shown in fig. 3.17.

To this end, we will assume that functions x and y are continuously differentiable with respect
to ξ and η , hence we have that:

dx =
∂x
∂ξ

dξ +
∂x
∂η

dη dy =
∂y
∂ξ

dξ +
∂y
∂η

dη (3.121)

i.e. in matrix form

[
dx
dy

]
=


∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

[ dξ

dη

]
(3.122)
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Figure 3.17: Local to global transformation.

Partial derivative matrix of the 2×2 order is called the transformation Jacobian and is denoted
by J. In order for the inverse transformation to hold, it is obvious that |J| ̸= 0. In this case, we have
that: [

dξ

dη

]
= J−1

[
dx
dy

]
=

1
|J|


∂y
∂η

∂x
∂η

− ∂y
∂ξ

∂x
∂ξ

[ dx
dy

]
, (3.123)

thus
ξ = ξ (x,y)

η = η(x,y)
(3.124)

Defines the inverse transformation. Considering the below expression, analogous to (3.122)

[
dξ

dη

]
=


∂ξ

∂x
∂ξ

∂y
∂η

∂x
∂η

∂y

[ dx
dy

]
(3.125)

it is clear that the following holds:

∂ξ

∂x
=

1
|J|

∂y
∂η

,
∂ξ

∂y
=− 1

|J|
∂x
∂η

,

∂η

∂x
=− 1

|J|
∂y
∂ξ

,
∂η

∂y
=

1
|J|

∂x
∂ξ

.

(3.126)

Now we can define the conditions necessary for a function in order to be used as a transformation
function:

1. Within each element, functions ξ = ξ (x,y) and η = η(x,y) must be invertible and continu-
ously differentiable in order for the relation (3.126) to be applicable to them.

2. Mesh generated using a series of transformations [Te] must not contain overlapping elements
and empty spaces between them.
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3. Each transformation must be easy to perform, based on element geometry.
4. Functions x(ξ ,η) and y(ξ ,η) should be simple in the mathematical sense.

These conditions are met by shape functions of finite elements, hence it is natural to use them
as the transformation functions:

x = xiψi(ξ ,η)

y = yiψi(ξ ,η),
(3.127)

where (xi,yi) are the nodal coordinates of point i and M is the number of elements. The following
holds:

∂ξ

∂x
=

1
|J|

y j
∂ψ j

∂η
,

∂ξ

∂y
=− 1

|J|
x j

∂ψ j

∂η
, (3.128)

∂η

∂x
=− 1

|J|
y j

∂ψ j

∂ξ
,

∂η

∂y
=

1
|J|

x j
∂ψ j

∂ξ
, (3.129)

|J|=
{

xi
∂ψi

∂ξ

}{
y j

∂ψ j

∂η

}
−
{

xi
∂ψi

∂η

}{
y j

∂ψ j

∂ξ

}
. (3.130)

As an example, we will illustrate this using a four-node “master” element Ω̂ and four finite
elements, e = 1,2,3,4, obtained by transformation given by (3.127). Shape functions are:

ψ1(ξ ,η) =
1
4
(1−ξ )(1−η) ψ2(ξ ,η) =

1
4
(1+ξ )(1−η)

ψ3(ξ ,η) =
1
4
(1+ξ )(1+η) ψ4(ξ ,η) =

1
4
(1+ξ )(1+η).

(3.131)

By transforming into element Ω1; fig. 3.18

(xi,yi) = {(3,0),(3,1),(0,1),(0,0)}⇒

x = 3ψ1 +3ψ2 =
3
2
(1−η)

y = ψ2 +ψ3 =
1
2
(1+ξ ).

(3.132)

Since |J|> 0, the transformation is invertible. This actually involves simple (linear) expansion
and contraction of corresponding element sides, fig. 3.18.

By transforming into element number Ω2 in the same way like before, results in |J|=− 3
4 . It

should be noticed that the only difference compared to element Ω1 is in node numeration – here it
has a negative mathematical direction, which should be generally avoided.
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Figure 3.18: Finite element transformation.

By transforming into element Ω3, fig. 3.18.

(xi,yi) = {(0,0),(1,0),(2,2),(0,1)}⇒

x = ψ2 +2ψ3 =
1
4
(3+3ξ +η +ξ η)

y = 2ψ3 +ψ4 =
1
4
(3+ξ +3η +ξ η)

|J|= 1
2
+

1
8

ξ +
1
8

η .

Considering that |J|> 0 for ξ ,η ∈ (−1,1), this transformation is invertible. Value of |J| is lowest at
node 1 and highest at node 3, indicating relative elongation of different parts of Ω̂ via transformation
T3.

By transforming element Ω4, fig. 3.18, we obtain:

(xi,yi) = {(0,0),(3,0),(1,1),(0,2)}⇒
x = 3ψ2 +ψ3

y = ψ3 +2ψ4

|J|= 1
8
(5−3ξ −4η)

(3.133)
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which is not greater than zero for ∀ξ ,η ∈ (−1,1) - for example for 3ξ = 5−4η |J|= 0, beneath
the greater-than-zero line, and above the less-than-zero line! The area of line 3ξ = 5− 4η is
transformed outside of Ω4, hence this element is obviously unacceptable. In addition, there is a
problem in the node 3 corner, where it is greater than π . It can be shown that the transformation
function (3.127) is integrable if the angles of the rectangle are < π .

For square shape functions (e.g. the eight-node finite elements), constraints, apart from those
previously mentioned, are related to nodes which are not in element corners (fig. 3.19). Namely, in
order to preserve the invertibility of transformation functions, it is necessary for these nodes to be
located at midpoints of sides, i.e. elements (in the case internal nodes exist).

ξ
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(0,0)

η

Ω^

y

x

(-1,-1)

(0,0) (1,0)

(0,1)

ξ

η

x
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Ω

eΩ

eΩ e+1
Ω

y

Ω^

Figure 3.19: Quadratic finite elements.

3.5.2 Calculating of finite element matrices

We can now calculate all of the necessary finite element matrices and vectors:

ke
i j =

∫
Ωe

∇ψ
e
i ·∇ψ

e
j dxdy, (3.134)

f e
i =

∫
Ωe

f ψ
e
i dxdy, (3.135)

se
i =

∫
Ωe

σ̂ψ
e
i dxdy. (3.136)
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Interpolation function gradient can be written as:

∇ψi(ξ ,η) = ui
∂ψi

∂ξ α
gα , α = 1,2, (3.137)

where ξ 1 ≡ ξ and ξ 2 ≡ η , and gα , is the contravariant base vector of coordinate systems for
element ξ α . Hereinafter we will denote partial derivatives of interpolation functions in their shortened
form:

ψiα =
∂ψi

∂ξ α
. (3.138)

By replacing interpolation function gradients obtained in this manner into (3.134)-(3.136), and taking
into account that the element surface is:

dxdy = Jdξ dη , (3.139)

we obtain:
ke

i j =
∫

Ωe

ψ
e
iα kgαβ

ψ
e
jβ Jdξ dη . (3.140)

where the following applies, formally:

gαβ = gα ·gβ . (3.141)

In a practical sense, gαβ is calculated by inverting the expression given below:

gαβ = δklz
k
α zl

β
, k, l = 1,2 (3.142)

where

zk
α =

∂ zk

∂ξ α
, (3.143)

while
z1 = x, z2 = y (3.144)

are the Cartesian coordinates.
Taking into account (3.127), it is obvious that zk

α = zk
i ξiα . For the observed two-dimensional

case, the matrix of expressions given as gαβ is:

[
gαβ

]
=

[
g11 g12
g21 g22

]
(3.145)

where
g11 =

(
z1

1

)2
+
(

z2
1

)2

g12 = g21 = z1
1z2

1 + z2
1z2

2

g22 =
(

z1
2

)2
+
(

z2
2

)2
.

(3.146)

The inverse matrix is by definition:[
gαβ

]
=
[
gαβ

]−1
=

1
|gαβ |

[
g11 −g12
−g21 g22

]
. (3.147)

It is easy to show that the determinant of matrix gαβ is:

|gαβ |= g11g22 −g2
12 =

(
z2

1z2
2 − z1

2z1
1

)2
= J2. (3.148)
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Sada članovi matrice krutosti možemo da napišemo u obliku

ke
i j =

∫
Ωe

k
J
[ψe

i1 ψ
e
i2]

[
ge

11 −ge
12

−ge
21 ge

22

][
ψe

j1
ψe

j2

]
dξ dη . (3.149)

The basic problem with the integration of the above expression is the occurrence of a relatively
complex function – the Jacobian in the denominator, and due to this, numerical squaring is typically
used.

In a general case, the expression for numerical integration is defined by determining of coordi-
nates (ξt ,ηt) of a specific number of Nt integration points within the domain for which the integral is
being calculated, along with the quantity wt which is referred to as the integration weight function
(t = 1,2, . . . ,Nt ). Thus, if expression G(ξ ,η) needs to be integrated along the area Ωe, we will use
the following relation: ∫

Ωe

G(ξ ,η)dξ dη =
Nt

∑
t=1

Ĝ(ξ ,η)wt +E,

where E represents the integration error.
If the integrand G(ξ ,η) is a polynomial, the integration order should be sufficiently high for

the integration to be accurate. For example if we use the Gaussian square method to integrate a
linear function in the canonical triangle, this integration will be exact when using the single point
rule (ξ1,η1), in the centre, with w1 =

1
2 .

As for expression (3.135), it is obvious that it is easier to calculate than (3.134), hence we will
leave it for the practice examples.

Expression (3.136) is a boundary integral and its calculation is slightly more complicated.
We calculate it for contours of elements ∂Ωe

2h of domain Ωe, along which the natural boundary
conditions are defined. We will demonstrate this calculation for the edge where ξ = const., for the
canonical element, which needs to be projected onto ∂Ωe

2h.
In the observed case gαβ is reduced to g22:

g22 =

(
∂ z1

∂ξ 2

)2

+

(
∂ z2

∂ξ 2

)2

,

which, at the same time, represents the “determinant” for expression gαβ . As can be seen, the
Jacobian is equal to the square root of the matrix:

J =

[(
∂x
∂η

)2
+

(
∂y
∂η

)2
]1/2

,

Hence the integral is:

se
i =

∫
∂Ωe

2h

σ̂ψ
e
i

[(
∂x
∂η

)2
+

(
∂y
∂η

)2
]1/2

dη .

It is common practice to calculate these integrals using numerical integration.
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3.6 Program for solving of elliptical two-dimensional problems us-
ing finite element method

3.6.1 Uvodne napomene

A program which uses finite element method will be shown in this section. It consists of complete sub-
programs (with insignificant changes) and solution to a number of problems given in reference [5].

Let us first define the problem that needs to be solved:

A real function u(x,y) should be determined in the points within region Ω ⊂ R2, such that it
satisfies the linear partial differential equation:

−∇ · (k∇u)+bu = f . (3.150)

Let us mention that this differential equation is a bit more general than (3.51). The difference
lies in term bu. By introducing this term, it is possible to analyse problems such as continuously
supported membrane, or chemical reactions which depend on the temperature.

At points within a part of boundary Ω (∂Ω1), function u can have known values (essential
boundary conditions):

u = û,

whereas in the case of points on the other part of the boundary (∂Ω2), this function can have known
values of derivatives in the direction perpendicular to the boundary (natural boundary conditions):

−k
∂u
∂n

= pu− γ.

This form of natural boundary conditions is also somewhat broader than (3.54), and allows the
analysis of problems where the derivative in the direction of the normal depends on the value of
function u at the boundaries.

Region Ω can be divided into subregions such that k, b and f can have different values in each
of them. k and b are constant in these subregions. As for f , we can assume that it has the following
structure

f (x,y) = f̄ + f̂ δ (x− xi,y− yi)

where f̄ and f̂ are constants.

Even though we allow the region Ω to be divided into subregions, the jump in quantity ∇u ·n
has to be equal to zero in all points at the boundaries between individual subregions.

A problem defined in this way can be translated into variation form in a way shown in the
previous chapters. After the finite element approximation, it is transformed into a system of linear
algebraic equations in terms of unknown values of function u in nodal points.

A triangular isoparametric element with six nodes and rectangular isoparametric element with
nine nodes will be used here. Let us describe these elements and conventions related to them, which
are necessary to follow in order to ensure that the program will function properly.

The following figure shows these elements in parametric (ξ ,η) plane, with standard node and
side numbering for each of them.
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Figure 3.20: Isoparametric finite elements.

Base function for a rectangular element in parametric plane are:

ψ1 =
1
4 (ξ

2 −ξ )(η2 −η) ψ5 =
1
2 (1−ξ 2)(η2 −η)

ψ2 =
1
4 (ξ

2 +ξ )(η2 −η) ψ6 =
1
2 (ξ

2 +ξ )(1−η2)

ψ3 =
1
4 (ξ

2 +ξ )(η2 +η) ψ7 =
1
2 (1−ξ 2)(η2 +η)

ψ4 =
1
4 (ξ

2 −ξ )(η2 +η) ψ8 =
1
2 (ξ

2 −ξ )(1−η2)

ψ9 = (1−ξ 2)(1−η2)

Base function for a triangular element in parametric plane are:

ψ1 = 2ζ (ζ −0.5) ψ4 = 4ζ ξ

ψ2 = 2ξ (ξ −0.5) ψ5 = 4ξ η

ψ3 = 2η(η −0.5) ψ6 = 4ηζ

ζ = 1−ξ −η

3.6.2 Subprogram structure
The program consists of three basic parts: the preprocessor, processor and postprocessor. Subpro-
grams which make up the preprocessor read input data (from an input file named “fem.in”), which
define the problem and are used as the base for generating of all of the necessary quantities. The
processor then forms a system matrix and system vector and finally solves the obtained system of
equations. The postprocessor displays the obtained results. All relevant input and output data are
written in the output database, “fem.out”.

Let us now list some of the most important variables in the program:
• MAXN – maximum number of nodes allowed by the program.
• MAXE – maximum number of elements.
• MAXM – Maximum number of subregions into which region Ω can be divided into.
• MAXBCE – maximum number of points in which function û is defined.
• MAXBCN – maximum number of element sides at the boundary of region Ω where function

u variation is defined in the normal direction.
• MAXPT – Maximum number of points at which f has a δ function type singularity.
• MAXBAND - maksimalna poluširina trake oko dijagonale matrice sistema u kojoj su skon-

centrisane vrednosti različite od nule. ???????????????????
All of these quantities need to be defined in the program (depending on the available working

memory of the computer), before compiling the program.
Let us briefly describe all subprograms which are a part of this program.
• SETINT defines all quantities necessary for numerical integration via Gauss method along a

surface or a line.
• PREP is the preprocessor. Every series of input data for a given problem starts with a short

text than identified it. If this text only contains the word “end”, the program stops there.
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• RNODE reads data from the input file (“fem.in”), which are related to nodes used to “cover”
the region Ω. Based on data containing the initial and final point coordinates and the number
of nodes, the subprogram generates data about all of the nodes located between them. In all
preprocessor subprograms, generated data are written in the output database “fem.out”.

• RELEM reads the data based on which series of elements that cover the approximation of
region Ω are automatically generated. Since the elements used are isoparametric and the base
functions are bi-quadratic, these elements can be both curvilinear rectangular and triangular.

• RMAT reads the values k, b and f for each subregion within Ω.
• RBC reads the data about function f singularities and about essential and natural boundary

conditions.
• PROC is the processor subprogram.
• FORMKF generates terms of matrix K and vector F without taking boundary conditions into

account.
• ELEM calculates elements of matrix Ke (with dimensions of 9×9 or 6×6) and vector Fe

which are obtained from element e.
• SHAPE2 calculates the values of all base functions in the parametric plane and their partial

derivatives with respect to ξ and η .
• GETMAT returns the value of constants k, b and f̄ based on the number of the subregion

within Ω.
• ASSMB sums the elements of matrix Ke and vector Fe with corresponding elements in K

and F .
• APLYBC changes the elements of matrix K and vector F in accordance with singularity data

for function f , as well as essential and natural boundary conditions. Let us mention that
essential boundary conditions are imposed not by changing the matrix K dimensions, but by
using the “penalising” method.

• BCINT calculates integrals along the boundary where natural boundary conditions are
defined.

• SHAPE1 gives the value of one-dimensional base functions and their derivatives.
• SOLVE solves the equation system Ku = F .
• TRIB triangulates the symmetrical square matrix defined its non-zero elements which are

located at the diagonal and above it.
• RHSB determines the element of the unknown vector u, based on the triangulated matrix K

and vector F .
• POST writes data about the nodes and obtained approximate values of function u in them

into the output database.
We will now describe the format of the input database “fem.in”, In order to better distinct

between groups of data, each of them must start with a single line filled with random signs (such as
’-’ or ’*’). Apart from the first, all data groups start with a line that contains a single integer which
denotes the number of data rows that the group contains. All data are defined in free format. The
input database can contain data for several different problems.

1. A data group is a text (maximum length of 80 signs) which briefly identifies a problem that
needs to be solved, in one way or the other. The final problem in the database always contains
the “end” or “END” in it.

2. A data group consists of a number of lines equal to the number of nodes which we would
like to generate. Each line contains the following seven data:

• The serial number of the first node (integer)
• Number of nodes (integer)
• Difference between each subsequent and previous node in the series (integer)
• x coordinate of the first node (float)
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• y coordinate of the first node (float)
• x coordinate of the last node (float)
• y coordinate of the last node (float

3. A data group contains data based on which series of elements can be generated, by using
data for previously generated nodes.

• Number of elements in a series (integer)
• Difference between serial numbers of corresponding nodes which belong to adjacent

elements in the series (integer)
• Number of nodes in each element (6 or 9) (integer)
• Serial number of subregion which the series elements belong to (integer)
• 6 or 9 serial numbers (integers) of the first element in the series (pay attention the

standard distribution of nodes in the element).
4. grupa su podaci o vrednostima konstanti k, b i f̄

• Values of constant k (float)
• Values of constant b (float)
• Values of constant f̄ (float)

5. grupa su podaci o eventualnim singularitetima funkcije f .
• Number of nodes which contain singularities (integer)
• Value of f̂ (float).

6. A data group contains essential boundary conditions. The same value of function û can be
defined along the entire line of nodes.

• Serial number of the first element in the series (integer)
• Number of nodes in the series (integer)
• Difference between adjacent nodes in the series (integer)
• Values of û (float).

7. A data group defines natural boundary conditions. These conditions are also possible to
define on the entire series of elements along the boundary.

• Serial number of the first element in the series (integer)
• Number of elements in the series (integer)
• Difference in serial numbers of adjacent elements (integer)
• Serial number of the side located at the region boundary (pay attention to the standard

numbering of sides within an element) (integer)
• Value of p (float)
• Value of γ (float).

3.6.3 Examples

1. Example. We will solve the equation
∂ 2u
∂x2 +

∂ 2u
∂y2 = 4 for a 2× 2 square. All boundary

conditions will be natural, except in (0,0), wherein the unknown function u is equal to zero.
Natural boundary conditions are chosen so that the solution of the problem is u = x2 + y2.
Input database is as follows:

-----------------------------------------------------------
Test primer br. 1: Jednacina Lap(u)=4. Resenje: u=x^2+y^2.
-----------------------------------------------------------
3
1 3 1 0. 0. 2. 0.
4 3 1 0. 1. 2. 1.
7 3 1 0. 2. 2. 2.
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-----------------------------------------------------------
1
1 0 9 1 1 3 9 7 2 6 8 4 5
-----------------------------------------------------------
1
-1. 0. 4.
-----------------------------------------------------------
0
-----------------------------------------------------------
1
1 1 0 0.
-----------------------------------------------------------
4
1 1 0 1 0. 0.
1 1 0 2 0. -4.
1 1 0 3 0. -4.
1 1 0 4 0. 0.
-----------------------------------------------------------
end
-----------------------------------------------------------

After running the program, the “fem.out” database is formed:

Test primer br. 1: Jednacina Lap(u)=4. Resenje: u=x^2+y^2.
node no x-coordinate y-coordinate

1 .0000 .0000
2 1.0000 .0000
3 2.0000 .0000
4 .0000 1.0000
5 1.0000 1.0000
6 2.0000 1.0000
7 .0000 2.0000
8 1.0000 2.0000
9 2.0000 2.0000

elem no ne mat node numbers

1 9 1 1 3 9 7 2 6 8 4 5

mat no k b f

1 -1.0000 .0000 4.0000

node no essent. value

1 .0000

element no side p gamma
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1 1 .0000 .0000
1 2 .0000 -4.0000
1 3 .0000 -4.0000
1 4 .0000 .0000

node x y u
-----------------------------------------------------

1 .000 .000 0.000
2 1.000 .000 1.000
3 2.000 .000 4.000
4 .000 1.000 1.000
5 1.000 1.000 2.000
6 2.000 1.000 5.000
7 .000 2.000 4.000
8 1.000 2.000 5.000
9 2.000 2.000 8.000

We can see that obtained values of function u are exact in all points which are covered with
a single element. This is, of course, due to the fact that base functions are bi-square, and
the exact solution is a square function along x and y. Figures 3.21 and 3.22 are showing the
distribution of nodes in the area and lines of constant values of function u.

Figure 3.21: Disposition of nodes.
Figure 3.22: Constant function u values
isolines.

2. Example. Torsion of a straight cantilever rod with an arbitrary cross-section is determined by
solving the equation

∂ 2Φ

∂x2 +
∂ 2Φ

∂y2 =−2Gθ .

Φ is the Prandtl1 , G is the shear modulus, and θ is the torsion angle per unit length of the

1Prandtl Ludwig (1875-1953), a German scientist. He also studied fluid mechanics. Known for
his extensive research involving fluid flow around obstacles and determining of supersonic, stationary
and non-turbulent currents.
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rod. Φ(x,y) is the function of position of a point in the cross-section and in the points of
its edges, these values must be equal to zero (essential boundary condition). We will solve
the rod torsion problem for a cross-section shaped like an equilateral triangle, with a height
of 9 units. We will select G and θ such that Gθ = 1. Due to the symmetrical nature of the
problem, only one half of region Ω of the cross-section can be selected. On the boundary of
such region, which coincides with the height of the equilateral triangle, the derivative of the
Prandtl function along the normal direction must be equal to zero.
Input database:

-------------------------------------------------------------
Test primer br. 2: Torzija stapa trougaonog poprecnog preseka.
-------------------------------------------------------------
7
1 9 5 .00000 -3.00000 0.00000 5.00000
2 9 5 1.29904 -3.00000 0.14434 5.00000
3 9 5 2.59808 -3.00000 0.28868 5.00000
4 9 5 3.89711 -3.00000 0.43301 5.00000
5 9 5 5.19615 -3.00000 0.57735 5.00000

46 3 1 0.00000 5.50000 0.28867 5.50000
49 1 0 0.00000 6.00000 0.00000 6.00000
-------------------------------------------------------------
4
4 10 9 1 1 3 13 11 2 8 12 6 7
4 10 9 1 3 5 15 13 4 10 14 8 9
1 0 6 1 41 43 49 42 47 46
1 0 6 1 43 45 49 44 48 47
-------------------------------------------------------------
1
1.0 0.0 2.0
-------------------------------------------------------------
0
-------------------------------------------------------------
4
1 4 1 0.0
5 9 5 0.0

48 1 0 0.0
49 1 0 0.0
-------------------------------------------------------------
2
1 4 1 4 0.0 0.0
9 1 0 3 0.0 0.0
-------------------------------------------------------------
end
-------------------------------------------------------------

Figure 3.23 shows the discretization of the region into finite elements. Figure 3.24 shows the
lines of constant function Φ values.
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Figure 3.23: Finite element mesh.
Figure 3.24: Constant function Φ values
isolines.

3. Example. Plane flow of an incompressible fluid will be shown using an example involving a
cylinder with a radius of 8cm, between two parallel plates at a distance of 32cm. We will
solve the Laplace differential equation:

∂ 2Ψ

∂x2 +
∂ 2Ψ

∂y2 = 0

where Ψ(x,y) is the flow function. Due to the symmetry of the region around both x and y
axes, a square with a side of 16cm, with a quarter of a circle (8cm radius) removed from it
can be selected as the region Ω. The line between nodes 1 and 5 (see Figure 3.25)and the
quarter-circle (where nodes 21 and 41 lie) will be considered as the zero streamline, i.e. a
line along which function Ψ is equal to zero. The line containing elements 25, 35 and 45 is
also the streamline, and function Ψ will be given value of 10 on this line. Figure 3.26 shows
the obtained streamlines.

Figure 3.25: Finite element mesh.
Figure 3.26: Constant function Ψ values
isolines.

Input database for this example is:
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------------------------------------------------------------
Test primer br. 3: Odredjivanje strujne funkcije.
------------------------------------------------------------
9
1 5 1 8. 0. 16. 0.
6 5 1 7.761 1.941 16. 4.
11 5 1 7.155 3.578 16. 8.
16 5 1 6.4 4.8 16. 12.
21 5 1 5.656 5.656 16. 16.
26 5 1 4.8 6.4 12. 16.
31 5 1 3.578 7.155 8. 16.
36 5 1 1.941 7.761 4. 16.
41 5 1 0. 8. 0. 16.
------------------------------------------------------------
2
4 10 9 1 1 3 13 11 2 8 12 6 7
4 10 9 1 3 5 15 13 4 10 14 8 9
------------------------------------------------------------
1
-1. 0. 0.
------------------------------------------------------------
0
------------------------------------------------------------
3
1 5 1 0.
6 8 5 0.
25 5 5 10.
------------------------------------------------------------
2
5 2 1 2 0. 0.
4 2 4 4 0. 0.
------------------------------------------------------------
end
------------------------------------------------------------

Finally, let us show the Fortran text for the whole FEM program.

PROGRAM fem
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,

& maxband=25)
CHARACTER title*80
COMMON /ctitl / title
COMMON /ccon / nnode , nelem , nmat , nbce , nbcn , npoint ,

& nband
COMMON /cnode / x(2,maxn) , u(maxn)
COMMON /celem / ne(maxe) , mat(maxe) , nodes(9,maxe)
COMMON /cmatl / prop(3,maxm)
COMMON /cbc / nodbc(maxbce) , vbce(maxbce) , nelbc(maxbcn) ,

& nside(maxbcn) , vbcn(2,maxbcn) , npt(maxpt) ,
& vpt(maxpt)
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COMMON /cmatrx/ gk(maxn,maxband) , gf(maxn)
COMMON /cint1 / etaq(3) , ww(3)
COMMON /cint2 / xiq(2,9) , xit(2,7) , wq(9) , wt(7)

c
c

OPEN (UNIT=5,FILE=’fem.in’)
OPEN (UNIT=6,FILE=’fem.out’)
CALL setint

100 CALL prep
CALL proc
CALL post
GOTO 100
END

SUBROUTINE setint
COMMON /cint1 / etaq(3) , ww(3)
COMMON /cint2 / xiq(2,9) , xit(2,7) , wq(9) , wt(7)

c nine point quadrature rule for quadrilaterals
sq35 = sqrt(3./5.)
wq(1) = 25./81.
wq(2) = 40./81.
wq(3) = 25./81.
wq(4) = 40./81.
wq(5) = 64./81.
wq(6) = 40./81.
wq(7) = 25./81.
wq(8) = 40./81.
wq(9) = 25./81.
xiq(1,1) = -sq35
xiq(2,1) = -sq35
xiq(1,2) = 0.
xiq(2,2) = -sq35
xiq(1,3) = sq35
xiq(2,3) = -sq35
xiq(1,4) = -sq35
xiq(2,4) = 0.
xiq(1,5) = 0.
xiq(2,5) = 0.
xiq(1,6) = sq35
xiq(2,6) = 0.
xiq(1,7) = -sq35
xiq(2,7) = sq35
xiq(1,8) = 0.
xiq(2,8) = sq35
xiq(1,9) = sq35
xiq(2,9) = sq35

c seven point rule for triangulars
sq15 = sqrt(15.0)
a = (155.0+sq15)/2400.0
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b = (155.0-sq15)/2400.0
wt(1) = 9.0/80.0
wt(2) = a
wt(3) = a
wt(4) = a
wt(5) = b
wt(6) = b
wt(7) = b
a = (6.0+sq15)/21.0
b = (6.0-sq15)/21.0
c = (9.0+2.0*sq15)/21.0
d = (9.0-2.0*sq15)/21.0
xit(1,1) = 1.0/3.0
xit(2,1) = 1.0/3.0
xit(1,2) = a
xit(2,2) = d
xit(1,3) = d
xit(2,3) = a
xit(1,4) = a
xit(2,4) = a
xit(1,5) = b
xit(2,5) = c
xit(1,6) = c
xit(2,6) = b
xit(1,7) = b
xit(2,7) = b

c tri point rule for line segment [-1,+1]
etaq(1) = -sq35
etaq(2) = 0.
etaq(3) = sq35
ww(1) = 5./9.
ww(2) = 8./9.
ww(3) = 5./9.
RETURN
END

SUBROUTINE prep
CHARACTER title*80
COMMON /ctitl / title
READ (5,*)
READ (5,99001) title
IF ( title.EQ.’end’ .OR. title.EQ.’END’ ) THEN

CLOSE (6)
CLOSE (5)
STOP

ENDIF
PRINT *
PRINT * , ’reading problem data ...’
WRITE (6,*)
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WRITE (6,99001) title
CALL rnode
CALL relem
CALL rmat
CALL rbc
RETURN

99001 FORMAT (A80)
END

SUBROUTINE rnode
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,

& maxband=25)
COMMON /ccon / nnode , nelem , nmat , nbce , nbcn , npoint ,

& nband
COMMON /cnode / x(2,maxn) , u(maxn)
READ (5,*)
READ (5,*) nrec
IF ( nrec.LT.1 ) STOP ’number of node records less than 1’
nnode = 0
DO 100 irec = 1 , nrec

READ (5,*) n1 , num , inc , x1 , y1 , xn , yn
num1 = num - 1
xnum = float(num1)
x(1,n1) = x1
x(2,n1) = y1
nnode = nnode + 1
IF ( num.NE.1 ) THEN

dx = (xn-x1)/xnum
dy = (yn-y1)/xnum
DO 20 n = 1 , num1

xn = float(n)
in = n1 + n*inc
IF ( in.GT.maxn ) STOP ’number of nodes grater than maxn’
x(1,in) = x1 + xn*dx
x(2,in) = y1 + xn*dy
nnode = nnode + 1

20 CONTINUE
ENDIF

100 CONTINUE
c print nodal point coordinates

WRITE (6,99001)
DO 200 n = 1 , nnode

WRITE (6,99002) n , x(1,n) , x(2,n)
200 CONTINUE

RETURN
99001 FORMAT (’ node no x-coordinate y-coordinate ’/)
99002 FORMAT (I7,2F16.4)

END
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SUBROUTINE relem
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,

& maxband=25)
COMMON /ccon / nnode , nelem , nmat , nbce , nbcn , npoint ,

& nband
COMMON /celem / ne(maxe) , mat(maxe) , nodes(9,maxe)
DIMENSION node(9)

c read element data
READ (5,*)
READ (5,*) nrec
IF ( nrec.LT.1 ) STOP ’number of element records less than 1’
nel = 0
nband = 0
DO 200 irec = 1 , nrec

READ (5,*) num , inc , nee , mate , (node(i),i=1,nee)
nmin = maxn + 1
nmax = 0
DO 50 i = 1 , nee

nmin = min(nmin,node(i))
nmax = max(nmax,node(i))

50 CONTINUE
nband = max(nband,nmax-nmin) + 1
IF ( nband.GT.maxband ) STOP ’band width too big’
n1 = nel + 1
nel = nel + num
IF ( nel.GT.maxe ) STOP ’number of elements greater than nelem’
DO 100 n = n1 , nel

ninc = (n-n1)*inc
DO 60 m = 1 , nee

nodes(m,n) = node(m) + ninc
60 CONTINUE

ne(n) = nee
mat(n) = mate

100 CONTINUE
200 CONTINUE

nelem = nel
c print element definitions and find band width

WRITE (6,99001)
DO 300 n = 1 , nelem

nen = ne(n)
WRITE (6,99002) n , nen , mat(n) , (nodes(i,n),i=1,nen)

300 CONTINUE
RETURN

99001 FORMAT (/’ elem no ne mat’,10X,’node numbers’/)
99002 FORMAT (I5,I7,I6,5X,9I4)

END

SUBROUTINE rmat
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,
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& maxband=25)
COMMON /ccon / nnode , nelem , nmat , nbce , nbcn , npoint ,

& nband
COMMON /cmatl / prop(3,maxm)
WRITE (6,99001)
READ (5,*)
READ (5,*) nmat
IF ( nmat.LT.1 .OR. nmat.GT.maxm ) THEN

PRINT * , ’error in rmat, nmat=’ , nmat
STOP

ENDIF
DO 100 i = 1 , nmat

READ (5,*) (prop(j,i),j=1,3)
WRITE (6,99002) i , (prop(j,i),j=1,3)

100 CONTINUE
RETURN

99001 FORMAT (/’ mat no k b f’/)
99002 FORMAT (I4,5X,3F15.4)

END

SUBROUTINE rbc
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,

& maxband=25)
COMMON /ccon / nnode , nelem , nmat , nbce , nbcn , npoint ,

& nband
COMMON /cbc / nodbc(maxbce) , vbce(maxbce) , nelbc(maxbcn) ,

& nside(maxbcn) , vbcn(2,maxbcn) , npt(maxpt) ,
& vpt(maxpt)

c read point loads
ir = 0
READ (5,*)
READ (5,*) nrec
npoint = nrec
IF ( nrec.NE.0 ) THEN

ir = ir + 1
DO 50 i = 1 , nrec

READ (5,*) n , v
npt(i) = n
vpt(i) = v

50 CONTINUE
ENDIF

c read essential boundary condition data
READ (5,*)
READ (5,*) nrec
nbce = 0
IF ( nrec.NE.0 ) THEN

ir = ir + 1
DO 100 j = 1 , nrec

READ (5,*) n1 , num , inc , v
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DO 60 i = 1 , num
nbce = nbce + 1
n = n1 + (i-1)*inc
nodbc(nbce) = n
vbce(nbce) = v

60 CONTINUE
100 CONTINUE

ENDIF
c read natural boundary condition data

READ (5,*)
READ (5,*) nrec
nbcn = 0
IF ( nrec.NE.0 ) THEN

ir = ir + 1
DO 150 j = 1 , nrec

READ (5,*) n1 , num , inc , ns , p , v
DO 120 i = 1 , num

nbcn = nbcn + 1
n = n1 + (i-1)*inc
nelbc(nbcn) = n
nside(nbcn) = ns
vbcn(1,nbcn) = p
vbcn(2,nbcn) = v

120 CONTINUE
150 CONTINUE

ENDIF
c print boundary condition data

IF ( ir.EQ.0 ) STOP ’no boundary value data’
IF ( npoint.NE.0 ) THEN

WRITE (6,99001)
WRITE (6,99002) (npt(i),vpt(i),i=1,npoint)

ENDIF
IF ( nbce.NE.0 ) THEN

WRITE (6,99003)
WRITE (6,99004) (nodbc(i),vbce(i),i=1,nbce)

ENDIF
IF ( nbcn.NE.0 ) THEN

WRITE (6,99005)
WRITE (6,99006) (nelbc(i),nside(i),vbcn(1,i),vbcn(2,i),i=1,

& nbcn)
ENDIF
RETURN

99001 FORMAT (/’ node no point load’/)
99002 FORMAT (I5,10X,F15.4)
99003 FORMAT (/’ node no essent. value’/)
99004 FORMAT (I5,10X,F15.4)
99005 FORMAT (/’ element no side p gamma’/)
99006 FORMAT (I7,7X,I1,5X,2F10.4)

END
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SUBROUTINE proc
CALL formkf
CALL aplybc
CALL solve
RETURN
END

SUBROUTINE formkf
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,

& maxband=25)
COMMON /ccon / nnode , nelem , nmat , nbce , nbcn , npoint ,

& nband
COMMON /cnode / x(2,maxn) , u(maxn)
COMMON /celem / ne(maxe) , mat(maxe) , nodes(9,maxe)
COMMON /cmatrx/ gk(maxn,maxband) , gf(maxn)
COMMON /cint2 / xiq(2,9) , xit(2,7) , wq(9) , wt(7)
DIMENSION ek(9,9) , ef(9) , xx(2,9) , nod(9)
PRINT * , ’forming elements...’
DO 100 i = 1 , maxn

gf(i) = 0.
DO 50 j = 1 , maxband

gk(i,j) = 0.
50 CONTINUE
100 CONTINUE

DO 200 i = 1 , nelem
mati = mat(i)
nei = ne(i)
DO 150 k = 1 , nei

k1 = nodes(k,i)
nod(k) = k1
DO 120 j = 1 , 2

xx(j,k) = x(j,k1)
120 CONTINUE
150 CONTINUE

PRINT * , ’element : ’ , i
c nine point integration rule for 9-node quadrilaterals

IF ( nei.EQ.9 ) CALL elem(xx,nei,ek,ef,9,xiq,wq,mati)
c seven point integration rule for 6-node traiangulars

IF ( nei.EQ.6 ) CALL elem(xx,nei,ek,ef,7,xit,wt,mati)
CALL assmb(ek,ef,nei,nod)

200 CONTINUE
WRITE (6,*)
RETURN
END

SUBROUTINE elem(x,n,ek,ef,nl,xi,w,mat)
DIMENSION x(2,n) , ek(n,n) , ef(n) , xi(2,nl) , w(nl)
DIMENSION dpsix(9) , dpsiy(9) , dxds(2,2) , dsdx(2,2)
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DIMENSION psi(9) , dpsi(9,2)
c initilaze element arrays

DO 100 i = 1 , n
ef(i) = 0.
DO 50 j = 1 , n

ek(i,j) = 0.
50 CONTINUE
100 CONTINUE

CALL getmat(xk,xb,xf,mat)
c begin integration point loop

DO 300 l = 1 , nl
CALL shape2(xi(1,l),xi(2,l),n,psi,dpsi)

c calculate dxds
DO 150 i = 1 , 2

DO 120 j = 1 , 2
dxds(i,j) = 0.
DO 110 k = 1 , n

dxds(i,j) = dxds(i,j) + dpsi(k,j)*x(i,k)
110 CONTINUE
120 CONTINUE
150 CONTINUE

c calculate dsdx
detj = dxds(1,1)*dxds(2,2) - dxds(1,2)*dxds(2,1)
IF ( detj.LE.0. ) GOTO 500
dsdx(1,1) = dxds(2,2)/detj
dsdx(2,2) = dxds(1,1)/detj
dsdx(1,2) = -dxds(1,2)/detj
dsdx(2,1) = -dxds(2,1)/detj

c calculate d(psi)/dx
DO 200 i = 1 , n

dpsix(i) = dpsi(i,1)*dsdx(1,1) + dpsi(i,2)*dsdx(2,1)
dpsiy(i) = dpsi(i,1)*dsdx(1,2) + dpsi(i,2)*dsdx(2,2)

200 CONTINUE
c accumulate integration point value of integrals

fac = detj*w(l)
DO 250 i = 1 , n

ef(i) = ef(i) + xf*psi(i)*fac
DO 220 j = i , n

ek(i,j) = ek(i,j)
& + fac*(xk*(dpsix(i)*dpsix(j)+dpsiy(i)*dpsiy(j)
& )+xb*psi(i)*psi(j))

220 CONTINUE
250 CONTINUE
300 CONTINUE

c calculate lower symmetric part of ek
DO 400 i = 1 , n

DO 350 j = 1 , i
ek(i,j) = ek(j,i)

350 CONTINUE
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400 CONTINUE
c print ’(9f8.4)’,((ek(i,j),j=1,n),i=1,n)

RETURN
500 WRITE (6,99001) detj , x

STOP
99001 FORMAT (’ bad jacobian ’,E10.3/9E10.3/9E10.3)

END

SUBROUTINE shape2(ski,eta,n,psi,dpsi)
DIMENSION psi(9) , dpsi(9,2)
IF ( n.EQ.6 ) THEN

zet = 1. - ski - eta
psi(1) = 2.*zet*(zet-0.5)
psi(2) = 2.*ski*(ski-0.5)
psi(3) = 2.*eta*(eta-0.5)
psi(4) = 4.*zet*ski
psi(5) = 4.*ski*eta
psi(6) = 4.*eta*zet
dpsi(1,1) = 1. - 4.*zet
dpsi(1,2) = 1. - 4.*zet
dpsi(2,1) = 4.*ski - 1.
dpsi(2,2) = 0.
dpsi(3,1) = 0.
dpsi(3,2) = 4.*eta - 1.
dpsi(4,1) = 4.*(zet-ski)
dpsi(4,2) = -4.*ski
dpsi(5,1) = 4.*eta
dpsi(5,2) = 4.*ski
dpsi(6,1) = -4.*eta
dpsi(6,2) = 4.*(zet-eta)
RETURN

ENDIF
ski2 = ski*ski
eta2 = eta*eta
ski2m = ski2 - ski
eta2m = eta2 - eta
ski2p = ski2 + ski
eta2p = eta2 + eta
psi(1) = ski2m*eta2m/4.
psi(2) = ski2p*eta2m/4.
psi(3) = ski2p*eta2p/4.
psi(4) = ski2m*eta2p/4.
psi(5) = (1.-ski2)*eta2m/2.
psi(6) = ski2p*(1.-eta2)/2.
psi(7) = (1.-ski2)*eta2p/2.
psi(8) = ski2m*(1.-eta2)/2.
psi(9) = (1.-ski2)*(1.-eta2)
dpsi(1,1) = (2.*ski-1.)*eta2m/4.
dpsi(1,2) = ski2m*(2.*eta-1.)/4.
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dpsi(2,1) = (2.*ski+1.)*eta2m/4.
dpsi(2,2) = ski2p*(2.*eta-1.)/4.
dpsi(3,1) = (2.*ski+1.)*eta2p/4.
dpsi(3,2) = ski2p*(2.*eta+1.)/4.
dpsi(4,1) = (2.*ski-1.)*eta2p/4.
dpsi(4,2) = ski2m*(2.*eta+1.)/4.
dpsi(5,1) = -ski*eta2m
dpsi(5,2) = (1.-ski2)*(2.*eta-1.)/2.
dpsi(6,1) = (2.*ski+1.)*(1.-eta2)/2.
dpsi(6,2) = -ski2p*eta
dpsi(7,1) = -ski*eta2p
dpsi(7,2) = (1-ski2)*(2.*eta+1.)/2.
dpsi(8,1) = (2.*ski-1.)*(1.-eta2)/2.
dpsi(8,2) = -ski2m*eta
dpsi(9,1) = -2.*ski*(1.-eta2)
dpsi(9,2) = -2.*(1.-ski2)*eta
RETURN
END

SUBROUTINE getmat(xk,xb,xf,mat)
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,

& maxband=25)
COMMON /cmatl / prop(3,maxm)
xk = prop(1,mat)
xb = prop(2,mat)
xf = prop(3,mat)
RETURN
END

SUBROUTINE assmb(ek,ef,n,node)
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,

& maxband=25)
COMMON /cmatrx/ gk(maxn,maxband) , gf(maxn)
DIMENSION ek(n,n) , ef(n) , node(n)
DO 100 i = 1 , n

ig = node(i)
c assemble global vector gf

gf(ig) = gf(ig) + ef(i)
DO 50 j = 1 , n

c assemble global stiffnes matrix gk
jg = node(j) - ig + 1
IF ( jg.GT.0 ) gk(ig,jg) = gk(ig,jg) + ek(i,j)

50 CONTINUE
100 CONTINUE

RETURN
END

SUBROUTINE aplybc
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,



3.6 Program for solving of elliptical problems 101

& maxband=25)
COMMON /ccon / nnode , nelem , nmat , nbce , nbcn , npoint ,

& nband
COMMON /cnode / x(2,maxn) , u(maxn)
COMMON /celem / ne(maxe) , mat(maxe) , nodes(9,maxe)
COMMON /cbc / nodbc(maxbce) , vbce(maxbce) , nelbc(maxbcn) ,

& nside(maxbcn) , vbcn(2,maxbcn) , npt(maxpt) ,
& vpt(maxpt)
COMMON /cmatrx/ gk(maxn,maxband) , gf(maxn)
DIMENSION nod(3) , xbc(2,3) , pe(3,3) , game(3)
PRINT * , ’applying boundary conditions ...’

c applay point loads
IF ( npoint.NE.0 ) THEN

DO 50 i = 1 , npoint
n = npt(i)
gf(n) = gf(n) + vpt(i)

50 CONTINUE
ENDIF

c applay essential boundary conditions
IF ( nbce.NE.0 ) THEN

big = 1.E30
DO 100 i = 1 , nbce

n = nodbc(i)
gk(n,1) = big
gf(n) = big*vbce(i)

100 CONTINUE
ENDIF

c applay natural boundary condition
IF ( nbcn.NE.0 ) THEN

DO 150 i = 1 , nbcn
c pick out nodes on side of element

nel = nelbc(i)
ns = nside(i)
nc = 4
IF ( ne(nel).EQ.6 ) nc = 3
nod(1) = ns
nod(2) = ns + nc
nod(3) = ns + 1
IF ( ns.EQ.nc ) nod(3) = 1

c pick out nodal coordinates
DO 120 j = 1 , 3

nj = nod(j)
nod(j) = nodes(nj,nel)
nj = nod(j)
xbc(1,j) = x(1,nj)
xbc(2,j) = x(2,nj)

120 CONTINUE
c call bcint to calculate boundary integrals pe and game

CALL bcint(vbcn(1,i),vbcn(2,i),xbc,pe,game)
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c call assmb to add pe to gk and game to gf
CALL assmb(pe,game,3,nod)

150 CONTINUE
ENDIF
RETURN
END

SUBROUTINE bcint(v1,v2,x,pe,game)
COMMON /cint1 / etaq(3) , ww(3)
DIMENSION theta(3) , dtheta(3)
DIMENSION x(2,3) , pe(3,3) , game(3)
DO 100 i = 1 , 3

game(i) = 0.
DO 50 j = 1 , 3

pe(i,j) = 0.
50 CONTINUE
100 CONTINUE

DO 200 k = 1 , 3
CALL shape1(etaq(k),theta,dtheta)
x1 = x(1,1)*dtheta(1) + x(1,2)*dtheta(2) + x(1,3)*dtheta(3)
y1 = x(2,1)*dtheta(1) + x(2,2)*dtheta(2) + x(2,3)*dtheta(3)
sjac = sqrt(x1*x1+y1*y1)
fac = ww(k)*sjac
DO 150 i = 1 , 3

game(i) = game(i) + v2*theta(i)*fac
DO 120 j = 1 , 3

pe(i,j) = pe(i,j) + v1*theta(i)*theta(j)*fac
120 CONTINUE
150 CONTINUE
200 CONTINUE

RETURN
END

SUBROUTINE shape1(eta,theta,dtheta)
DIMENSION theta(3) , dtheta(3)
eta2 = eta*eta
theta(1) = (eta2-eta)/2.
theta(2) = 1. - eta2
theta(3) = (eta2+eta)/2.
dtheta(1) = eta - 0.5
dtheta(2) = -2.*eta
dtheta(3) = eta + 0.5
RETURN
END

SUBROUTINE solve
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,

& maxband=25)
COMMON /ccon / nnode , nelem , nmat , nbce , nbcn , npoint ,
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& nband
COMMON /cnode / x(2,maxn) , u(maxn)
COMMON /cmatrx/ gk(maxn,maxband) , gf(maxn)
PRINT * , ’solving equations ...’
CALL trib(gk,nnode,nband,maxn,maxband)
CALL rhsb(gk,u,gf,nnode,nband,maxn,maxband)
RETURN
END

SUBROUTINE trib(a,n,ib,l1,l2)
DIMENSION a(l1,l2)

c this subroutine triangularizes a banded and symmetric matrix a
c only the upper half-band of matrix is stored
c storage is in the form of a rectangular array l1 x l2
c the half-band width is ib
c the number of equations is n

DO 100 i = 2 , n
m1 = min0(ib-1,n-i+1)
DO 50 j = 1 , m1

sum = 0.0
k1 = min0(i-1,ib-j)
DO 20 k = 1 , k1

sum = sum + a(i-k,k+1)*a(i-k,j+k)/a(i-k,1)
20 CONTINUE

a(i,j) = a(i,j) - sum
50 CONTINUE
100 CONTINUE

RETURN
END

SUBROUTINE rhsb(a,x,b,n,ib,l1,l2)
DIMENSION a(l1,l2) , x(1) , b(1)

c for the linear sytem a*x=b with the matrix a
c triangularized by routine trib
c this routine performs the forward substitution
c into b and back substitution into x
c the half-band width of a is ib
c the number of equations is n

np1 = n + 1
DO 100 i = 2 , n

sum = 0.0
k1 = min0(ib-1,i-1)
DO 50 k = 1 , k1

sum = sum + a(i-k,k+1)/a(i-k,1)*b(i-k)
50 CONTINUE

b(i) = b(i) - sum
100 CONTINUE

c begin back-substitution
x(n) = b(n)/a(n,1)
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DO 200 k = 2 , n
i = np1 - k
j1 = i + 1
j2 = min0(n,i+ib-1)
sum = 0.0
DO 150 j = j1 , j2

mm = j - j1 + 2
sum = sum + x(j)*a(i,mm)

150 CONTINUE
x(i) = (b(i)-sum)/a(i,1)

200 CONTINUE
RETURN
END

SUBROUTINE post
PARAMETER (maxn=400,maxe=100,maxm=5,maxbce=70,maxbcn=40,maxpt=10,

& maxband=25)
COMMON /ccon / nnode , nelem , nmat , nbce , nbcn , npoint ,

& nband
COMMON /cnode / x(2,maxn) , u(maxn)
PRINT * , ’writing solutions ... ’
WRITE (6,*)
WRITE (6,*) ’ node x y u ’
WRITE (6,*)

& ’ -----------------------------------------------------’
DO 100 i = 1 , nnode

WRITE (6,99001) i , x(1,i) , x(2,i) , u(i)
100 CONTINUE

99001 FORMAT (2X,I4,1X,3F15.3)
END
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4. Finite volume method

4.1 Introduction
The finite volume method was introduced as clearly recognizable procedure of numerical fluid
mechanics at the beginning of the eighth decade of twentieth century, independently by McDonald
[26] and MacCormack and Paullay [25], who applied the mentioned method in solving non-stationary
two-dimensional flow of non-viscous fluid. Applying it to the calculation of a three-dimensional flow,
the method was later generalized by Rizzi [39], when finally the path to more universal application
was open. The method is based on the integral formulation of the basic laws of fluid mechanics and
discrete solution in physical space.

The method can be applied to all types of computational grids, with great flexibility in terms
of the efficiency and accuracy of flux calculations through the appropriate control surfaces. Direct
discretization of integral equation forms in fluid mechanics allows a very simple formulation of
discrete changes of basic quantities such as mass, momentum and energy, which describe fluid flow.

The integral form of continuity equation, momentum and energy equation for arbitrary control
volume Ω, bounded by surface ∂Ω, reads:

∂

∂ t

y

Ω

W dΩ +
x

∂Ω

F ·dS =
y

Ω

QdΩ. (I)

By applying equation (I) to the control volume ΩJ , in which required quantity is WJ , and QJ is
volume source, its discrete form is obtained:

∂

∂ t
(WJΩJ)+∑

I
(FI ·SI) = QJΩJ , (II)
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whereby the summation of fluxes is performed on all surfaces that surround the control volume ΩJ .
The system of discrete equations (II) is conservative if the sum of all fluxes through common surfaces
between adjacent cells is equal to zero. When this condition is not met, system (II) is nonconservative
and internal fluxes play the role of internal numerical volume sources.

After the geometric discretization of the flow domain, i.e. construction of the computational
grid, conservative form of equation (II) requires the fulfillment of the following conditions [14], [7]:

• control volumes ΩJ must occupy the entire flow domain Ω,
• adjacent cells ΩJ can overlap if internal computational surface ΓI is common to the mentioned

volumes and
• fluxes through the surfaces of the computational cell must be calculated in the manner

independent from the observed computational cell ΩJ .
Although it can be considered as one form of the finite difference method, its importance and

the possibility of wide application in the fluid flow justifies the name of the finite volume method
and its separate treatment. Properties that clearly distinguish the finite volume method approach
from procedures related to finite difference method and finite element method can be systematized
through the properties:

• the coordinate of the point J, which determines the variable W in control volume ΩJ , does not
appear explicit in the formulation of the problem. That actually means that the variable WJ is
not adjoined to particular point inside the control volume and can be viewed as mean value
of the variable WJ in the computational cell,

• grid point coordinates figure only in determining the volume of computational cells and the
area values of the surfaces of their sides,

• in the absence of a volume source member in the appropriate conservative equations, for-
mulation method defines the change of the mean value of the variable W in time interval ∆t,
which is equal to the sum of the fluxes through the sides of the adjacent computational cell
and

• method allows the natural introduction of boundary conditions.

4.2 Solution of Euler equations
4.2.1 Explicit numerical scheme

Previous research in the transonic fluid flow computations has confirmed the justification for the
application of potential theory in numerical flow field analysis only for moderate Mach numbers of
undisturbed flow. Increasing velocity of undisturbed flow in front of the immersed body increases
the intensity of the shock waves, in the general case curved, so the abrupt changes of flow variable
magnitudes are accompanied by a significant change in entropy, hence the assumption about isen-
tropic, potential flow becomes practically unsustainable. In this chapter a numerical approach, based
on the finite volume method, originally introduced in potential theory, and later to the exact methods
in transonic flow field calculation [19], [27] and [18], will be presented.

Central difference scheme
In the integral form Euler equations can be written on the following:

∂

∂ t

y

Ω

W dΩ +
x

∂Ω

F ·dS = 0, (4.1)

where Ω is the control volume of the fluid with the surface ∂Ω. In the equation (4.1) W represents
observed flow variable, while F ·dS denotes the corresponding elementary flux through the boundary
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surface of the control volume Ω. The following applies to the continuity equation:

W = ρ and F = (ρu,ρv,ρw)T . (4.2)

In the momentum equation W and F become:

W =


ρu
ρv
ρw

and F =


(ρu2 + p,ρuv,ρuw)T ,

(ρuv,ρv2 + p,ρvw)T ,

(ρuw,ρvw,ρw2 + p)T ,

(4.3)

while in the energy equation

W = ρet and F = (ρHu,ρHv,ρHw)T . (4.4)

In the expressions (4.2)-(4.4) variables p, ρ , u, v, w, et and H represent pressure, density, velocity
vector projections on three Cartesian coordinate axes, energy and enthalpy, respectively. For the
perfect gas system of equations (4.2)-(4.4) is extended by defining the energy of the fluid

et =
1

γ −1
p
ρ

+
1
2
(u2 + v2 +w2), (4.5)

having in mind the relation between enthalpy H and energy et

H = et +
p
ρ
, (4.6)

whereby the system of Euler equations is finally closed.
In the numerical approach in solving Euler equations by the finite volume method the com-

putational domain is discretized to the appropriate number of hexahedron-shaped cells, and for
each mentioned cell, a system of equations that approximates system (4.2)-(4.6) is set up. If inside
each cell (i, j,k) value of the dependent variable W is known, an approximate form of system of
equations (4.1) is obtained:

∂

∂ t
(hi, j,k Wi, j,k)+Q(W )i, j,k = 0, (4.7)

where Q(W )i, j,k represents the flux of flow quantities through the boundaries of observed cell. Cell
volume, denoted by hi, j,k in the expression (4.7), can be considered constant in time.

Flux of flow quantities through the boundaries of the observed cell is calculated as follows:

Q(W )i, j,k =F(W ) ·S|i+1/2, j,k −F(W ) ·S|i−1/2, j,k +F(W ) ·S|i, j+1/2,k−

−F(W ) ·S|i, j−1/2,k +F(W ) ·S|i, j,k+1/2 −F(W ) ·S|i, j,k−1/2.
(4.8)

The quantity Si+1/2, j,k in the relation (4.8) represents a surface vector of the computational cell
between the grid points (i, j,k) and (i+ 1, j,k), at whereby the flux through the observed cell
surface is calculated by averaging the quantity F(W ), calculated in points (i, j,k) and (i+1, j,k).
Fluxes through the remaining five surfaces of observed hexahedron are determined by an analogous
procedure.

The use of a central difference scheme requires introduction of additional terms in the approxi-
mate equation (4.7) in order to obtain stationary solutions of dynamic equations [45]. Supplementary
dissipative terms, known in the literature as artificial viscosity terms, have a role to prevent even-odd
decoupling of the numerical solution in equations (4.7), on the one hand, and the occurrence of
high-frequency oscillations of the solution in the shock wave zone, on the other hand. Presence
of dissipative terms also provides the uniqueness of the numerical solution, which is shown in the
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literature [24]. Dissipative terms are usually represented by a combination of the second and fourth
order terms, ie.

D(W )i, j,k = (D2
x +D2

y +D2
z −D4

x −D4
y −D4

z )Wi, j,k. (4.9)

In the expression (4.9) the term D2
xWi, j,k is determined by the relation

D2
xWi, j,k = d(2)

i+1/2, j,k −d(2)
i−1/2, j,k, (4.9.1)

where is

d(2)
i+1/2, j,k = ε

(2)
i+1/2, j,k

hi+1/2, j,k

∆t
∆xWi, j,k, (4.9.2)

while the term D4
xWi, j,k is calculated on the basis of the expression

D4
xWi, j,k = d(4)

i+1/2, j,k −d(4)
i−1/2, j,k, (4.9.3)

in which is

d(4)
i+1/2, j,k = ε

(4)
i+1/2, j,k

hi+1/2, j,k

∆t
∆

3
xWi, j,k. (4.9.4)

In the relations (4.9.2) and (4.9.4) terms ∆xWi, j,k and ∆3
xWi, j,k represent the difference operators

“forward” oriented

∆xWi, j,k = Wi+1, j,k −Wi, j,k (4.9.5)

and

∆
3
xWi, j,k = Wi+2, j,k −3Wi+1, j,k +3Wi, j,k −Wi−1, j,k. (4.9.6)

The values of the remaining dissipative terms will be determined in a similar way in the expres-
sion (4.9). Quantities ε

(2)
i+1/2, j,k and ε

(4)
i+1/2, j,k, present in relations (4.9.2) and (4.9.4), are calculated

as follows:

ε
(2)
i+1/2, j,k = k(2) max(νi+1, j,k,νi, j,k), (4.9.7)

ie.

ε
(4)
i+1/2, j,k = max(0,k(4)− ε

(2)
i+1/2, j,k), (4.9.8)

where the quantity νi, j,k is defined by the expression

νi, j,k =
|pi+1, j,k −2 pi, j,k + pi−1, j,k|
|pi+1, j,k +2 pi, j,k + pi−1, j,k|

. (4.9.9)

In the relations (4.9.7) and (4.9.8) constants k(2) = O(1) and k(4) determine the amount of
artificial viscosity added and allow the transition from a fourth-order difference scheme to the
scheme of the second order accuracy in the zone of abrupt change of pressure, ie. in the immediate
vicinity of the shock wave, which can be deduced from expression (4.9.8). Their size also determines
stability and accuracy of numerical schemes [46]. Higher value of constants k(2) and k(4) increases
the stability of the numerical scheme making the solution smooth, reducing at the same time its
accuracy in the zone of abrupt changes of flow variables.
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Special attention has to be paid to the analysis of dissipative terms behavior at the boundary
of the physical domain. Taking into account relations (4.9.5) and (4.9.6), introduction of second
order terms requires information of the value of flow variables in neighboring grid cells, while in
the case of fourth-order terms influence domain extends to two adjacent cells in each coordinate
direction. For cells at the boundary of the physical domain defining of the artificial viscosity terms is
achieved by combining physical and numerical boundary conditions. In this way the lack of necessary
information is compensated, and at the same time the stability of the scheme at the boundaries is
ensured.

After the introduction of dissipative terms the system of equations (4.7) receives the final form

∂

∂ t
(hi, j,k Wi, j,k)+Q(W )i, j,k −D(W )i, j,k = 0. (4.10)

Since the volume of the hexahedral cell is invariant in time, application of Runge-Kutta method for
solving system of ordinary differential equations leads to relations

W (0)
i, j,k =W n

i, j,k,

W (r)
i, j,k =W (0)

i, j,k −αr h−1
i, j,k ∆t [Q(W )

(r−1)
i, j,k −D(W )

(r−1)
i, j,k ], r = 1,2, . . . ,rmax

W n+1
i, j,k =W (rmax)

i, j,k ,

(4.11)

where rmax determines the order of the adopted Runge-Kutta scheme, while αr are the corresponding
coefficients of the scheme. In equations (4.11) the indices n and n+ 1 indicate the values of the
variable Wi, j,k at the beginning and the end of an iterative cycle. To achieve significant savings in
computer time, artificial viscosity terms are most often "frozen" on the first, ie. the second step
within an iterative cycle, bearing in mind that the stability of such a modified equation is almost
unchanged. If the calculation of dissipative terms is performed only within the first step of each
iterative cycle, the system of equations (4.11) receives form

W (0)
i, j,k =W n

i, j,k,

W (r)
i, j,k =W (0)

i, j,k −αr h−1
i, j,k ∆t [Q(W )

(r−1)
i, j,k −D(W )

(0)
i, j,k], r = 1,2, . . . ,rmax

W n+1
i, j,k =W (rmax)

i, j,k .

(4.11.1)

When the values inside the brackets on the right hand of equation (4.11) and equation (4.11.1),
become zero, a steady state is reached and the iterative process is completed. The steady state
does not depend on the value of the adopted integration step ∆t. In this case, the value of the
variable W (rmax)

i, j,k at the end of iterative cycle is equal to the value of W (0)
i, j,k at the beginning of the

iteration, ie W n+1
i, j,k =W n

i, j,k.
A very important detail in this procedure is determination of the integration step ∆t, taking into

account that it is the largest value determined by the time interval required to perturbation transfers
from one cell boundary to another. Integration step ∆t for the cell (i, j,k) is determined by the
relation

∆ti, j,k =
[ 1
(∆tξ )i, j,k

+
1

(∆tη )i, j,k
+

1
(∆tζ )i, j,k

]−1
, (4.12)

in which (∆tξ )i, j,k, (∆tη )i, j,k and (∆tζ )i, j,k are time intervals of disturbance propagation in the direc-
tions of the corresponding coordinate axes within the boundary of the observed grid cell. By mapping
to a curvilinear coordinate system (ξ ,η ,ζ ), in which constant values of curvilinear coordinates
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determine the grid surfaces in physical space, time intervals (∆tξ )i, j,k, (∆tη )i, j,k and (∆tζ )i, j,k can
be calculated:

(∆tξ )i, j,k =
( 1

|U |+ c
√

ξ 2
x +ξ 2

y +ξ 2
z

)
i, j,k,

(∆tη )i, j,k =
( 1

|V |+ c
√

η2
x +η2

y +η2
z

)
i, j,k,

(∆tζ )i, j,k =
( 1

|W |+ c
√

ζ 2
x +ζ 2

y +ζ 2
z

)
i, j,k.

(4.12.1)

In the expressions (4.12.1) U , V and W denote contravariant velocity vector coordinates, 1

while c represents the local speed of sound.

Integration step ∆t, determined by the expression (4.12), can be scaled by a constant, known in
literature as the Courant number [aga], which in the case of the fourth order Runge-Kutta method
equals to 2

√
2. Taking into account that grid cell dimensions can vary drastically, depending on the

type of chosen grid, application of the variable integration steps leads to a significant acceleration of
solution convergence. As the values of the flow variables do not change significantly within of an
iterative cycle, that the time interval ∆t calculation does not need to be performed after each iteration,
resulting in significant savings in computational (CPU) time.

0 0.2 0.4 0.6 0.8 1
x/l

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-C
p

upper

lower

upper and(SWANSON TURKEL)

lower and(SWANSON TURKEL)

Figure 4.1: Pressure distribution on a rectangular wing – plane of symmetry.

1Numeric determination of partial derivatives ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy and ζz are explained
in detail in literature [hirsch] (Hirsch, C. Numerical Computation of Internal and External Flows,
Vol. 1, pp. 253–260).
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Figure 4.2: The algebraic “C-H” computational grid.

Pressure distribution on a rectangular wing with an airfoil NACA 0012, constant along the wing
span, is shown for cross section in the plane of symmetry of the wing at Figure 4.1. In numerical
calculation an algebraic non-orthogonal “C-H” grid was used in three-dimensional space, whose
appearance in the wing symmetry plane is illustrated in Figure 4.2. At Mach number of undisturbed
flow M∞ = 0.8 and angle of attack α = 1.25◦ the results obtained show very good agreement with
the results [45], despite coarse grid discretization (65×12×15).

Described procedure in the analysis of non-viscous flow in transonic speed range made possible
the calculation of the aerodynamic load in presence of strong shock waves, when the application
of potential theory becomes unsustainable. Numerical stability and fast convergence of system of
differential equations solution by the Runge-Kutta method make exposed procedure very acceptable
in the analysis of three-dimensional flow. The great flexibility of the applied approach is reflected in
the fact that it allows very easy introduction of real viscous terms in the Euler equations, thus leading
to the Navier-Stokes equations, which represents a significant improvement in the aerodynamic load
analysis in the cases of large wing attack angles with pronounced effects of flow separation.

4.2.2 Implicit numerical scheme

Application of an explicit scheme in Euler equations solving, explained in chapter 4.2.1 of this book
and literature [18], [27] and [19], enables a very precise analysis of the transonic three-dimensional
flows, eliminating irregularities related to results of potential theory. The main disadvantage of the
explicit scheme is reflected, however, in limited value of the Courant number (CFL), related to
value of integration step. The introduction of an implicit scheme will have the task of increasing the
allowable value of the Courant number and thus the calculation of the transonic flows makes more
acceptable, even in solving problem related to non-stationary flow. The procedure of two-factor LU
implicit factorization, based on finite volume method with the application of “flux decomposition”
approach, is described in this chapter. Special attention will be paid to the correct implementation of
boundary conditions related to features of “flux decomposition".
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LU implicit factorization method
In Cartesian coordinate system of three-dimensional non-stationary Euler equations can be written in
conservative form, as follows:

∂tq+∂xF+∂yG+∂zH = 0, (4.13)

where q is a variable flow quantities vector, ie.

q = (ρ,ρu,ρv,ρw,e)T , (4.14)

while F, G and H are flux vector projections on three coordinate axes defined by expressions:

F =


ρu

ρu2 + p
ρuv
ρuw

u(e+ p)

 , G =


ρv

ρuv
ρv2 + p

ρvw
v(e+ p)

 and H =


ρw
ρuw
ρvw

ρw2 + p
w(e+ p)

 . (4.15)

In the expressions (4.14) and (4.15) the quantities ρ , u, v, w and p represent the density, velocity
vector projections on three coordinate axes and pressure, respectively. The variable e is defined by
the expression e = ρet , where et is the total fluid energy determined by the relation (4.5).

After introducing of curvilinear coordinate system (ξ ,η ,ζ ), computational grid in physical
space, whose surfaces correspond to constant values of curvilinear coordinates, is mapped into a
rectangle grid in computational domain. In the transformed space, the equation (4.13) becomes:

∂τ q+∂ξ F+∂η G+∂ζ H = 0, (4.13.1)

where the quantities q, F, G and H are defined by the following relations:

q = Jq (4.14.1)

and
F = J(ξτ q+ξxF+ξyG+ξzH),

G = J(ητ q+ηxF+ηyG+ηzH),

H = J(ζτ q+ζxF+ζyG+ζzH).

(4.15.1)

After arranging the expression (4.15.1) quantities F, G and H become

F = J


ρU

ρuU +ξx p
ρvU +ξy p
ρwU +ξz p

U(e+ p)−ξt p

 , G = J


ρV

ρuV +ηx p
ρvV +ηy p
ρwV +ηz p

V (e+ p)−ηt p

 and

H = J


ρW

ρuW +ζx p
ρvW +ζy p
ρwW +ζz p

W (e+ p)−ζt p

 , (4.15.2)

where U , V and W denote the contravariant coordinates of the velocity vector, defined by transforma-
tions:

U = ξt +ξxu+ξyv+ξzw,

V = ηt +ηxu+ηyv+ηzw,

W = ζt +ζxu+ζyv+ζzw,

(4.15.3)
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while ξt , ηt and ζt are determined in the following way:

ξt =−xτ ξx − yτ ξy − zτ ξz,

ηt =−xτ ηx − yτ ηy − zτ ηz,

ζt =−xτ ζx − yτ ζy − zτ ζz,

(4.15.4)

bearing in mind the well-known law of coordinate transformation

ξ = ξ (x,y,z, t), η = η(x,y,z, t), ζ = ζ (x,y,z, t) and τ = t. (4.15.5)

Time derivatives ξt , ηt and ζt in the expressions (4.15.4) are equal to zero for the case of a stationary,
fixed grid.

Transformation Jacobian J = ∂ (x,y,z)/∂ (ξ ,η ,ζ ) in relations (4.14.1), (4.15.1) and (4.15.2) is
calculated from the expression

J = xξ (yη zζ − zη yζ )− yξ (xη zζ − zη xζ )+ zξ (xη yζ − yη xζ ). (4.15.6)

In the system of equations (4.13), ie. (4.13.1) unknown quantity to be determined is a vector of flow
variables q. Because the quantities F, G and H are nonlinear functions of variable q, defining their
values at time n+1 is done by local linearization with respect to the previous moment determined
by time index n

Fn+1
= Fn

+
[DF

Dq
]n

∆qn,

Gn+1
= Gn

+
[DG

Dq
]n

∆qn,

Hn+1
= Hn

+
[DH

Dq
]n

∆qn,

(4.16)

where is
∆qn = qn+1 −qn. (4.17)

In the equations (4.16) matrices [DF/Dq]n, [DG/Dq]n and [DH/Dq]n, marked with A, B and C,
respectively, are defined as follows:

A, B, C =


kt kx ky kz 0

kxφ 2 −uθ kt +θ − kx(γ −2)u kyu− kx(γ −1)v kzu− kx(γ −1)w kx(γ −1)
kyφ 2 − vθ kxv− ky(γ −1)u kt +θ − ky(γ −2)v kzv− ky(γ −1)w ky(γ −1)
kzφ

2 −wθ kxw− kz(γ −1)u kyw− kz(γ −1)v kt +θ − kz(γ −2)w kz(γ −1)
θ(φ 2 −ω) kxω − (γ −1)uθ kyω − (γ −1)vθ kzω − (γ −1)wθ kt + γθ

 ,
where k = (ξ ,η ,ζ ) for matrices A, B and C, respectively, while the quantities φ 2, θ and ω are
defined by expressions:

φ
2 =

1
2
(γ −1)(u2 + v2 +w2),

θ = kxu+ kyv+ kzw,

ω = γe/ρ −φ
2.

(4.18)

Finite volume method, applied in solution of Euler equations, implies discretization of the
computational domain on an appropriate number of cells, which in this approach have a hexahedron
form. After the discretization was performed, for each cell a system of equations, that approximate
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the system (4.13)-(4.15), supplemented by the relation (4.5) is set up. With known values of the
dependent variable qn inside each cell (i, j,k), approximate form of the system of equations (4.13.1)
is obtained by [

I+β∆t(δξ An
+δη Bn

+δζ Cn
)
]

∆qn +∆t Rn
= 0, (4.19)

where the residual Rn is
Rn

= δξ F(qn)+δη G(qn)+δζ H(qn). (4.19.1)

In the equations (4.19) and (4.19.1) δξ , δη and δζ represent central difference operators ∂/∂ξ ,
∂/∂η and ∂/∂ζ .

The parameter β in the expression (4.19) determines time accuracy of applied scheme. For
the value β = 0.5 the scheme is second order accurate, while accuracy decreases to the first order
for β = 1. Unfactored implicit scheme, based on the equation (4.19), requires large available
computer memory space for solving huge band block matrices, which is very difficult to provide
for the case of three-dimensional flows. Unconditionally stable implicit scheme, with the largest
possible error up to the order (∆t)2, regardless of the number of spatial dimensions, is derived by the
so-called LU factorization [20], [21] and [6][

I+β∆t(δ−
ξ

A+
+δ

−
η B+

+δ
−
ζ

C+
)
]n ∗

∗
[
I+β∆t(δ+

ξ
A−

+δ
+
η B−

+δ
+
ζ

C−
)
]n

∆qn +∆t Rn
= 0,

(4.20)

where δ
−
ξ

, δ
−
η and δ

−
ζ

are difference operators “backward” oriented, while δ
+
ξ

, δ
+
η and δ

+
ζ

are
“forward” oriented:

δ
−
ξ
(A+

∆qn)i, j,k = A+
i+1/2, j,k∆qn

i, j,k −A+
i−1/2, j,k∆qn

i−1, j,k,

δ
+
ξ
(A−

∆qn)i, j,k = A−
i+1/2, j,k∆qn

i+1, j,k −A−
i−1/2, j,k∆qn

i, j,k,
(4.20.1)

where the terms of the matrices with indices (i+1/2, j,k) and (i−1/2, j,k) are computed by
averaging flow variables between grid cells defined by indices (i, j,k) and (i+1, j,k), ie. (i−1, j,k)
and (i, j,k). Difference operators related to the remaining two spatial directions can be determined
on the basis of similar relations.

Matrix decomposition in factorized scheme (4.20) provides diagonal dominance of terms within
the parentheses, while implicitly introduces an artificial viscosity, necessary to stabilize the applied
scheme based on central difference operators. Flux matrices A+, B+, C+, A−, B− and C− in the
equation (4.20) are formed in way providing that eigenvalues of the “+” matrix are non-negative,
and the eigenvalues of “-” matrix are non-positive

A+
=

1
2
(A+ rAI), A−

=
1
2
(A− rAI),

B+
=

1
2
(B+ rBI), B−

=
1
2
(B− rBI),

C+
=

1
2
(C+ rCI), C−

=
1
2
(C− rCI),

(4.20.2)

where I is the unit matrix, while the factors rA, rB and rC are defined as follows:

rA ≥ max(|λA|), rB ≥ max(|λB|) and rC ≥ max(|λC|), (4.20.3)

bearing in mind that λA, λB and λC represent eigenvalues of flux matrices A, B and C, respectively,
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ie.
λA = (U,U,U,U + c(ξ 2

x +ξ
2
y +ξ

2
z )

1
2 ,U − c(ξ 2

x +ξ
2
y +ξ

2
z )

1
2 ),

λB = (V,V,V,V + c(η2
x +η

2
y +η

2
z )

1
2 ,V − c(η2

x +η
2
y +η

2
z )

1
2 ),

λC = (W,W,W,W + c(ζ 2
x +ζ

2
y +ζ

2
z )

1
2 ,W − c(ζ 2

x +ζ
2
y +ζ

2
z )

1
2 ).

(4.20.4)

In the expressions (4.20.4) U , V and W are contravariant coordinates of velocity vector, previously
determined by transformations (4.15.3), while c denotes local speed of sound.

Solutions of the system of equations (4.20) can be determined in two passes:[
I+β∆t(δ−

ξ
A+

+δ
−
η B+

+δ
−
ζ

C+
)
]n

∆q∗n = −∆t Rn
,[

I+β∆t(δ+
ξ

A−
+δ

+
η B−

+δ
+
ζ

C−
)
]n

∆qn = ∆q∗n.
(4.20.5)

The process of solving of the first system of equation (4.20.5) takes place in the direction of increasing
index (i, j,k) by replacing the known, previously calculated values of unknown quantities ∆q∗n,
while the second one is solved in the direction of decreasing index (i, j,k).

The two-factor LU implicit scheme requires correct implementation of boundary conditions in
the implicit term on the left hand of equation (4.20.5). One way comes down to use of boundary
conditions based on determination values of characteristic variables [50], which on the body surface
are determined by the following expressions:2

pb = p1 +ρ1 c1 (ζ t +ζ x u1 +ζ y v1 +ζ z w1),

ρb = ρ1 +(pb − p1)/c2
1,

ub = u1 −ζ x (ζ t +ζ x u1 +ζ y v1 +ζ z w1),

vb = v1 −ζ y (ζ t +ζ x u1 +ζ y v1 +ζ z w1),

wb = w1 −ζ z (ζ t +ζ x u1 +ζ y v1 +ζ z w1),

(4.20.6)

where ζ t , ζ x, ζ y and ζ z are:

ζ t =
ζt

(ζ 2
x +ζ 2

y +ζ 2
z )

1
2
,

ζ x =
ζx

(ζ 2
x +ζ 2

y +ζ 2
z )

1
2
,

ζ y =
ζy

(ζ 2
x +ζ 2

y +ζ 2
z )

1
2
,

ζ z =
ζz

(ζ 2
x +ζ 2

y +ζ 2
z )

1
2
.

(4.20.7)

In the relations (4.20.6) the index 1 denotes values of flow quantities inside cells in direct contact
with the body surface, while index b correspond to values of the mentioned quantities exactly on
the body surface. At the outer boundaries of the physical domain, flow quantities are determined by
the far field values, for the case of subsonic flow, when the Mach number of undisturbed flow M∞

does not exceed 1. In supersonic flow (M∞ ≥ 1), values at the outer boundary are determined by
extrapolation of flow variables values known within cells on "outflow" boundary.

By analyzing the equations (4.20) and (4.20.1) it can be concluded that on the body surface
information on the values of flow quantities within the body are needed, thus coming into conflict
with the physical flow pattern. In oreder to overcome the mentioned problem, it is necessary to
perform a modification of the scheme for all grid cells with index k = 1

C+
i, j,k−1/2∆qi, j,k−1 = EC−

i, j,k−1/2∆qi, j,k, (4.20.8)

2On the meaning of introduction characteristic variables will be said in chapter 4.2.3.
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where the matrix E is defined as follows:

E =


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

 . (4.20.9)

The introduced correction eliminates the flow through the boundary surface of the body, and in the
case of symmetric flow it is similarly possible to perform with cells in the plane of symmetry of the
aircraft. At the outer boundaries of the physical domain Whitfield [5] proved the assumption ∆qn = 0.
With mentioned corrections, solving algebraic systems equation (4.20.5) is possible without the
use of huge memory space, which in addition with reduced factorization error, due to the presence
of only two passes, represents a great advantage of this method over classic ADI schemes. If the
process of solving the system of equation (4.20.5) in the computational domain occurs in “diagonal”
planes, defined by relation i+ j+ k = const, program code can be completely vectorized for efficient
usage on supercomputers.

Application of central differential scheme in calculation of the residual term Rn in rela-
tion (4.19.1) requires the introduction of additional terms of artificial viscosity to obtain stationary
solutions of differential equations [45]. Method of stabilization of the factorized equation (4.20),
based on introduction of dissipative terms of the second and fourth order modifying a fourth-order
accurate scheme to a scheme of second order accuracy in the immediate vicinity of discontinuous
changes, identical is to the procedure described in chapter 4.2.1. By switching to second-order
accuracy it is possible to precisely determine the abrupt changes in the small number of calculation
cells, thus avoiding inaccuracy in the vicinity of shock waves. A combination of dissipative terms is
described by relation

Rn
1 = (D2

ξ
+D2

η +D2
ζ
−D4

ξ
−D4

η −D4
ζ
)qn

i, j,k. (4.21)

In the expression (4.21) the term D2
ξ

qn
i, j,k is determined by relation

D2
ξ

qn
i, j,k = d(2)

i+1/2, j,k −d(2)
i−1/2, j,k, (4.21.1)

where is

d(2)
i+1/2, j,k = ε

(2)
i+1/2, j,k

Ji+1/2, j,k

∆t
δ
+
ξ

qn
i, j,k, (4.21.2)

where the term D4
ξ

qn
i, j,k is calculated by expression

D4
ξ

qn
i, j,k = d(4)

i+1/2, j,k −d(4)
i−1/2, j,k, (4.21.3)

in which is

d(4)
i+1/2, j,k = ε

(4)
i+1/2, j,k

Ji+1/2, j,k

∆t
δ

3+
ξ qn

i, j,k. (4.21.4)

In relations (4.21.2) and (4.21.4) terms δ
+
ξ

qn
i, j,k and δ 3+

ξ qn
i, j,k represent forward-oriented differ-

ence operators

δ
+
ξ

qn
i, j,k = qn

i+1, j,k −qn
i, j,k (4.21.5)

and

δ
3+

ξ qn
i, j,k = qn

i+2, j,k −3qn
i+1, j,k +3qn

i, j,k −qn
i−1, j,k. (4.21.6)
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The remaining dissipative terms, present in the expression (4.21), are determined in a similar
way. Quantities ε

(2)
i+1/2, j,k and ε

(4)
i+1/2, j,k in relations (4.21.2) and (4.21.4) are defined by the expres-

sions (4.9.7) and (4.9.8).
After the dissipative terms introduction, the system the equation (4.20) receives the final form[

I+β∆t(δ−
ξ

A+
+δ

−
η B+

+δ
−
ζ

C+
)
]n ∗

∗
[
I+β∆t(δ+

ξ
A−

+δ
+
η B−

+δ
+
ζ

C−
)
]n

∆qn + ∆t [Rn −Rn
1] = 0.

(4.22)

The integration step ∆t for cell (i, j,k) is determined by the relation (4.12), in the same way as
in the case of explicit numerical scheme.

Stability analysis of exposed two-factor implicit LU scheme [2] showed the insensitivity of the
scheme to relatively large values of the Courant number. Also, in the described implicit approach the
application of the variable integration steps lead to a significant acceleration of solution convergence,
so the conclusions from the chapter 4.2.1 can be applied without any restriction.
The mentioned discussion certainly relates to stationary flow computation, while in the non-stationary
flow field analysis a constant integration step ∆t = min(∆ti, j,k) has to be used.

Figures 4.3 and 4.4 show results of numerical calculation by the described procedure. Station-
ary transonic flow around rectangular wing and non-stationary flow around the rectangular wing
in oscillatory translational motion are analyzed. In both cases three-dimensional algebraic non-
orthogonal “C-H” computational grid is used. The presented results refer to a convergent solution
that is realized at the moment when the value of the residual term is reduced to the size of the fourth
order relative to the initial.
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Figure 4.3: Pressure distribution on a rectangular wing – plane of symmetry.

The wing in non-stationary flow field, at Mach number M∞ = 0.8 of undisturbed flow and angle
of attack α = 1.25◦ was observed. Pressure distribution on the airfoil in the plane of symmetry is
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calculated for very coarse grid (65×11×15) and shown on Figure 4.3 together with Swanson and
Turkel results [45], calculateded using an explicit numeric scheme.

As can be seen from Figure 4.3, good agreement of the values of the pressure coefficients is
present near the leading edge of the airfoil, with minor deviations in in the immediate vicinity of
the shock wave. The reason for the mentioned disagreement lies in the application of a very coarse
grid. Using a finer grid would certainly lead to a qualitative improvement in the zone of very strong
pressure variations.

0 100 200 300 400
Phase angle °)(

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

C
L

LU

STEGER

Figure 4.4: Dependence of lift coefficient on phase angle.

Example of non-stationary flow, shown in Figure 4.4, refers to the oscillatory translational wing
motion with airfoil NACA 65A010 along the span. Change of the lift coefficient CL of the airfoil
in the plane of symmetry of the wing, depending on the phase angle of the given oscillatory wing
motion, is compared with the corresponding Steger results [44]. A good match of the lift coefficient
followed by small phase angle deviation is quite obvious.

Numerical stability and fast convergence of system of differential equations solution represent a
significant improvement in relation to the application of the explicit method. LU implicit factorization
by applying flux “decomposition” allow the use of very large integration steps thanks to its stability,
even for Courant number CFL ≥ 20. Increased scheme stability made the exposed procedure
acceptable in the analysis of non-stationary flows in three-dimensional space, when the integration
step has crucial role. On the other hand, the presence of only two factors in the three-dimensional
flow case reduces the factorization error. Relative to application of the classical ADI scheme, the
presented procedure also showed advantage in terms of CPU time savings. The way of solving
systems of equations does not require a large memory space and it consists of the inversion of
fifth-order square matrices. Correct program coding allows easy vectorization and application on
supercomputers. The implemented modification of the scheme at the boundaries of the physical
domain provided precise definition of boundary conditions, and thus high accuracy of the solution.

Results obtained by applying this numerical procedure in the analysis of three-dimensional
fluid flow [31] showed a good agreement with the available literature data, based on different
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computational methods in Euler equations solving, as well as the results obtained experimentally.
Exceptional accuracy of the solution in the vicinity of shock waves, in the case of high Mach numbers
of undisturbed flow, represents a significant advantage of the described approach in aerodynamic
load calculation over methods based on potential theory.

4.2.3 Godunov scheme
Tendency in the formation of such a mathematical flow model which would show universality in
solving a wide spectrum of problems is present in the modern numerical fluid mechanics. This
universality consists in achieving satisfactory accuracy of the numerical solution, stability and
rapid convergence of solutions in all flow problems, without introducing subsequent adjustment of
mathematical model to a specific calculation task. Most recently developed methods of mathematical
flow problems modeling are based on the introduction of appropriate adjustment constants, often
empirically derived. The presence of the mentioned constants has for aim to obtain results by
numerical simulation of physical problems that are nearly identical with experimentally determined
ones.

In this chapter, starting from known gasdynamic laws and some approaches performed so far
in the field of numerical fluid mechanics [33], [31], a universal modeling procedure will be recom-
mended in modern computational fluid dynamics. The main goal will be forming a simple scheme
that would be used, due to its own structure, in very complex computation of three-dimensional (3D)
flow without request for powerful supercomputer usage.

The name “Godunov scheme” will refer to the whole a class of methods based on the wave
properties of hyperbolic partial differential equations. Analysis of wave components propagation,
caused by decomposition of complex nonlinear waves, led to the emergence of this numerical
schemes class [52].

Godunov scheme – one-dimensional Euler equations
Euler equations in the case of one-dimensional (1D), non-stationary flow can be written in integral
form in the following way:∮

[ρ dx − ρudt] = 0,∮ [
ρudx − (p+ρu2)dt

]
= 0,∮ [

ρ(eu +
1
2

u2)dx − ρu(eu +
p
ρ
+

1
2

u2)dt
]
= 0,

(4.23)

where the first equation (4.23) represents continuity equation, while the second and third represent
momentum and energy equation, respectively. Integrals in expressions (4.23) are calculated on a
closed contour in the (x, t) plane, where the x coordinate is in the flow direction, and t is time. Closed
contours can also contain lines (surfaces) of discontinuity of flow quantities ρ , u, p and eu which
denote density, velocity, pressure and internal energy per unit fluid mass, respectively.

With the adopted assumption that the fluid moves parallel to the axis x at the moment t = t0 the
area occupied by that gas will be divided on segments of equal lengths h. The mentioned segment
boundaries will be marked with xm,xm+1, . . ., while the values of the flow variables in the segment
with the boundaries xm and xm+1 will be denoted by the lower index m+1/2. Calculated values
of the flow quantities at time t = t0 + τ in the mentioned segment will be denoted by the upper
index m+ 1/2. With the known flow variables values at time t = t0, an approximation that the
quantities ρm+1/2, um+1/2, pm+1/2 and eum+1/2 are constant within each cell is introduced, bearing
in mind that the cell dimensions are small enough.
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To calculate the values ρm+1/2, um+1/2, pm+1/2 and em+1/2
u inside cell with the boundaries xm

and xm+1, it is assumed that the boundaries of the segment disappear, applying the equations (4.23)
on cell bounded with x = xm, x = xm+1, t = t0 and t = t0 + τ . In calculation process it is considered
that the flow variables after the disappearance of the boundaries, due to small time interval τ , are
constant on imaginary cell boundaries. Introducing the notations R, U , P and Eu for flow variables at
the boundaries of the segments, the relation [25] is reached

ρ
m+1/2 = ρm+1/2 −

τ

h
[(RU)m+1 − (RU)m] ,

(ρu)m+1/2 = (ρu)m+1/2 −
τ

h

[
(P+RU2)m+1 − (P+RU2)m

]
,[

ρ(eu +
1
2

u2)

]m+1/2

=

[
ρ(eu +

1
2

u2)

]
m+1/2

−

−τ

h

{[
RU(Eu+

P
R
+

U2

2
)

]
m+1

−
[

RU(Eu+
P
R
+

U2

2
)

]
m

}
,

(4.24)

which are supplemented by the state equation of the ideal gas p = p(ρ,eu).
The quantities R, U , P and Eu are determined from breakdown formulae, described in

detail in the literature [22], whose resolving leads to values of the mentioned quantities at
the cell boundaries, which at the same time represent breakdown surfaces (lines). Despite
the fact that breakdown formulae are relatively complicated [22], [8], flow variables can
be considered constant at time boundaries t = t0 to t = t0 + τ , provided that the choice of
sufficient small time interval τ avoids wave interaction of disturbances emitted from the
boundaries x = xm and x = xm+1.

Thanks to Godunov, Zabrodin and Prokopov [10], compact expressions for calculating
the quantities on contact discontinuities pc.d. and uc.d., after the disappearance of the
imagined membrane on boundary x = xm are obtained. Derived relations cover at the same
time all possible breakdown cases arising from fictitious boundary removal

pc.d. =
bm pm−1/2 + am pm+1/2 + ambm(um−1/2 −um+1/2)

am + bm
,

uc.d. =
amum−1/2 + bmum+1/2 + pm−1/2 − pm+1/2

am + bm
,

(4.25)

where is

am=


{ 1

2

[
(γ +1)pc.d.+(γ −1)pm−1/2

]
ρm−1/2

}1/2
, for pc.d. ≥ pm−1/2,

γ−1
2γ

(γ pm−1/2ρm−1/2)
1/2 1−pc.d./pm−1/2

1−(pc.d./pm−1/2)
(γ−1)/2γ

, for pc.d. < pm−1/2,
(4.26)

where γ is the adiabatic fluid constant. Quantity bm in equations (4.25) is calculated by
replacing the indices m−1/2 by the indices m+1/2 in relations (4.26).

The equations (4.25) and (4.26) are exact for finite discontinuities at the boundary x =
xm and are resolved by an iterative procedure. The iteration process is performed by
adopting the initial assumption for pc.d. and by determination the quantities am and bm
from the relation (4.26). The calculated values of am and bm are then used in the first of the
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equations (4.25), thus obtaining the new value of the contact discontinuity pressure pc.d..
The process is repeated to complete convergence of pressure pc.d..

The mentioned iterative scheme need only be applied in the discontinuity zone (break-
down), when the cell boundary coincides with the shock wave. In general case, when the
changes in dependent flow variables across the cell boundary are small compared to cell
length, approximate form of the equation (4.25) and (4.26) can be used successfully

am = bm =
[

γ

4
(pm−1/2 + pm+1/2)(ρm−1/2 + ρm+1/2)

]1/2
,

pc.d. =
pm+1/2 + pm−1/2

2
+ am

um−1/2 − um+1/2

2
,

uc.d. =
um+1/2 + um−1/2

2
+

pm−1/2 − pm+1/2

2am
.

(4.27)

To determine the quantities R, U , P and Eu at the cell boundaries it is required to define
three characteristic wave propagation speeds. Propagations speeds of the left and right
acoustic waves are calculated by relations

DL = um−1/2 −
am

ρm−1/2
and DD = um+1/2 +

am

ρm+1/2
, (4.28)

respectively, while the third characteristic speed is precisely the contact discontinuity
speed uc.d.. For time t > t0 the (x, t) plane near the boundary x = xm is divided into four
zones, shown in Figure 4.5.

∆F2

∆F3∆F1

III

IV

II

I

x = xm

t

x

Figure 4.5: Wave propagation near the cell boundary.

Values of flow variables in zones I and IV are equal to values corresponding to the
indices m− 1/2 and m+ 1/2, respectively. In the zones II and III values of contact
discontinuity pressure pc.d. and velocity uc.d. are calculated on the basis of equation (4.25),
or (4.27). The density on the left side is determined from

ρL

ρm−1/2
=

(γ +1)pc.d.+(γ −1)pm−1/2

(γ −1)pc.d.+(γ +1)pm−1/2
, (4.29)

while the corresponding value on the right side ρD is obtained by substitution index m−1/2
by index m+1/2 in the equation (4.29).
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Depending on the sign of the wave propagation velocities DL and DD the values
of the variables R, U and P will be determined. In case where DL and DD are of the
same sign, R, U and P take the values (ρL,uL, pL) from zone I if DL and DD are positive,
and values (ρD,uD, pD) from zone IV if DL and DD are negative. If the velocities DL
and DD are of opposite signs, for P and U the values pc.d. and uc.d. are taken, respectively,
while R = ρL if uc.d. > 0, or R = ρD in case uc.d. < 0.

The problem analyzed in this chapter is known in the literature as the Riemann problem.

Roe scheme – approximation of Riemann problem
Unlike Godunov model, which represents an approximate solution of the exact physi-
cal problem, in this chapter will be presented procedure for solving a system of linear
hyperbolic equations, which approximate the exact Euler system of equation [50], [40]

∂q
∂ t

+ A(qL,qD)
∂q
∂x

= 0,

q(x,0) = qL, for x < xm

q(x,0) = qD, for x > xm

(4.30)

where q is a vector of variable flow quantities

q = (ρ,ρu,ρet)
T , (4.31)

while ρ , u and et are density, flow velocity and specific total fluid energy, respectively. In
the first equation of system (4.30) A represents the locally constant Jacobi matrix ∂F/∂q,
where F is the flux vector

F =

{
ρu

ρu2 + p
ρu(et + p/ρ)

}
, (4.32)

bearing in mind that et = eu +u2/2.
Jump of the flow variables vector q through each characteristic line, shown on Fig-

ure 4.5, corresponding to eigenvalue λ ( j) of matrix A, is proportional to the right eigenvec-
tor r( j) associated to eigenvalue λ ( j), ie.

qD − qL =
3

∑
j=1

α jr( j), (4.33)

where α j is “strength” of the jth wave, while the jump the flux vector F can be represented
by relation

FD − FL =
3

∑
j=1

∆F j =
3

∑
j=1

α jλ
( j)r( j). (4.34)

To solve the hyperbolic system equation (4.30) the flux vectors of flow variables at each
boundary cells have to be known. At the cell boundary x = xm (Figure 4.5) flow variables
flux, denoted by Fm, is calculated on the basis of expression

Fm = FL +
k1

∑
j=1

α jλ
−( j)r( j), (4.35)
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where the index (−) of eigenvalue λ ( j) shows that sumation refers to characteristic lines
with a negative slopes, associated to negative eigenvalues. Also, a relation can be obtained:

Fm = FD −
k2

∑
j=1

α jλ
+( j)r( j), (4.36)

in which the index (+) denotes the sum of the terms associated only with positive eigen-
values. By combination of equation (4.35) and (4.36) a new form of flow variables flux is
obtained

Fm =
1
2
(FL +FD) −

1
2

3

∑
j=1

α j|λ ( j)|r( j). (4.37)

To prevent "even-odd" decoupling of numerical solution and the presence of unwanted
high-frequency oscillations near the shock wave, and also to accelerate convergence, it is
necessary to introduce terms of artificial viscosity into appropriate discrete operators. One
way, based on Jameson research [18], mentioned in the chapter 4.2.1, refers to the central
difference schemes. In the expression for the numerical flux (4.37) artificial viscosity
is implicitly included by the second term on the right hand of the mentioned equation,
and avoids additional explicit introduction of stabilizing terms. In the case of a one-
dimensional, non-stationary flow of the ideal gas quantities α j, λ ( j) and r( j), present in the
equations (4.34)-(4.37), are defined by relations

α1 =
1
c̃2 (∆̂p− ρ̃ c̃∆̂u),

λ
(1) = ũ− c̃,

r(1) =

{ 1
ũ− c̃

H̃ − ũc̃

}
,

α2 =
1
c̃2 (c̃

2
∆̂ρ − ∆̂p),

λ
(2) = ũ,

r(2) =

{ 1
ũ

1
2 ũ2

}
,

α3 =
1
c̃2 (∆̂p+ ρ̃ c̃∆̂u),

λ
(3) = ũ+ c̃,

r(3) =

{ 1
ũ+ c̃

H̃ + ũc̃

}
,

(4.38)

in which quantities labeled by (~) are defined in [roe] by expressions:

ρ̃
2 = ρLρD,

ũ =
ρ

1/2
L uL + ρ

1/2
D uD

ρ
1/2
L + ρ

1/2
D

,

H̃ =
ρ

1/2
L HL + ρ

1/2
D HD

ρ
1/2
L + ρ

1/2
D

,

c̃2 = (γ −1)(H̃ − 1
2

ũ2),

(4.39)

where quantity H̃ corresponds to the “averaged ” enthalpy of the fluid. The jump of flow
variables through cell boundaries is indicated by operator ∆̂ in relations (4.38).

The problem of applying described scheme is reflected in the possibility of a discon-
tinuous expansion wave formation in the vicinity of the sonic point where Mach number
is M = 1. In order to solve this problem, it is necessary to make a numerical flux correction
in the environment of sonic point [41]. Harten and Hyman [13] propose a modification of
eigenvalue module |λ ( j)| in equation (4.37) in the following manner:

|λ ( j)|mod =

{
|λ ( j)|, if |λ ( j)| ≥ ε ,
ε, if |λ ( j)|< ε ,

(4.40)
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where the quantity ε is determined by the relation

ε = max
[
0,(λ ( j)−λ

( j)
L ),(λ

( j)
D −λ

( j))
]
. (4.41)

Zero, as the value of the function in the expression (4.41), eliminates introduced correction
in case of shock wave. The alternative procedure [13] is reduced to relations

|λ ( j)|mod =

{
|λ ( j)|, if |λ ( j)| ≥ ε ,
1
2 (λ

( j)2
/ε + ε), if |λ ( j)|< ε ,

(4.42)

thus ensuring the continuity of the first derivative of quantity |λ ( j)|.
When fluid flows through a pipe with variable cross area section S(x), when cross

area section change is small compared to the pipe length, the flow can be considered quasi
one-dimensional and the first of the equations (4.30) takes the form

∂

∂ t
(Sq) +

∂

∂x
(SF) − H = 0, (4.43)

bearing in mind that vectors q and F are defined by the relations (4.31) and (4.32), re-
spectively. The vector H, present in equation (4.43), introduces the variation of the cross
section area S(x) and is determined by the relation

H =
dS
dx

0
p
0

 . (4.44)

Implicit difference scheme applicable to Euler equations (4.43) is defined by an algorithm

S
qn+1 − qn

∆t
+
[ ∂

∂x
(SF)

]n+1 − Hn+1 = 0. (4.45)

In the equation (4.43), bearing in mind implicit formulation, the second and the third term
depend on the flow variables in the following moment, defined by index n+1. If the flow
variables vector increment in the time interval determined by the indices n and n+1 is

∆q = qn+1 − qn, (4.46)

applying local linearization with respect to known values of flow variables at time level n,
it can be written for the flux vector F at time n+1

Fn+1 = Fn +
∂Fn

∂q
∆q+O(∆t2). (4.47)

From the equation (4.35), numerical flux at the boundary m is obtained by the first order
accuracy flux vector linearization in the cell m−1/2, ie.

Fn+1
m = Fn+1

m−1/2 +A−
m(q

n+1
m+1/2 −qn+1

m−1/2), (4.48)
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while for the boundary m−1 the flux is determined from the equation (4.36)

Fn+1
m−1 = Fn+1

m−1/2 −A+
m−1(q

n+1
m−1/2 −qn+1

m−3/2). (4.49)

Based on the equations (4.48) and (4.49) it follows

Fn+1
m −Fn+1

m−1 = Fn
m −Fn

m−1 + A−
m∆qn

m+1/2 −A−
m∆qn

m−1/2+

+ A+
m−1∆qn

m−1/2 −A+
m−1∆qn

m−3/2.
(4.50)

With the known flux vector F, Jacobi matrix A = ∂F/∂q becomes

A =
∂F
∂q

=

 0 1 0
( γ−3

2 )u2 −(γ −3)u (γ −1)
−γuet +(γ −1)u3 γet − 3(γ−1)

2 u2 γu

 , (4.51)

while Jacobi matrix ∂H/∂q is defined by relation

B =
∂H
∂q

= (γ −1)
dS
dx

 0 0 0
1
2 u2 −u 1
0 0 0

 . (4.52)

Averaged variables3 in the expressions (4.38) are introduced so that the equation

FD −FL = ¯̄A(qD,qL)(qD −qL) (4.53)

is satisfied if the elements of the matrix ¯̄A are obtained by substitution of the independent
flow variables in the corresponding elements of matrix A with such averaged quantities.

Matrix A in the expression (4.51) can be diagonalized into form

A = TΛT−1, (4.54)

where Λ is a diagonal matrix whose diagonal elements are eigenvalues of the matrix A. T
is a matrix whose rows are right eigenvectors of the matrix A, ie.

T =

 1 α α

u α(u+ c) α(u− c)
1
2 u2 α( 1

2 u2 +uc+ c2

γ−1 ) α( 1
2 u2 −uc+ c2

γ−1 )

 , (4.55)

while T−1 is the matrix whose rows are left eigenvectors of the matrix A

T−1 =

 1− 1
2 u2 γ−1

c2 (γ −1) u
c2 −(γ −1)c2

β [(γ −1) u2

2 −uc] β [c− (γ −1)u] β (γ −1)
β [(γ −1) u2

2 +uc] −β [c+(γ −1)u] β (γ −1)

 . (4.56)

3For a detailed determination of averaged variables procedure it is necessary to consult the
literature [hirsch] (Hirsch, C. Numerical Computation of Internal and External Flows, Vol. 2,
pp. 463–467).
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The quantities α and β , present in matrices T and T−1, are calculated from relations

α = ρ/(c
√

2) and β = 1/(ρc
√

2),

in which c is the local speed of sound propagation.
By grouping non-positive eigenvalues of matrix A in Λ− and positive ones in Λ+

Jacobi matrix A can be decomposed into matrix

A+
= TΛ

+T−1, (4.57)

and matrix
A−

= TΛ
−T−1, (4.58)

where is
A = A+

+ A−
. (4.59)

The equation (4.45) can now be written in the form of an implicit difference scheme

AMm−3/2∆qm−3/2 +AAm−1/2∆qm−1/2 +APm+1/2∆qm+1/2 = DSm−1/2, (4.60)

where are

AMm−3/2 = −∆t
∆x

A+
m−1,

AAm−1/2 = [Sm−1/2I +
∆t
∆x

(SmA+
m −Sm−1A−

m−1) − Bm−1/2∆t],

APm+1/2 =
∆t
∆x

A−
m ,

DSm−1/2 = −∆t
∆x

(SmFm −Sm−1Fm−1) + ∆t Hm−1/2,

(4.61)

and I is unit matrix.
Euler system of equations, represented by difference implicit scheme, also supple-

mented by appropriate boundary conditions [13] and [15], is solved by applying a standard
block-diagonal procedure based on the inversion of third order matrices in the case of one-
dimensional flows. The problem of flow in several dimensions comes down to application
the so-called ADI scheme [35], [35], which, unfortunately, in case of the 3D flow field
requires a large amount of CPU time.

In order to increase the efficiency of the exposed procedure in analysis of 2D and 3D
flows, ADI scheme with block-diagonal inversion will be replaced by the LU method
of implicit factorization, presented in the chapter 4.2.2 and literature [20], [21] and [31].
Decomposition of flux matrices in a factorized scheme provides diagonal terms dominance
and implicitly introduces artificial viscosity, necessary for stabilization of the central
difference schemes. In the case of one-dimensional flow, matrices A+

and A− previously
defined by the relations (4.57) and (4.58), will be formed so that eigenvalues of matrix A+

are non-negative and eigenvalues of matrix A−
are negative, ie.

A+
=

1
2
(A+ rAI) and A−

=
1
2
(A− rAI), (4.62)
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where rA ≥ max(|λ ( j)|). This approach of flux matrix decomposition, based on the spectral
radius ρ(A) = max(|λ ( j)|) of matrix A, contribute to easy realization of program code.
Quantities averaged by the expressions (4.39) are used in calculation of matrix A elements.
Decomposition of the flux matrix by applying the relation (4.57) and (4.58) requires far
more complex coding, but gives increased numerical stability of solutions with accelerated
convergence. Numerical results, using this method of matrix decomposition, will be
presented in detail in the next chapter.

The process of solving the system of equations (4.60) using LU implicit factorization
method consists of two one-way passes, which is explained in detail in the chapter 4.2.2.

To approve the accuracy of the presented numerical procedures, a comparison of such
obtained results with the exact one from shock wave theory based on Rankine-Hugoniot
equations [22], [8], will be performed.

The first example relates to the one-dimensional problem of ideal gas flow in a pipe of
constant cross section, caused by the sudden removal of the diaphragm that separates the
two areas gases of different thermodynamic quantities. The diagram (Figure 4.6) shows the
pressure and density distribution along the axis of the pipe after a certain time interval ∆t.
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Figure 4.6: Pressure and density distribution in the pipe.

The diagram in Figure 4.6 shows a remarkable match of pressure and density distribu-
tion obtained by Godunov method application with the theoretical, in the shock wave zone
and in zones of expansion wave and contact discontinuity. Despite of certain deviations in
the zones of shock wave and contact discontinuity the results of the implicit block-diagonal
procedure (BD) applied to the system of equations (4.39), obtained by the Roe scheme, as
well as the methods of implicit LU factorization are quite acceptable. The main disadvan-
tage of Godunov model is reflected in its complexity that is a major obstacle in the field of
two-dimensional and three-dimensional flow field analysis. Explicit nature of this scheme
prevents the use of larger integration steps, which greatly increases the computational time.
Considering almost identical quality of the solution of the block-diagonal procedure and
the procedure of implicit LU factorizations, taking into account given simplicity of LU
factorization, this procedure is practically the best choice in the process of computer
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analysis of the mentioned problem due to the essential computer time saving.

Flow analysis in a divergent nozzle, whose cross-section area varies along the x axis
of the nozzle according to the law [15]

S(x) = 1.398 + 0.347tanh(0.8x+0.4),

is the second task in which the results obtained by applying the block-diagonal procedure
and the implicit LU factorization will be compared. The diagram in Figure 4.7 shows the
pressure and density distribution in case of supersonic flow in entire flow domain, while
the diagram in Figure 4.8 illustrates the mentioned distribution in the presence of a strong
shock wave.
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Figure 4.7: Flow in divergent nozzle – supersonic flow.

Qualitative and quantitative matching of numerical solutions with theoretically ones is
remarkable in the case of a entirely supersonic flow, which can be concluded by analyzing
the diagram on Figure 4.7. When a strong shock wave is formed in the nozzle, as shown on
diagram in Figure 4.8, the numerical solutions are almost identical with theoretical in the
zone of continuous change, except in the zone of abrupt discontinuity of flow quantities
through the shock wave, where the block-diagonal procedure shows some advantage. It is
obvious that this quality is paid with the longer computational time.
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Figure 4.8: Flow in divergent nozzle – presence of a shock wave.

The most significant advantage of the Roe scheme over the procedure exposed in [15]
is reflected in the possibility of determination very sharp shock wave without the presence
of unwanted oscillation.

Modification of Godunov scheme
In this chapter, special attention will be paid to the correct implementation of boundary
conditions, based on characteristic variables, in order to increase accuracy, stability and
the convergence rate of the numerical solution.

Three-dimensional Euler equations in non-stationary flow field can be written in Carte-
sian coordinate system in a conservative form, similar to the system of equations (4.13)

∂U
∂ t

+
∂ f
∂x

+
∂g
∂y

+
∂h
∂ z

= 0, (4.63)

where U is the vector of flow variables

U = (ρ,ρu,ρv,ρw,ρet)
T , (4.64)

while f, g and h are components of the flux vector

f =


ρu

ρu2 + p
ρuv
ρuw
ρuH

 , g =


ρv

ρuv
ρv2 + p

ρvw
ρuH

 and h =


ρw

ρuw
ρvw

ρw2 + p
ρwH

 . (4.65)

In the relations (4.64) and (4.65) the quantities ρ , u, v, w, p, et and H denote fluid density,
velocity vector projections on three coordinate axes, pressure, total energy and stagnation
enthalpy per unit fluid mass, respectively.
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Quasi-linear form of the equation (4.63) can be written as follows:

∂U
∂ t

+A
∂U
∂x

+B
∂U
∂y

+C
∂U
∂ z

= 0, (4.66)

where A, B and C are three Jacobi flux matrices, determined by derivatives

A =
∂ f
∂U

, B =
∂g
∂U

i C =
∂h
∂U

. (4.67)

The Jacobi matrix A can be explicitly expressed in the form

A =



0 1 0 0 0

−u2 +
γ −1

2
q2 (3− γ)u −(γ −1)v −(γ −1)w (γ −1)

−uv v u 0 0
−uw w 0 u 0

−u[γet − (γ −1)q2] γet −
γ −1

2
(q2 +2u2) −(γ −1)uv −(γ −1)uw γu

 , (4.68)

while the matrix B is

B =



0 0 1 0 0
−uv v u 0 0

−v2 +
γ −1

2
q2 −(γ −1)u (3− γ)v −(γ −1)w (γ −1)

−vw 0 w v 0

−v[γet − (γ −1)q2] −(γ −1)uv γet −
γ −1

2
(q2 +2v2) −(γ −1)vw γv

 , (4.69)

where the matrix C is

C =



0 0 0 1 0
−uw w 0 u 0
−vw 0 w v 0

−w2 +
γ −1

2
q2 −(γ −1)u −(γ −1)v (3− γ)w (γ −1)

−w[γet − (γ −1)q2] −(γ −1)uw −(γ −1)vw γet −
γ −1

2
(q2 +2w2) γw

 . (4.70)

In the expressions (4.68)-(4.70) the variable q represents the intensity of the fluid velocity.
By introducing the vector of basic variables V = (ρ,u,v,w, p)T a system of Euler

equations receives the form

∂V
∂ t

+ Ã
∂V
∂x

+ B̃
∂V
∂y

+ C̃
∂V
∂ z

= 0, (4.71)

where Ã, B̃ and C̃ are the corresponding Jacobi matrices. Matrices (Ã, B̃, C̃) can be
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explicitly written in form

Ã =


u ρ · · ·
· u · · 1/ρ

· · u · ·
· · · u ·
· ρc2 · · u

 , B̃ =


v · ρ · ·
· v · · ·
· · v · 1/ρ

· · · v ·
· · ρc2 · v

 and

C̃ =


w · · ρ ·
· w · · ·
· · w · ·
· · · w 1/ρ

· · · ρc2 w

 ,
(4.72)

whereby it is obvious that their structure is far away simpler than the structure of Jacobi
matrices A, B and C, specified by relations (4.68)-(4.70).

Characteristic variables in one-dimensional flow
One-dimensional flows play a very important role in calculation and analysis of solutions
of Euler equations. They are simple enough to allow detailed analysis of nonlinear effects
of wave propagation, allowing in many cases local application of one-dimensional flow
properties in multiple spatial dimensions flows. Local application of a one-dimensional
concept in defining boundary conditions is a very important consequence of introduction
of one-dimensional characteristics.

The most general case is described as quasi one-dimensional flow in a nozzle of
variable cross section area S(x), where x is the distance measured along the nozzle axis.
Conservative form of Euler equations becomes [42]

∂

∂ t
(ρS)+

∂

∂x
(ρuS) =0,

∂

∂ t
(ρuS)+

∂

∂x
(ρu2 + p)S = p

dS
dx

,

∂

∂ t
(ρetS)+

∂

∂x
(ρuHS) =0.

(4.73)

By introducing basic (nonconservative) variables ρ , u and p, the system (4.73) is trans-
formed into

∂ρ

∂ t
+u

∂ρ

∂x
+ρ

∂u
∂x

= − ρu
S

dS
dx

,

∂u
∂ t

+u
∂u
∂x

+
1
ρ

∂ p
∂x

=0,

∂ p
∂ t

+u
∂ p
∂x

+ρc2 ∂u
∂x

= − ρuc2

S
dS
dx

,

(4.74)

where c is the local speed of sound. By defining the source vector Q̃,

Q̃ =


−ρu

0
−ρc2u

 1
S

dS
dx

, (4.75)
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equations (4.74) can be written in a more compact form by introducing the vector of
nonconservative variables V =

(
ρ,u, p

)T

∂V
∂ t

+ Ã
∂V
∂x

= Q̃. (4.76)

Jacobi transformation matrix from conservative into nonconservative variables is defined
by the derivative

M =
∂U
∂V

. (4.77)

Relation between Jacobi matrix A of conservative variables and matrix Ã, associated
with nonconservative variables, can be established using the matrix M and its inverse
matrix M−1. Introduction of Jacobi matrix M into the equation (4.76) leads to the relation

M
∂V
∂ t

+(MÃM−1)M
∂V
∂x

= MQ̃. (4.78)

Comparing the equation (4.78) with the corresponding equation

∂U
∂ t

+A
∂U
∂x

= Q (4.79)

for conservative variables leads to relationships

Ã = M−1AM and A = MÃM−1, (4.80)

whereby a source member can be written

Q̃ = M−1Q. (4.81)

In the case of one-dimensional flow transformation matrix M has the form

M =

 1 · ·
u ρ ·

u2/2 ρu 1/(γ −1)

 , (4.82)

while Jacobi matrices A and Ã can be expressed by relations

A =


0 1 0

−(3− γ)
u2

2
(3− γ)u (γ −1)

(γ −1)u3 − γetu γet −3(γ −1)
u2

2
γu

 and

Ã =

u ρ ·
· u 1/ρ

· ρc2 u

 .
(4.83)
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If λ ( j) is the eigenvalue of the matrix Ã, ie. root of the equation

det |λ I− Ã| = 0, (4.84)

then the left eigenvectors ℓ̃( j), defined as row vectors in the three-dimensional space of the
vector V, are the solution of the equation

ℓ̃
( j)Ã = λ

( j)ℓ̃
( j)
. (4.85)

From the equation (4.85) can be concluded that there exists a matrix L−1 that diagonalizes
matrix Ã. By defining the matrix L−1, whose rows are left eigenvectors ℓ̃

( j), ie. jth
row of matrix L−1 is the left eigenvector ℓ̃( j), the equation (4.85), after grouping all its
eigenvectors, can be written in the form

L−1Ã = ΛL−1, (4.86)

where Λ is the diagonal matrix of all eigenvalues of matrix Ã

Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 . (4.87)

Based on the equations (4.86) and (4.87) the relation between the Jacobi matrix Ã and
diagonal matrix Λ can be determined

Ã = LΛL−1 and Λ = L−1ÃL. (4.88)

By introducing the matrix L−1 and its inverse L it is possible to write the compatibil-
ity equation in a more compact form after multiplication of the equation (4.76) by the
matrix L−1

(L−1
∂t +L−1Ã ∂x)V = L−1Q̃. (4.89)

Equation (4.89) introduces a new set of characteristic variables. These variables are
defined as a column vector W by the relation that is valid for an arbitrary variations δ

δW = L−1
δV. (4.90)

The roots of the equation (4.84) determine eigenvalues of the matrix Ã

λ1 = u, λ2 = u+ c and λ3 = u− c, (4.91)

while the three eigenvectors of the matrix Ã form diagonalizing matrix, which after
normalization becomes

L−1 =

1 0 −1/c2

0 1 1/ρc
0 1 −1/ρc

 , ie. L =

1 ρ/2c −ρ/2c
0 1/2 1/2
0 ρc/2 −ρc/2

 . (4.92)
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Characteristic form of Euler equations in a one-dimensional flow field, written in vari-
ables W, implies an uncoupled system of equations

∂W
∂ t

+Λ
∂W
∂x

= L−1Q̃, (4.93)

bearing in mind that variations of characteristic variables

δw1 = δρ − 1
c2 δ p, δw2 = δu+

1
ρc

δ p and δw3 = δu− 1
ρc

δ p (4.94)

extend along the corresponding characteristics at velocities u, u+ c and u− c, respectively.

In the case of a three-dimensional flow variations of characteristic variables become:

δw1 = δρ − 1
c2 δ p, δw2 = k̂xδw− k̂zδu, δw3 = k̂yδu− k̂xδv,

δw4 = lkδv+
1

ρc
δ p, δw5 = −lkδv+

1
ρc

δ p,
(4.95)

where u, v and w are projections of the velocity vector v on the axes of the Cartesian
coordinate system. Quantities k̂x, k̂y and k̂z in expressions (4.95) denote the projections
of the unit vector lk on corresponding coordinate axes, where the vector lk determines the
direction of wave propagation.

Boundary conditions
The considerations in the chapter 4.2.3 have a direct influence on the number of boundary
conditions imposed on the physical boundaries in the one-dimensional non-viscous flow of
the ideal fluid. The number of boundary conditions directly depends on the direction of
wave propagation in a fluid along the characteristics at the boundaries of the flow domain.
The problem will be well posed if complete information on characteristics directed towards
the flow domain or oppositely oriented characteristics can be obtained by the appropriate
combination of known conservative or basic (nonconservative) variables.
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Figure 4.9: Boundary conditions in one-dimensional flow.

Number of physical boundary conditions, ie. variables, to be imposed at the boundaries
of the flow domain depends on direction of propagating waves, ie. on the way the
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information is transported from the boundary to the interior of the flow domain. At the entry
point P0 the characteristics C0 and C+ have slopes u and u+ c which are always positive
for flow in positive direction of the axis x. The third characteristic C− has the slope u− c
which sign depends on the Mach number on the inflow domain boundary. Characteristics
in supersonic flow are shown in Figure 4.9.a for the case of one-dimensional flow in the
nozzle, while their disposition in the subsonic flow field is illustrated in Figure 4.9.b.

If the transformation matrix L−1 of variables W and V, defined by the first rela-
tion (4.92), is written so that the set of variables that match physical boundary conditions is
separated from the remaining variables that correspond to numerical boundary conditions,
as described in [30] and [48], there must be enough information about the wave propaga-
tion along the characteristics to determine the required quantities inside the domain. The
relation between the variables W and V can be written in the form

∆W =

∆w3
∆w1
∆w2

 =

−1/ρc 0 1
−1/c2 1 0
1/ρc 0 1

∆p
∆ρ

∆u

 . (4.96)

Denoting by ∆WF characteristic variables associated with physical boundary conditions
and by ∆WN remaining variables associated with numeric boundary conditions that provide
information from the interior of the domain toward to boundaries, the equation (4.96)
becomes

∆W =

{
∆WF

∆WN

}
=

[
(L−1)F

I
(L−1)F

II
(L−1)N

I (L−1)N
II

]{
∆VI

∆VII

}
. (4.97)

The variables VI in the equation (4.97) represent imposed physical boundary conditions,
while a group of variables VII denotes variables determined by numerical boundary
conditions. In case of subsonic outlet WF = w3, while at subsonic inflow WF consists of
the variables w1 and w2. All combinations of conservative and nonconservative variables
may determine physical boundary conditions, except couple (u, p) in the subsonic inflow
[14]. In the case of supersonic boundaries, for the problem to be well posed, it is necessary
to define all variables at the inflow, while at the outflow it is not allowed to specify any
variable, as shown in Figure 4.9.a.

Numeric variables ∆WN at outflow are determined by extrapolating the values from
interior points. For the zero order extrapolation, the following relation is valid:

∆WN |M = ∆WN |M−1, (4.98)

where M is total number of grid points. At the inflow boundary conditions are determined
by similar relations

∆WN |1 = ∆WN |2. (4.99)

In the expressions (4.98) and (4.99) the operator ∆ indicates the corresponding increment
in time.

Implicit difference scheme, represented by the system of equations (4.60), can now be
supplemented by boundary conditions based on equation (4.98), which for the subsonic
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outflow and inflow become
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(4.100)

while in the case of a supersonic outflow all three numerical boundary conditions are
extrapolated from known values at interior points, which is illustrated in Figure 4.9.a, ie.
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(4.101)

The system of equations (4.60) can be solved using a standard block-diagonal procedure,
based on the inversion of third-order matrices in case of one-dimensional flow. Two-
dimensional problems or the three-dimensional flow of a non-viscous fluid is solved using
a ADI scheme, which is unfortunately difficult to achieve, especially in three-dimensional
flow.

To increase efficiency of 2D and 3D flow analysis ADI scheme, based on block-
diagonal matrix inversion, is replaced by LU implicit factorization, explained in the
chapter 4.2.2 and literature [20], [21], [31] and [32].

Verification of the presented procedure will be performed by numerical analysis of
stationary non-viscous air flow through a nozzle of length ℓ= 10m, whose cross section
area varies according to the law

S(x) = 1.398+0.347tanh(0.8x−4), (4.102)

with supersonic inflow and supersonic/subsonic outflow bpundary. The conditions at the
nozzle inlet are defined as follows:

ρ1 = 1.22112kg/m3, u1 = 351.4351m/s i p1 = 47.87837KPa. (4.103)

In the case of a subsonic outflow boundary it is necessary to define only one physical
boundary condition, ie.

pi = 117.7617KPa. (4.104)
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In the presented calculation results, convergence is considered to be achieved if the residual
term is reduced in size of fourth order relative to the initial.

Courant number CFL, used in numeric analysis, is determined by relation

CFL = (u+ c)max
∆t
∆x

, (4.105)

in which ∆t is the time step of integration, while ∆x determines the spatial dimension of
the computational grid.
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Figure 4.10: Pressure and density distribution in the nozzle.

In the Figure 4.10 the results of numerical analysis of one-dimensional flow in diver-
gent nozzle are shown. Described method, based on zero order extrapolation of charac-
teristic variables, increases accuracy of results compared to results achieved by applying
the numerical scheme [15]. Very strong shock wave is present at a distance of x/ℓ= 0.5,
measured along nozzle axes, in the case of a subsonic outflow boundary, which is shown
in Figure 4.10.a. In the case of supersonic outflow boundary numerical solution very well
matches the analytical one [17] (Figure 4.10.b).

In addition to the improvements shown, modified Roe “averaged” scheme, based on
finite volume method and boundary conditions applied to characteristic variables, increases
the stability of the numerical scheme with significant increasing of the convergence
rate compared to the original method [29], described in the chapter 4.2.3, where the
boundary conditions are based on the extrapolation of nonconservative variables. Presented
procedure allows the introduction of significantly larger values of Courant number (CFL)
into a numeric procedure.

In order to properly estimate the influence of integration steps on convergence rate,
different combinations of ∆x and ∆t were used, which determine the value of the Courant
number, according to the equation (4.105). Intensive changes are noticed after the first few
iteration, followed by a gradually convergence of numerical solution to a stationary one.
Convergence rate and the size of the residual term for the subsonic and supersonic outflow
boundary are shown in Figures 4.11, 4.12, 4.13 and 4.14, respectively.
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Figure 4.12: Mass flux error – supersonic
outflow.

In the case of a supersonic outflow, a shock wave does not occur in the flow field
inside the nozzle and nonlinear effects do not appear significantly. Stability analysis
of system of linear equations does not introduce a step integration constraints in the
application of implicit numerical schemes, and allows the implementation of relatively
large integration steps and corresponding numbers CFL to obtain convergent solution. The
above conclusions are confirmed by the Figure 4.11. Distribution of relative mass flux
error in the continuity equation is given along the nozzle axis in the Figure 4.12. Absolute
value of the relative error increases slightly in the zones of more intensive variations of
flow quantities, while close to inflow and outflow boundaries is almost negligible, since
the change of the nozzle cross section area in that zone is less evident.
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Figure 4.13: Convergence rate – subsonic
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As in the case of a smooth solution in a supersonic nozzle flow without the presence
of a shock wave, number of iterations, required for the convergence of the discontinuous
solution, decreases with increasing Courant number CFL.
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Figure 4.15: Convergence rate – subsonic outflow.

For transonic flow with shock wave arising (Figure 4.13), number of the required
iterations needed to obtain a stationary solution is greater than in the case of completely
supersonic flow without the presence of discontinuous changes of flow quantities. Residual
member representing the mass flux error in the continuity equation after 1000 iterations
for each Courant number is significantly larger compared to the corresponding value at
entirely supersonic flow, which is also shown on the Figure 4.14. Numerical scheme error
especially increases in the immediate vicinity of shock wave. Numerical solution error
reduction is achieved by increasing the Courant number, whereby it should be noted that
large values of the number CFL can reduce the stability of the numerical scheme.

Formation method of Jacobi matrices A+ and A− in the relations (4.57) and (4.58)
also has a significant influence on the convergence of the numerical solution of the system
of equations (4.60). Jacobi matrices obtained by flux vector decomposition increase the
convergence rate of the numerical solution, making it at the same time more robust than
the solution based on matrix formation, used in the Roe scheme. The cause of this lies in
the fact that Jacobi matrices are determined by derivatives of the positive and negative flux
vectors and in the general differ from“decomposed” Jacobi matrices. Having in mind the
equation (4.59), it can be written

f = AU = A+U+A−U = f++ f− (4.106)

and

∂ f
∂U

= A =
∂ f
∂U

+

+
∂ f
∂U

−
= A++A−, (4.107)
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taking into account at the same time that the mentioned Jacobi matrices differ, ie.

A+
=

∂ f
∂U

+

̸= A+ and A−
=

∂ f
∂U

−
̸= A−. (4.108)

“Decomposed” flux vectors f+ and f−, present in equations (4.106) and (4.107), are deter-
mined by the expressions:

f+ =
ρ

2γ


2γu+ c−u

2(γ −1)u2 +(u+ c)2

(γ −1)u3 + 1
2 (u+ c)3 + 1

2
(3− γ)(u+ c)c2

(γ −1)

 and

f− =
ρ

2γ


2γu− c
(u− c)2

1
2 (u− c)3 + 1

2
(3− γ)(u− c)c2

(γ −1)

 .

(4.109)

It is useful to note that, in addition to the the flux vector decomposition approach, deter-
mined by the equations (4.109), alternative methods exist [47].

Jacobi flux matrices A+
and A−

, as derivatives of the flux vectors f+ and f−, are
determined by application MATHEMATICA™ [53].

The Jacobi matrix A+
thus becomes

∂ f
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+

=

=
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(4.110)
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while the matrix A−
is:

∂ f
∂U

−
=
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(4.111)

It is now possible to code an alternative computer program, based on Jacobi matri-
ces (4.110) and (4.111). When the flow field is entirely supersonic, the matrix A− vanishes,
so there is no increase in the convergence rate compared to the method when decomposed
flux matrices were used. In the presence of a sharp shock wave that separates the zones of
subsonic and supersonic flow in the nozzle a significant increase in the rate of convergence
is observed, which is shown in Figure 4.15, with almost unchanged pressure distribution
along the nozzle axis.
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tion.
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In order to estimate influence of viscosity on the nozzle flow, the flow calculation
in the axisymmetric nozzle whose cross-sectional area is defined by law (4.102) was
performed, applying the Prandtl turbulent model [43] and [23]. The results for the same
flow conditions are obtained using commercial ANSYS package and are illustrated in
Figures 4.16 and 4.17. Pressure distribution on the nozzle axis (Figure 4.16) shows very
well coincidence with the analytical solution of Euler equations, thus with the method
presented in this chapter. At the nozzle inlet a uniform pressure and velocity distribution is
given, which is held almost to the location of the shock wave. In the downstream flow, due
to present viscous effects, there is a redistribution, which is shown in Figure 4.17.
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Figure 4.18: Mach number at viscous flow.

After crossing the shock wave the fluid flow is subsonic, and due to the increase
of pressure in the flow direction, thickness of the boundary layer increases and flow
separates from nozzle walls. The distribution of Mach number within the nozzle is given
in Figure 4.18.

To generalize the procedure for three-dimensional flow, it is necessary to form matri-
ces A, B and C, defined by expressions (4.68)-(4.70), whose elements will be calculated
as follows:

ρ̃
2 = ρLρD, ũ =

ρ
1/2
L uL + ρ

1/2
D uD

ρ
1/2
L + ρ

1/2
D

, ṽ =
ρ

1/2
L vL + ρ

1/2
D vD

ρ
1/2
L + ρ

1/2
D

,

w̃ =
ρ

1/2
L wL + ρ

1/2
D wD

ρ
1/2
L + ρ

1/2
D

, H̃ =
ρ

1/2
L HL + ρ

1/2
D HD

ρ
1/2
L + ρ

1/2
D

,

(4.112)

where ũ, ṽ and w̃ are “averaged” velocity projections, while

c̃2 = (γ −1)[H̃ − 1
2
(ũ2 + ṽ2 + w̃2)]. (4.113)

Numerical flux (4.35)-(4.37) in the case of multidimensional flow is calculated on the basis
of such “averaged” flow quantities [41].

Second order Godunov scheme

Direct replacement of terms in a first order numerical scheme with the corresponding terms
of the second order accuracy leads to the difficulties associated with the occurrence of
oscillations in vicinity of discontinuous changes of flow quantities.
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In this chapter the procedure of second-order accuracy numerical scheme [29] forma-
tion, without oscillations present, capable of very accurate determination of flow quantities
changes in the shock wave vicinity and contact discontinuity, will be outlined. Require-
ments that the scheme should fulfill in the mentioned cases are based on Godunov concept
of monotonicity.

Constant value of quantities in numerical solution within each computational cell,
which was applied in the original Roe scheme [40], described in chapter 4.2.3, implies the
first order accuracy in space discretization. Linear distribution of the numerical solution
in the computational cell increases accuracy of spatial discretization to the second order,
while quadratic distribution leads to the spatial discretization of the third order accuracy.
In numerical solution of Euler equations, based on finite volume method, mean values
of flow variables are used at the observed time. In the general case distribution of flow
variables in the computation cell “i” is given by the expression

U(x) = Ui +
1

∆x
(x− xi)δiU+

3k
2∆x2

[
(x− xi)

2 − ∆x2

12
]
δ

2
i U, (4.114)

for xi−1/2 < x < xi+1/2, where Ui is mean value of quantity U in computational cell i, ie.

Ui =
1

∆x

∫ i+1/2

i−1/2
U(x)dx, (4.115)

while δiU and δ 2
i U are approximations of the first and second derivative of quantity U.

The constant k in the expression (4.114) can affect the error of the chosen approximation.
For the values x = xi ±∆x/2 values of flow variables at the boundary of the calculation
cell are obtained

UL
i+1/2 = Ui +

[ (1− k)
4

(Ui −Ui−1)+
(1+ k)

4
(Ui+1 −Ui)

]
, (4.116)

ie.

UD
i+1/2 = Ui+1 −

[ (1+ k)
4

(Ui+1 −Ui)+
(1− k)

4
(Ui+2 −Ui+1)

]
. (4.117)

Analogous to the expressions (4.116) and (4.117) extrapolation of the numerical flux can
be performed at the boundary of the calculation cell, which leads to relations

f+b
i+1/2 = f+i +

[ (1− k)
4

(f+i − f+i−1)+
(1+ k)

4
(f+i+1 − f+i )

]
, (4.118)

f− f
i+1/2 = f−i+1 −

[ (1+ k)
4

(f−i+1 − f−i )+
(1− k)

4
(f−i+2 − f−i+1)

]
. (4.119)

Numerical flux of the second order accuracy, on the boundary of the computational cell, is
determined by the expression

f(2)i+1/2 = fi+1/2+
[1− k

4
(fi − fi−1/2)+

1+ k
4

(fi+1 − fi+1/2)
]
+

+
[1+ k

4
(fi − fi+1/2)+

1− k
4

(fi+1 − fi+3/2)
]
,

(4.120)
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having in mind the relation fi = f+i + f−i , ie. fi+1/2 = f+i + f−i+1. The first term on right
hand of the equation (4.120) corresponds to the numerical flux of the first order accuracy,
while the remaining terms make a correction of a higher order of accuracy.

Solutions of the system of Euler equations can be discontinuous functions, which
in mathematical sense satisfy integral form of these equation. However, in addition to
discontinuous solutions accompanied by entropy growth in the case of shock waves, there
may be such, which are in contradiction with the second principle of thermodynamics.
Mentioned solutions, followed by negative entropy increment, must be discarded, ie. such
a mechanism that would prevent their emergence and enable obtaining acceptable solutions
that satisfy the condition, in literature known as the entropy condition [34], has to be
be introduced. Godunov [11] defined the monotonic numerical scheme that prevents
oscillations of numerical solution, which is of great importance for obtaining an acceptable
solution in the vicinity of the shock wave. In the paper [12] it is shown that the numerical
solution of monotonic scheme satisfies the entropy condition. Unfortunately, such a solution
is of first-order accuracy, which represents a significant limitation in practical application.

A condition weaker than the monotonicity is provided by limitation of the total
variation TV of numerical solution, ie.

TV(U)≡ ∑
i
|Ui+1 −Ui|. (4.121)

The numerical scheme is said to be total variation diminishing if the relation is satisfied

TV(Un+1)≤ TV(Un), (4.122)

where the indices n+1 and n refer to the two consecutive moments of integration. The
condition (4.122) is sufficient to provide the convergence of the numerical solution in the
case of higher order accuracy schemes, but in contrast to the condition of monotonicity
does not provide satisfaction of entropy condition. Mentioned condition (4.122) prevents
the arising of new local extremes while reducing values of existing local maximum and
increasing local minimum of the numerical solution.

Fulfillment of conditions (4.122) is provided by introduction of nonlinear limiters,
whose basic purpose is to limit abrupt changes of additional terms in numerical flux (4.120).
One of the possible choices of nonlinear limiters Ψ leads to the expression for the numerical
flux

f(2)i+1/2 = fi+1/2+
m

∑
j=1

[1− k
4

Ψ
+
j (−1,1)r( j)

i−1/2 +
1+ k

4
Ψ

+
j (1,−1)r( j)

i+1/2

]
−

−
m

∑
j=1

[1− k
4

Ψ
−
j (3,1)r

( j)
i+3/2 +

1+ k
4

Ψ
−
j (1,3)r

( j)
i+1/2

]
,

(4.123)

where limiter Ψ
±
j (ℓ,n) is defined by the expression

Ψ
±
j (ℓ,n) = minmod(σ±

j,i+ℓ/2,bσ
±
j,i+n/2), (4.124)

where is
minmod(x,y) = sign(x)max{0,min[|x|,ysign(x)]}, (4.125)
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while σ
±
j,i+1/2 = λ

±( j)
i+1/2α j,i+1/2, bearing in mind that the quantities α , λ and r were pre-

viously defined by the relations (4.38). Compression parameter b, present in the rela-
tion (4.124), is defined by the expression b = (3− k)/(1− k), as in [51].

4.3 Solution of Navier–Stokes equations

4.3.1 Implicit numerical scheme

The basic limitation in the application of Euler equations is reflected in flow calculation
around the wing at large angles of attack, when the viscous effects of the flow cannot
be ignored. In cases where occurs flow separation it is necessary to add viscous terms
to Euler equations, ie. to model the flow by Navier-Stokes equations. The use of "full"
Navier-Stokes equations is a problem due to high memory space requirements, on the
one hand, and large CPU time, on the other hand. In this chapter is presented model
based on Navier-Stokes approximate equations, in the literature known as the thin layer
equations. Numeric solution of the equations is based on the application of the LU implicit
factorization approach in finite volume method with "flux decomposition", described in
chapter 4.2.2.

LU implicit factorization method
Three-dimensional non-stationary Navier-Stokes equations can be write in Cartesian
coordinate system in conservative form

∂tq+∂x(F−Fv)+∂y(G−Gv)+∂z(H−Hv) = 0, (4.126)

where q is a vector of flow variables, defined by the relation (4.14), while F, G and H are
flux vector projections on the three coordinate axes determined by the expressions (4.15).
Viscous terms Fv, Gv and Hv, present in the equation (4.126), are determined as follows:

Fv =


0

τxx
τyx
τzx

uτxx + vτxy +wτxz −Qx

 ,

Gv =


0

τxy
τyy
τzy

uτyx + vτyy +wτyz −Qy

 and

Hv =


0

τxz
τyz
τzz

uτzx + vτzy +wτzz −Qz

 .

(4.127)
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The viscosity stress tensor is determined by the expressions:

τxx = 2µ ux −
2
3

µ(ux + vy +wz),

τyy = 2µ vy −
2
3

µ(ux + vy +wz),

τzz = 2µ wz −
2
3

µ(ux + vy +wz),

τxy = τyx = µ(uy + vx),

τxz = τzx = µ(uz +wx),

τyz = τzy = µ(vz +wy),

(4.127.1)

while the vector of the thermal flux is:

Qx =−k
∂T
∂x

, Qy =−k
∂T
∂y

i Qz =−k
∂T
∂ z

, (4.127.2)

where the viscosity coefficient µ is a function of temperature T

µ = µ∞ (
T
T∞

)0.67. (4.127.3)

The coefficient of thermal conductivity k is defined by the relation

k =
γ

γ −1
µ

Pr
. (4.127.4)

Prandtl number Pr in the expression (4.127.4) can be considered constant, ie. value
Pr = 0.72 is accepted, while γ = 1.4 is the value of the air adiabatic constant. In the
case of turbulent flow the value of the turbulent coefficient µt is added to the laminar
viscosity coefficient µ while in the expression for the thermal conductivity coefficient k
the ratio µ/Pr is replaced by sum µ/Pr+µt/Prt , where Prt = 0.9 is Prandtl number for
turbulent flow. Coefficient of turbulent viscosity µt is calculated on the basis of generally
accepted Baldwin-Lomax model [4], [2].

After the introduction of the curvilinear coordinate system (ξ ,η ,ζ ), the generated grid
in physical space is mapped to a rectangle computational grid. If only partial derivatives of
flow quantities in viscous terms in the direction normal to body surface are retained, the
approximate Navier-Stokes equations are reached, ie. thin layer equation are obtained. For
that matter, equation (4.126) in the transformed space becomes

∂τ q+∂ξ F+∂η G+∂ζ H = ∂ζ Hv, (4.126.1)

where the quantities q, F, G and H are defined by relations (4.14.1) and (4.15.2),
Viscous term on the right hand of equation (4.126.1) after coordinate transformation

takes the form

Hv = J
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where Jacobi transformation matrix J = ∂ (x,y,z)/∂ (ξ ,η ,ζ ) is calculated from the expres-
sion (4.15.6). For the perfect gas system of equations (4.126) is completed by defining
fluid energy (4.5), thus finally closing the Navier-Stokes system of equations.

In the system of equations (4.126), ie. (4.126.1) the unknown to be determined is a
vector of variable flow quantities q.

After the physical flow domain is discretized, as described in the chapter 4.2.2, a
system of equations that approximates partial differential system of equation (4.126), can
be set up. If inside each computational cell (i, j,k) the value of the dependent variable qn

is known, approximate form of the system of equations (4.126.1) can be obtained{
I+β∆t

[
δξ An

+δη Bn
+δζ (C

n −Cn
v)
]}

∆qn +∆t Rn
= 0, (4.128)

where the matrices A, B and C are previously defined by expressions (4.2.2), while the
residual term is Rn

Rn
= δξ F(qn)+δη G(qn)+δζ

(
H(qn)−Hv(qn)

)
. (4.128.1)

In the equations (4.128) and (4.128.1) δξ , δη and δζ represent central difference opera-
tors ∂/∂ξ , ∂/∂η and ∂/∂ζ .

The parameter β in the expression (4.128) determines time accuracy of the applied
scheme, which is analyzed in chapter 4.2.2. Unconditionally stable implicit scheme is
derived by LU factorization [20], [21] and [6]{
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= 0,

(4.129)

where δ
−
ξ

, δ−
η , δ

−
ζ

, δ
+
ξ

, δ+
η and δ

+
ζ

are difference operators determined by relations (4.20.1),
where the elements of the matrices with indices (i+1/2, j,k) and (i−1/2, j,k) are cal-
culated by averaging flow variables between computational cells (i, j,k) and (i+1, j,k),
ie. (i−1, j,k) and (i, j,k), respectively. Difference operators related to the remaining two
coordinate directions can be determined on the basis of similar relations.

Solutions of the system of equations (4.129) is possible to determine in two passes:{
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(4.129.1)

where the matrices of “viscous” flux C+
v and C−

v , present in the implicit term of the
equation (4.129), are approximated according to the work of Pulliam [37]

C+
v = λCv I i C−

v = −λCv I, (4.129.2)

where λCv is the eigenvalue of the viscous flux matrix Cv

λCv = µ (ζ 2
x +ζ

2
y +ζ

2
z )∂ζ

( 1
ρ

)
, (4.129.3)
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while the matrices A+
, B+, C+

, A−
, B−, and C−

are determined by expressions (4.20.2).
The process of solving the first system of equations (4.129.1) takes place in the direction
of increasing index (i, j,k) by replacing the known, previously calculated flow variable
vector ∆q∗n, while the second system of equations is solved in the direction of decreasing
index (i, j,k).

On the body surface boundary conditions are defined by zero flow velocity vector with
the adopted assumption of adiabatic flow and zero pressure gradient [1] and [38]

u = v = w = 0,
∂H
∂n

= 0 and
∂ p
∂n

= 0. (4.129.4)

where H is the enthalpy of the fluid. Defining boundary conditions at the outer boundaries
of the physical domain has already been explained in chapter 4.2.2.
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Figure 4.19: Pressure distribution on a rectangular wing – plane of symmetry.

Application of central difference scheme in calculation of the residual term Rn in the
equation (4.128.1) requires the introduction of additional terms in order to obtain stationary
solutions of dynamic equations [45]. Additional dissipative terms are introduced in the
same way as in the chapter 4.2.2.

After the introduction of dissipative terms, the system the equations (4.129) receives the
final form{
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(4.130)

noting that the integration step has been determined previously by relations (4.12) and (4.12.1).



4.3 Solution of Navier–Stokes equations 153

Figure 4.19 shows the results of numerical analysis of stationary non-viscous and
viscous flow around rectangular wing with airfoil NACA 65A010, constant along the span.
An algebraic three-dimensional non-orthogonal “C-H” computational grid was used, while
from the chapter 4.2.2 the convergence criterion is retained.

The calculation was performed for Mach number of undisturbed flow M∞ = 0.8 at
zero wing angle of attack and Reynolds number Re∞ = 50000 for laminar flow. In the
case of turbulent flow Re∞ = 1.2×107. Very coarse grid (65×7×29) was used, and the
results are given for cross section in the plane of wing symmetry.

As can be seen from Figure 4.19, the flow separation occurs at the position of the
greatest profile thickness, and with an increase of Reynolds number in turbulent flow,
position of separation bubble moves towards the trailing edge of the airfoil. Unfortunately,
the application of such a coarse grid does not allow qualitative determination of the pressure
coefficient Cp and position of the separation point. Fine mesh would increase the accuracy
of the numerical solution, but at the same time it would make a demand for the more
powerful computer systems.

Exposed procedure in viscous flow analysis in transonic speed range made calculation
of the aerodynamic load possible in cases of strong shock waves with boundary layer
effects, when application of potential theory and Euler equations is practically impossible.
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[32] Mladenović, N., Transonic Flow Solution of the Thin Layer Navier–Stokes Equa-
tions Using Implicit LU Factorization, Theoretical and Applied Mechanics, (18),
1992.
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5. Review of Development of the
Smooth Particle Hydrodynamics (SPH)
Method

5.1 Introduction
This paper discusses the development of the Smooth Particle Hydrodynamics (SPH)

method in its original form, which is based on the updated Lagrangian formalism. SPH is
a relatively new numerical technique for the approximate integration of partial differential
equations.

It is a meshless Lagrangian method that uses a pseudo-particle interpolation method
to compute smooth field variables. Each pseudo-particle has a mass, Lagrangian position,
Lagrangian velocity, and internal energy; other quantities are derived by interpolation or
from constitutive relations. The pseudo-particles move with the velocity of the continuum,
but not associated with a grid and consequently do not have fixed connectivity.

The advantage of the meshless approach is its ability to solve problems that cannot
be effectively solved using other numerical techniques. It does not suffer from the mesh
distortion problems that limit Lagrangian approaches based on a structured mesh when
simulating large deformations. As it is a Lagrangian method it naturally tracks material
history information, such as damage, without the diffusion that typically occurs in Eulerian
approaches due to advection.

Gingold and Monaghan [28] and Lucy [55] initially developed SPH in 1977 for the
simulation of astrophysics problems. Their breakthrough was a method for the calculation
of derivatives that did not require a structured computational mesh. Review papers by
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Benz [16] and Monaghan [58] cover the early development of SPH.
Right from the early days of SPH the importance of the smoothing kernel function

as the essential feature of the SPH scheme was recognised. The Gaussian and the cubic
B spline kernel functions are the most widely used in SPH, see Monaghan and Lattanzio
[60]. However, most practical work relies on the monotone splines which, when used
with small supports, allow for more accurate numerical solutions and higher numerical
efficiency according to Balsara [7]. Liu et al. [50] among a number of other researchers
demonstrated that in general, regardless of the choice of kernel function, the SPH method
is not even zero order consistent. This is a consequence of the fact that the accuracy of
the kernel interpolation depends on the distribution of the interpolation points within the
kernel support. This effect is especially pronounced in the vicinity of boundaries, where
the kernel support extends beyond the domain of the problem considered and consequently
becomes incomplete Liu et al. [52].

Libersky and Petchek [47] extended SPH to work with the full stress tensor in 2D.
This addition allowed SPH to be used in problems where material strength is important.
The development SPH with strength of materials continued with its extension to 3D by
Libersky [48]. Applications of SPH to model solids, i.e. material with strength, further
highlighted shortcomings in the basic method: consistency, tensile instability, zero energy
modes, treatment of contact and artificial viscosity. These shortcomings were discussed in
detail in the first comprehensive analyses of the SPH method by Swegle [87], Wen [105].
The problems of consistency and accuracy of the SPH method, identified by Belytschko
[11], were addressed by Randles and Libersky [74], Vignjevic and Campbell [97] and a
number of other researchers. This resulted in a normalised first order consistent version of
the SPH method with improved accuracy. The attempts to ensure first order consistency in
SPH resulted in emergence of a number of variants of the SPH method, such as Element
Free Galerkin Method (EFGM) Belytschko [13], Kongauz [44], Reproducing Kernel
Particle Method (RKPM) Liu [52][54], Moving Least Square Particle Hydrodynamics
(MLSPH) Dilts [22], Meshless Local Petrov Galerkin Method (MLPG) Atluri and Zhu
[1]. These methods allow the restoration of consistency of any order by means of a
correction function. It has been shown by Dilts [22] and independently by Atluri et al. [5]
that the approximations based on corrected kernels are identical to moving least square
approximations.

A comprehensive stability analysis of particle methods in general by Belytschko [14],
Xiao and Belytschko [106], and independently by Randles [74] who worked specifically on
the SPH method provided improved understanding of the methods analysed and confirmed
the conclusions from Swegle’s initial study. Randles’ unique analysis, which included
space and time discretisation, showed that SPH can be stabilised by precise choice of time
step size and predictor corrector type of time integration. Rabezuk et al. [73] demonstrated
that if used within a total Lagrangian framework SPH does not exhibit the tensile instability.

Tensile instability in SPH has, as a consequence, non-physical motion of particles
which form clusters. This was first observed in materials loaded in tension (negative
stress), however the instability can develop under compressive loading, see Swegle [87].
In simulations of solids the instability may result in non-physical numerical fragmentation.

Another unconventional solution to the SPH tensile instability and zero energy mode
instability problems was first proposed by Dyka [23] in which the stresses are calculated at
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the locations other than the SPH particles (non-collocational SPH). The results achieved in
1D were encouraging but a rigorous stability analysis was not performed. A 2D version of
this approach was investigated by Vignjevic and Campbell [97], based on the normalised
version of SPH. This investigation showed that extension to 2D was possible, although
general boundary condition treatment and simulation of large deformations would require
further research.

Monaghan [64] showed how the instability can be removed by using an artificial stress
which, in the case of fluids, is an artificial pressure. When used in simulation of solids this
artificial, in other words non-physical stress, may result in an unrealistic material strength
and therefore has to be used with caution.

In spite of these developments, the crucial issue of convergence in a rigorous mathe-
matical sense and the links with conservation have not been well understood. Encouraging
preliminary steps in this direction have already been made by Moussa and Vila [67], who
proved convergence of their meshless scheme for non-linear scalar conservation laws;
see also Moussa [66]. This theoretical result appears to be the first of its kind in the
context of meshless methods. Furthermore, Moussa and Vila, proposed an interesting
new way to stabilise normalised SPH and allow for treatment of boundary conditions
by using approximate Riemann solvers and up-winding, an approach usually associated
with finite volume shock-capturing schemes of the Godunov type. This work developed
a strong following which include: Parshikov et al. [68] also uses the Riemann solver to
calculate the numerical flux between pair of interacting particles; Cha and Whitworth [20],
who have applied the Riemann solver of van Leer [93][94] to isothermal hydrodynamics;
and Inutsuka [36] who proposed an interesting but fairly complex approach to obtain
second-order accurate SPH in 1D.

The improvements in accuracy and stability achieved by kernel re-normalisation
or correction do not come for free; now it is necessary to treat the essential boundary
conditions in a rigorous way. The approximations in SPH do not have the property of strict
interpolants, so that in general they are not equal to the particle value of the dependent
variable, i.e. uh(x j) = ∑I
phiI(x j)uI ̸= uJ . Consequently it does not suffice to impose zero values for at the boundary
positions to enforce homogeneous boundary conditions. Another issue with this approach
is that in conventional SPH the boundary is diffuse. In the case of normalised SPH particles
do lie on the domain boundary which is in this case precisely defined.

The treatment of boundary conditions and contact could be and was neglected in the
conventional SPH method. If the imposition of the free surface boundary condition (stress
free condition) is simply ignored, then conventional SPH behaves in an approximately
correct manner, giving zero pressure for fluids and zero surface stresses for solids, because
of the deficiency of particles at the boundary. This is the reason why conventional SPH
gives physically reasonable results at free surfaces. Contact between bodies, in conven-
tional SPH, is treated by smoothing over all particles neighbouring the contact interface,
regardless of material types in contact (for instance contact between a solid body and a
fluid). Although simple this approach can give physically incorrect results, such as tensile
forces between the bodies in contact.

Campbell et al. [19] made an early attempt to introduce a more systematic treatment
of boundary condition by re-considering the original kernel integral estimates and taking
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into account the boundary conditions through residual terms in the integral by parts. Very
interesting work on boundary conditions in SPH is due to Takeda et al. [89], who applied
SPH to a variety of viscous flows. A similar approach was also used by Randles [74] with
the ghost particles added to enforce reflected and symmetry surface boundary conditions.
Belytschko, Lu and Gu [13] imposed the essential boundary conditions by the use of
Lagrange multipliers leading to an awkward structure of the linear algebraic equations,
which are not positive definite. Krongauz and Belytschko [43] proposed a simpler technique
for the treatment of the essential boundary conditions in meshless methods, by employing
a string of finite elements along the essential boundaries. This allowed for the boundary
conditions to be treated accurately, but reintroduced the shortcomings inherent to structured
meshes.

Randles et al. [74][78] were first to propose a more general treatment of boundary
conditions based on an extension of the ghost particle method. In their approach the
boundary is considered to be a surface one half of the local smoothing length away from
the so-called boundary particles. A boundary condition is applied to a field variable by
assigning the same boundary value of the variable to all ghost particles. A constraint is
imposed on the boundary by interpolating it smoothly between the specified boundary
particle value and the calculated values on the interior particles. This serves to communicate
to the interior particles the effect of the specific boundary condition. There are two main
difficulties in this:

• Definition of the boundary (surface normal at the vertices).
• Communication of the boundary value of a dependent variable from the boundary

to internal particles.
A penalty contact algorithm for SPH was developed by Campbell and Vignjevic [18].

This algorithm was tested on normalised SPH in combination with the Randles’ approach
for treatment of free surfaces. The contact algorithm considered only particle-particle
interactions, and allowed contact and separation to be correctly simulated. However, tests
showed that when this approach is used zero-energy modes are often excited. Further
development of this contact algorithm for the treatment of contact problems involving
frictionless sliding and separation under large deformations was achieved by the contact
conditions through the use a contact potential for particles in contact, see Vignjevic et al.
[99]. Inter-penetration is checked as a part of the neighbourhood search. In the case of
conventional SPH contact conditions are enforced on the boundary layer 2h thick while in
the case of the normalized SPH contact conditions are enforced for the particles lying on
the contact surface.

In a number of engineering applications it is beneficial to discretise only certain parts
of the domain with particles and the rest with finite elements. The main reasons for this
are to take advantage of the strengths of both methods, which include significantly better
numerical efficiency of the finite element (FE) method, and in SPH modelling arbitrary
crack propagation, large deformations and adaptive refinement of the discretisation.

One of the first coupling procedures for FE-SPH coupling was proposed by Attaway
et al. [6]. They developed a penalty-based approach for modelling of fluid–structure
interactions where the fluid was discretised with particles and the structure was modelled
with finite elements. A similar approach was proposed by Johnson [38] and Johnson et
al. [39]. In addition to the contact algorithm, they developed a tied interface where SPH
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particles are fixed to FE nodes. This allows for a continuous coupling of the SPH and the
FE domains. Sauer [82] proposed an SPH–FE coupling by extending the SPH domain onto
the FE mesh. Different possibilities for exchanging forces between FE nodes and particles
were shown, and the approach was used for adaptive conversion of elements into particles.
The main difference with most other coupling methods is the use of a strong-form coupling.
This approach was successfully applied to a number of impact problems, see Sauer et al.
[83][84] and Hiermaier et al. [31][32]. Using a variation of the contact algorithm they
developed for SPH, De Vuyst and Vignjevic [21] coupled Cranfield University SPH code
with Lawrence Livermore National Laboratory DYNA3D.

Coupling algorithms developed for other meshless techniques can be applied for use
with SPH. Among many recently proposed techniques a selected few are mentioned below.
A mixed hierarchical approximation based on meshless methods and FE, proposed by
Huerta et al. [33][34], remove the discontinuities in the derivative across the interior
boundaries when coupling FE and the element-free Galerkin method (EFG). Belytschko
and Xiao [15] proposed the ‘bridging domain coupling method’ which uses Lagrange
multipliers over a domain where FE and particle discretisations overlap. They applied
this approach to multi-scale simulations for coupling continua with molecular dynamics.
Another method for atomic and continua scale bridging was proposed by Wagner and
Liu [103] and Kadowaki and Liu [41]. By matching dynamic impedances of different
discretisation domains spurious wave reflection is prevented in this approach.

A comprehensive overview of techniques for coupling of a range of meshless methods
with FE with examples is given in Li and Liu [49].

5.2 Basic Formulation
The spatial discretisation of the state variables is provided by a set of points. Instead

of a grid, SPH uses kernel interpolation to approximate the field variables at any point in a
domain. For instance, an estimate of the value of a function f (x) at the location x is given
in a continuous form by an integral of the product of the function and a kernel (weighting)
function W (|x−x′

, h):

⟨ f (x)⟩=
∫
Ω

f (x
′
)W (|x−x

′
, h)dx

′
. (5.1)

Where: the angle brackets ⟨· ⟩ denote a kernel approximation h is a parameter that defines
size of the kernel support known as the smoothing length x′

is the new independent variable.
The kernel function usually has the following properties:
- Compact support, which means that it’s zero everywhere but on a finite domain, in

conventional SPH this domain is taken to be all points within twice the smoothing
length, h, of the centre:

-
W (|x−x

′ |,h) = 0 for |x−x
′ | ≥ 2h. (5.2)

- Normalised ∫
Ω

W (|x−x
′
, h)dx

′
= 1. (5.3)
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These requirements, formulated by Lucy [43], ensure that the kernel function reduces
to the Dirac delta function when h tends to zero:

lim
h→0

W (|x−x
′ |,h) = δ (|x−x

′ |,h). (5.4)

And therefore, it follows that:

lim
h→0

⟨ f (x)⟩= f (x). (5.5)

If the function f (x) is only known at N discrete points, the integral of equation (5.1) can
be approximated by a summation:

fI = f (xI)≈ ⟨ f (xI)⟩=
∫
Ω

f (x
′
)W (x−x

′
)dΩ ≈

≈
N

∑
J=1

mJ

ρJ
f (xJ)W (|xI −xJ |,h).

(5.6)

In the above equation, the subscript I and J denote particle number, mJ and ρJ the
mass and the density of particle J, N the number of neighbours of particle I (number of
particles that interact with particle I, i.e. the support of the kernel),

mJ

ρJ
is the volume

associated to the point or particle J and WIJ =W (|xI −xJ |,h).
In SPH literature, the term particles is misleading as in fact these particles have to be

thought of as interpolation points rather than mass elements.
Equation (5.6) constitutes the basis of SPH method. The value of a variable at a

particle, denoted by superscript I, is calculated by summing the contributions from a set
of neighbouring particles (Figure 5.1), denoted by superscript J and for which the kernel
function is not zero:

⟨ f (xI)⟩= ∑
J

mJ

ρJ
f (xJ)W (|xI −xJ |,h). (5.7)

Figure 5.1: Set of neighbouring particles.



5.3 Conservation Equations 167

5.3 Conservation Equations
The conservation equations in Lagrangian framework are given by:

Dρ

Dt
=−ρ∇·v, (5.8)

Dv
Dt

=
1
ρ

∇·σ or
Dv
Dt

= ∇·
(

σ

ρ

)
+

σ

ρ2 ·∇ρ, (5.9)

DE
Dt

=
1
ρ

σ : ∇v or
DE
Dt

=
1

ρ2 σ : ∇(ρv)− σ ·v
ρ2 ·∇ρ (5.10)

Where
D
Dt

is the material time derivative and v = ẋ.
Equations (5.9) and (5.10) are the forms proposed by Monaghan [47]. Kernel in-

terpolation allows the derivation of the basic SPH form of these conservation equations
as: 〈

Dρ(x)
Dt

〉
=
∫
Ω

ρ(x
′
)∇·v(x′

)W (|x−x
′ |,h)dΩ, (5.11)

〈
Dv(x)

Dt

〉
=
∫
Ω

∇·

(
σ(x′

)

ρ(x′
)

)
W (|x′ −x|,h)dΩ+

+
∫
Ω

σ(x′
)

[ρ(x′
)]2

·∇ρ(x
′
)W (|x′ −x|,h)dΩ, (5.12)

〈
DE(x)

Dt

〉
=
∫
Ω

σ(x′
)

[ρ(x′
)]2

: ∇(ρ(x
′
)v(x

′
))W (|x′ −x|,h)dΩ−

−
∫
Ω

σ(x′
)·v(x′

)

[ρ(x′
)]2

·∇ρ(x
′
)W (|x−x

′ |,h)dΩ. (5.13)

All of the above equations contain integrals of the form:

∫
Ω

W (|x−x
′ |,h) f (x

′
)

∂g(x′
)

∂x′ dx
′
. (5.14)

Using a Taylor series expansion at point x′
= x, it follows:

∫
Ω

W (|x−x
′ |,h) f (x

′
)

∂g(x′
)

∂x′ dx
′
=

=
∫
Ω

{
f (x)

∂g(x)
∂x

+(x−x
′
)

d
dx

(
f(x)

∂g(x)
∂x

)
+ · · ·

}
W (|x−x

′ |,h)dx
′
, (5.15)
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As W is an even function, the terms containing odd powers of x′ −x vanish. Neglecting
second and higher order terms, which is consistent with the overall order of the method,
gives: ∫

Ω

W (|x−x
′ |,h) f (x

′
)

∂g(x′
)

∂x′ dx
′
=

= f (x)
∂g(x)

∂x

∫
Ω

W (|x−x
′ |,h)dx

′
= f (x)

∂g(x)
∂x

.

(5.16)

Substituting
〈

∂g(x)
∂x

〉
for

∂g(x)
∂x

gives:

f (x)
∂g(x)

∂x
= f (x)

∫
Ω

W (|x−x
′ |,h) ∂g(x′

)

∂x′ dx
′
. (5.17)

Using the last relation in equations (5.11), (5.12) and (5.13) yields〈
Dρ(x)

Dt

〉
=−ρ(x)

∫
Ω

W (|x−x
′ |,h)∇·v(x′

)dx
′
, (5.18)

〈
Dv
Dt

〉
=
∫
Ω

W (|x−x
′ |,h)∇·

(
σ(x′

)

ρ(x′
)

)
dx

′
+

+
σ(x)
[ρ(x)]2

∫
Ω

W (|x−x
′ |,h)∇ρ(x

′
)dx

′
, (5.19)

〈
DE(x)

Dt

〉
=

σ(x)
[ρ(x)]2

∫
Ω

W (|x−x
′ |,h)∇(ρ(x

′
)v(x

′
))dx

′−

− σ(x)·v(x)
[ρ(x)]2

∫
Ω

W (|x−x
′ |,h)∇(ρ(x

′
))dx

′
. (5.20)

Note that all equations include kernel approximations of spatial derivatives:

⟨∇ f (x)⟩=
∫
Ω

∇ f (x
′
)W (|x−x

′ |,h)dx
′
. (5.21)

Integrating by parts gives:

⟨∇ f (x)⟩=
∫
Ω

∇(W (|x−x
′ |,h) f (x

′
))dx

′−

−
∫
Ω

f (x
′
)∇W (|x−x

′ |,h)dx
′
.

(5.22)

Using Green’s theorem, the first term of the right hand side can be rewritten as:∫
Ω

∇·
(

f (x
′
)W (|x−x

′ |,h)
)

dx
′
=
∫
Ω

f (x
′
)W (|x−x

′ |,h)ndS = 0. (5.23)
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The surface integral is zero if the domain of integration is larger than the compact support
of W or if the field variable assumes zero value on the boundary of the body (free surface).
If none of these conditions are satisfied, modifications should be made to account for
boundary conditions.

One should observe that in Equations (5.18), (5.19) and (5.20) the spatial derivatives
of the field variables are substituted by the derivatives of the kernel function giving:〈

Dρ(x)
Dt

〉
= ρ(x)

∫
Ω

v(x
′
)∇W (|x−x

′ |,h)dx
′
, (5.24)

〈
Dv(x)

Dt

〉
=−

∫
Ω

σ(x′
)

ρ(x′
)

∇W (|x−x
′ |,h)dx

′−

− σ(x)
[ρ(x)]2

∫
Ω

ρ(x
′
)∇W (|x−x

′ |,h)dx
′

(5.25)

〈
DE(x)

Dt

〉
=− σ(x)

[ρ(x)]2

∫
Ω

ρ(x
′
)v(x)∇W (|x−x

′ |,h)dx
′
+

+
σ(x)v(x)
[ρ(x)]2

∫
Ω

ρ(x
′
)∇W (|x−x

′ |,h)dx
′
, (5.26)

The final step is to convert the continuous volume integrals to sums over discrete interpola-
tion points.

Finally, after a few arrangements in order to improve the consistency between all
equations, the most common form of the SPH discretised conservation equations are
obtained: 〈

DρI

Dt

〉
= ρI

N

∑
J=1

mJ

ρJ
(vJ −vI)∇W (|xI −xJ |,h), (5.27)〈

DvI

Dt

〉
=−

N

∑
J=1

mJ

(
σJ

ρ2
J
+

σI

ρ2
I

)
∇W (|xI −xJ |,h) (5.28)〈

DEI

Dt

〉
=−σI

ρI

N

∑
J=1

mJ(vJ −vI)∇W (|xI −xJ |,h) (5.29)

5.4 Kernel Function
To perform the spatial discretisation one has to define the kernel function. Numerous
possibilities exist, and a large number of kernel function types are discussed in literature,
ranging from polynomial to Gaussian. The most common is the B-spline kernel that was
proposed by Monaghan [59]:

W (v,h) =
C
hD


(
1− 3

2 v2 + 3
4 v3
)
, v < 1

1
4 (2− v)3, 1 ≤ v ≤ 2
0, otherwise.

(5.30)
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Where: v = (|x− x′ |)/h, D is the number of dimensions of the problem (i.e. 1,2 or 3),
C is the scaling factor which depends on the number of dimensions and ensures that the
consistency conditions 2 and 3 are satisfied:

2
3 , D = 1,
10
7π
, D = 2,

1
π
, D = 3.

(5.31)

The derivatives of the kernel function have the following property

∂W (|x−x′ |,h)
∂x′

k
=−∂W (|x−x′ |,h)

∂xk
.

It is important not to forget the dimensionality of the kernel function W . For instance, in

one dimension, W has dimension of length−1 and the dimension of
∂W
∂x′ is thus length−2.

The mass, m, should be interpreted as mass per unit area, with the cross-sectional area
numerically equal to one.

5.5 Variable Smoothing Length
If large deformations occur, particles can move apart. In the case of conventional (Eulerian)
SPH, if the smoothing length remains constant, the particle spacing can become so large
that particles will no longer interact. On the other hand, in compression, the number of
neighbour particles within the support can become large, which can significantly slow
down the calculation. In order to avoid these problems, Gingold and Monaghan [28]
suggested that it would be preferable to allow h for any particle to be related to its density
according to

h = G
(

m
ρ

)1/n

(5.32)

where n is the number of dimensions and G is a constant approximately G ≈ 1.3. Benz
[16] proposed the use of a variable smoothing length with the intent of maintaining a
healthy neighbourhood as the continuum deforms. His equation for evolution of h is:

h = h0

(
ρ0

ρ

)1/n

(5.33)

where h0 and ρ0 are initial smoothing length and density and n is the number of dimensions
of the problem. Another frequently used equation for evolution of h based on conservation
of mass is:

dh
dt

=
1
n

h∇·v. (5.34)

According to Monaghan [65] and Price and Monaghan, h should be determined from the
summation equations so that it is consistent with the density obtained from the summation,
i.e. ρI = ∑

J
mJW (|xI −xJ |,hJ), where ρI is either estimated from the SPH summation.
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It is important to observe that the methods for variation of h described above are
empirical in nature. The evolution of h if treated rigorously should be coupled and
consistent with the discretised form of the conservation equations. A rigorously derived
Eulerian SPH with a variable smoothing length requires further research and is still
outstanding.

5.6 Neighbour Search
In the SPH method the interpolation points move with the continuum and as a consequence
neighbours of a particle are not fixed. This implies that the SPH kernel approximation
of any field variable for a particle I requires as a first step the search of the neighbouring
particles j that are within the kernel support of particle I.

Therefore, the neighbour search is an important and CPU time consuming step in an
SPH computation. Based on the distance between the interpolation points the neighbour
search routine must list the particles that are inside the neighbourhood of each particle at
each time step. A direct search between every particle is particularly inefficient, requiring
a time proportional to N2, where N is the total number of particles.

A bucket sort algorithm is more efficient. In this method, an underlying grid of cells
of size 2hMAX is generated and the particles are sorted according to the box, within a
background grid, in which they are located (Figure 5.2). The total extent of the grid is
defined to contain all particles and is updated as the problem evolves. Then for each
particle, the neighbours are searched among the particles contained in the same box and
its neighbouring boxes. This allows the computational time to be cut down to a time
proportional to N logN, Monaghan and Lattanzio [60].

Figure 5.2: Bucket sort and neighbour search.

Each particle I carries the information about the box that currently contains the particle.
Then, to determine the neighbour list of the particle a search is performed over all particles
contained in the same box and its neighbouring boxes. This results in a search over three
boxes in 1D, nine boxes in 2D and 27 boxes in 3D.

Good algorithm design can minimise the computational cost of the search. For example
the coordinates of each particle can also be stored in an integer format which reduces the
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time for data access time. The integer coordinates int xi
int are computed from the particle

position vector xI as:

xi
int = f loor

(
NSUB

2hMAX xi
I

)
. (5.35)

Where NSUB is the number of box subdivisions, typically NSUB = 1000.

5.7 SPH Shortcomings
As mentioned in the introduction, the basic SPH method has been shown to have

several problems:
- Consistency,
- Tensile instability,
- Zero-energy modes.

5.7.1 Consistency
The SPH method even in its continuous form is inconsistent within 2h of the domain
boundaries due to the kernel support incompleteness. In its discrete form the method loses
its 0th order consistency not only in the vicinity of boundaries but also over the rest of the
domain if particles have an irregular distribution. Meglicki [56] showed that node disorder
results in a systematic error. Therefore a proper SPH grid should be as regular as possible
and not contain large discrepancies in order to perform most accurate simulation.

First order consistency of the method can be achieved in two ways. Firstly, by correct-
ing the kernel function, and secondly, by correcting the discrete form of the convolution
integral of the SPH interpolation. Johnson [40] uses this correction procedure and proposed
the Normalised Smoothing Function. Vignjevic [97] also implemented a kernel normali-
sation and correction to lead to a Corrected Normalised Smooth Particle Hydrodynamics
(CNSPH) method which is first order consistent. The full derivation of this correction is
given below. In SPH methods based on a corrected kernel, it is no-longer possible to ignore
boundary conditions. In basic SPH, free surface boundary conditions are not imposed and
are simply ignored as variables tends to zero at boundaries because of the deficiency of
neighbour particles.

5.8 Derivation of Normalised Corrected Gradient SPH formula
Starting from the conventional SPH method of Gingold and Monaghan, which is not even
zero order consistent, a number of researchers worked on development of a first order
consistent form of SPH. The result of this effort at Cranfield was named Normalised
Corrected SPH (NCSPH) and the same term is used in this text for any other similar
version of the method.

The approximation of fields using a NCSPH interpolation has been published by
Randles and Libersky [78], Vignjevic [97] , Bonet [17]. Bonet used properties of the
integrals of motion (linear and angular momentum) to derive Normalisation and Gradient
Correction for kernel interpolation. This approach lacks generality and does not provide
the insight into the origin and the nature of the problem. A full derivation of the correction
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proposed by Vignjevic [97], is given below. The derivation is based on the homogeneity and
isotropy of space. These are properties of space, which have as a consequence conservation
of linear and angular momentum, see Landau [45]. The mixed correction insures that
homogeneity and isotropy of space are preserved in the process of spatial discretisation.

An interpolation technique should not affect homogeneity of space. One way of
demonstrating this is to prove that the interpolation of the solution space itself is invariant
with respect to translational transformation.

Let xI , I = 1, . . . ,n be a finite set of n points in D ∈ R3. Kernel interpolation/approx-
imation of, for instance, a vector field F(x) defined on D consists in finding, for given
F(x1), . . . ,F(xn), we write the general expression for the SPH interpolation of a vector
field on D in the (x1,x2,x3) coordinate system:

⟨F(x)⟩= ∑
J

mJ

ρJ
F(xJ)W (|x−xJ |,h). (5.36)

If the field to be interpolated is the domain D then F = x, x ∈ D and Equation (5.36)
becomes:

⟨x⟩= ∑
J

mJ

ρJ
xJ W (|x−xJ |,h) (5.37)

A different coordinate system (x
′
1,x

′
2,x

′
3), translated by a vector c relative to (x1,x2,x3)

where the approximation ⟨x⟩ can be expressed as:〈
x
′
〉
= ∑

J

mJ

ρJ
x
′
J W (|x′ −x

′
J |,h) = ∑

J

mJ

ρJ
xJ W (|x−xJ |,h). (5.38)

Note that the translation results in
x = x

′
+ c (5.39)

and that

x
′ −x

′
J = x−xJ ⇒ |x′ −x

′
J |= |x−xJ | ⇒ W

(
|x′ −x

′
J |,h
)
=W (|x−xJ |,h) ,

where x′
J are the particle position vectors in the new coordinate system.

If the interpolation is independent of the translation of coordinate axes constant c has
to be approximated exactly, i.e.

⟨x⟩= ⟨x′
+ c⟩= ⟨x′⟩+ ⟨c⟩= ⟨x′⟩+ c. (5.40)

By substituting Equations (5.37) and (5.38), the approximations for both xI and x′
I , into

Equation (5.40) one obtains:

∑
J

mJ

ρJ
xJ W (|xI −xJ |,h) = ∑

J

mJ

ρJ
x
′
J W (|xI −xJ |,h)+ c ∑

J

mJ

ρJ
W (|xI −xJ |,h) (5.41)

By comparison of Equation (5.39) and Equation (5.41) it is clear that the discretised space
will only be homogeneous, i.e. result in the equivalent approximations, if the following
condition is satisfied:

∑
J

mJ

ρJ
W (|xI −xJ |,h) = 1. (5.42)
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The requirement defined by Equation (5.42) can be interpreted as the ability of the interpo-
lation scheme to approximate a constant field (zero order consistency). However if this
condition is not satisfied an exact approximation of a constant field can be achieved by
reorganising equation (5.41).

c =
∑
J

mJ

ρJ
x′

J W (|x′
I −x′

J |,h)−∑
J

mJ

ρJ
xJ W (|xI −xJ |,h)

∑
J

mJ

ρJ
W (|xI −xJ |,h)

=

= ∑
J

mJ

ρJ
x
′
J

W (|x′
I −x′

J |,h)

∑
J

mJ

ρJ
W (|xI −xJ |,h)

−∑
J

mJ

ρJ
x
′
J

W (|xI −xJ |,h)

∑
J

mJ

ρJ
W (|xI −xJ |,h)

(5.43)

This leads to set of new shape functions, also known as Shepard functions

W̃ =
W (|xI −xJ |,h)

∑
J

mJ

ρJ
W (|xI −xJ |,h)

which have the partition of unity property [7].
Similarly, an interpolation technique should not affect isotropy of space (domain of

interpolation D). One way of demonstrating this is to prove that the interpolated space
is independent of infinitesimal rotational transformations. The same holds for the SPH
approximation. If the relative rotation of the two coordinate systems is defined by C the
rotation transformation tensor than the equivalent transformation of a position vector can
be expressed as:

x
′
= C·x (5.44)

where C is an orthonormal tensor. For infinitesimal rotations this transformation can also
be stated as:

x
′
= x−∆ϕ ×x (5.45)

where ∆ϕ is an infinitesimal rotation vector.
If an SPH approximation is to maintain the isotropy of space then the approximation

has to satisfy the following condition:

⟨x′⟩ ≡ ⟨C·x⟩. (5.46)

For the case of infinitesimal rotations, the approximation of the product ⟨C·x⟩ can be
replaced by the product of applications ⟨C⟩· ⟨x⟩ with the difference proportional to the
second and higher order infinitesimals. This allows for the equation (5.46) to restated as

⟨x′⟩= ⟨C⟩· ⟨x⟩. (5.47)

In order to preserve the properties of approximation ⟨x⟩ the rotational matrix has to be
approximately exactly, i.e. ⟨C⟩= C ⇒ ⟨x′⟩= C· ⟨x⟩. To consider this condition one
can start by rewriting

x
′
= x−∆ϕ ×x = x−∇(∆ϕ ×x)·x =

= x−ϕ
x x = (I−ϕ

x) ·x,
(5.48)
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where ϕx is a skew-symmetric dyadic:

ϕ
x =

 0 −∆ϕz e1e2 ∆ϕy e1e3
∆ϕz e2e1 0 −∆ϕx e2e3
−∆ϕy e3e1 ∆ϕx e3e2 0

 . (5.49)

For small rotations, the rotation transformation tensor is given by:

C = I−ϕ
x. (5.50)

The approximation of the rotated coordinates is:

⟨x′⟩ ≡ ⟨Cx⟩= ⟨C⟩⟨x⟩= ⟨I−ϕ
x⟩⟨x⟩. (5.51)

This means that the requirement on the interpolation is:

I−ϕ
x = ⟨I−ϕ

x⟩ (5.52)

or
ϕ

x = ⟨ϕx⟩. (5.53)

Expanding this expression leads to:

⟨ϕx⟩= ∑
J

mJ

ρJ
∆ϕ ×xJ∇W (xI −xJ ,h) = ∑

J

mJ

ρJ
(ϕx xJ)∇W (xI −xJ ,h) =

= ϕ
x
∑
J

mJ

ρJ
xJ ⊗∇W (xI −xJ ,h).

(5.54)

Therefore to preserve space isotropy, i.e. ϕ = ⟨ϕ⟩ the following condition has to be
satisfied.

mbr

∑
J=1

mJ

ρJ
xJ ⊗∇W (xI −xJ ,h) = I. (5.55)

Space Homogeneity Space Anisotropy

Condition which has
to be satisfied

∑
nnbr
J=1

mJ
ρJ

W (xI −xJ ,h) = 1 ∑
nnbr
J=1

mJ
ρJ

xJ ⊗∇W (xI −xJ ,h) = I

Normalised – Cor-
rected form

W̃IJ =
W (xI −xJ ,h)

nnbr
∑

J=1

mJ

ρJ
W (xI −xJ ,h)

∇̃W̃IJ =

∇W̃IJ

(
nnbr
∑

J=1

mJ

ρJ
⊗∇W̃IJ

)−1

Table 5.1: Corrected forms of the kernel function and its gradient.

The form of the normalised kernel function and the approximation of the first order
derivatives which provides first order consistency is given in Table 5.1 below.
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Using the NCSPH approximations the conservation equations assume the following
form: 〈

DρI

Dt

〉
= ρI

nnbr

∑
J=1

mJ

ρJ
(vJ −vI) · ∇̃W̃IJ , (5.56)〈

DvI

Dt

〉
=−

nnbr

∑
J=1

mJ

(
σ I

ρ2
I
+

σ J

ρ2
J

)
· ∇̃W̃IJ , (5.57)〈

De
Dt

〉
=−

nnbr

∑
J=1

mJ (vJ −vI) · ∇̃W̃IJ . (5.58)

5.9 Tensile Instability
A Von Neumann stability analysis of the SPH method was conducted Swegle et al. [87]
and Balsara [7] separately. This has revealed that the SPH method suffers from a tensile
instability. This instability manifests itself as a clustering of the particles, which resembles
fracture and fragmentation, but is in fact a numerical artefact, see Figure 5.3

Swegle concluded that the instability doesn’t result from the numerical time integration
algorithm, but rather from an effective stress resulting from a non-physical negative
modulus being produced by the interaction between the constitutive relation and the kernel
interpolation. In other words the kernel interpolation used in spatial discretisation changes
the nature of original partial differential equations. These changes in the effective stress
amplify, rather than reduce, perturbations in the strain.

Figure 5.3: Typical colocated Eulerian SPH behaviour under tension. Although the linear elastic model was
used for this simulation (i.e. no fracture is included in the constitutive model), unphysical fracture of the 2−D
specimen occurs as a consequence of numerical instability in areas of high tensile stresses.

From Swegle’s stability analysis it emerged that the criterion for stability was that:

W
′′
σ > 0 (5.59)

where W
′′

is the second derivative of W with respect to its argument and σ is the stress,
negative in compression and positive in tension. A stability analysis leading to the stability
condition (5.60) is given at the end of this section.

This criterion states that instability can also occur in compression, not only in tension.
Indeed, if the slope of the derivative of the kernel function is positive, the method is
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unstable in tension and stable in compression and if the slope is negative, it is unstable in
compression and stable in tension.

Figure 5.4: Stability regimes for the B-spline kernel function (Swegle, 1994).

The fact that this instability manifests itself most often in tension can be explained.
Figure 5.4 shows the stability regime for the B-spline kernel function. The minimum of
the derivative is situated at u = 2

3 h. In standard configurations, the smoothing length is 1.2
to 1.3 times the particle spacing. Thus, standard configurations are unstable in tension.
This explains why this unstable phenomenon is generally observed in tension and hence,
its misleading name "tensile instability".

In order to remedy this problem several solutions have been proposed. Guenther [29]
and Wen et al. [105] proposed a solution known as Conservative Smoothing. Randles
and Libersky [73] proposed adding dissipative terms, an approach related to conservative
smoothing. Dyka and Ingel [23] proposed an original solution by using a non-collocated
discretisation of stress and velocity points. At one set of points the stresses are evaluated,
while the momentum equation is calculated at another set of points. The ’stress’ points
are equivalent to the Gauss quadrature points in FE, the other set of points is equivalent to
the element nodes. This approach was extended to two dimensions, in combination with
kernel normalisation, by Vignjevic and Campbell [97]. Other solutions were proposed, for
instance see Monaghan [65] who proposes the addition of an artificial force to stabilise the
computation. Recently Randles and Libersky [78] combined MLS interpolation with the
stress and velocity point approach. They called this approach the Dual Particle Dynamics
method.

The conservative smoothing and the artificial repulsive forces methods have limited
applicability and have to be used with caution because they may affect the strength of
material being modelled. At present, the most promising approach is non-collocational
spatial discretisation. This problem is in the focus of attention of a number of researchers
working on mesh-less methods.



178
Chapter 5. Review of Development of the Smooth Particle

Hydrodynamics (SPH) Method

5.9.1 Stability analysis of conventional (Eulerian) SPH
For the analysis of the SPH momentum equation in current configuration, the following
1−D SPH momentum equation with nodal integration is considered:

mI üI =−∑
J∈S

VJW
′
I (xI − xJ ,h)σJ . (5.60)

Where: VJ is the current volume of particle J, σJ is the Cauchy stress of particle J and

W
′
I (xI − xJ ,h) =

∂WI(xI − x
′
,h)

∂x′

∣∣∣∣∣
x′=xJ

.

In order to introduce the displacement perturbation on the right hand side of (5.60), the
current volume VJ was expressed in terms of the initial particle mass and density as:

VJ =
m
ρ

∣∣∣∣
J

(5.61)

where the current density in (5.61) was defined as

ρ = J−1
ρ0. (5.62)

The substitution of equation (5.62) and equation (5.61) into equation (5.60) and using the
fact that in 1D J = F , yields:

mI üI =−∑
J∈S

mJ

ρ0
W

′
I (xI − xJ ,h)FJ σJ . (5.63)

In equation (5.63), the deformation gradient is expressed with respect to the current
configuration, hence:

FJ =
∂x
∂X

∣∣∣∣
J
=

∂u
∂X

∣∣∣∣
J
+1 =

∂u
∂x

∂x
∂X

∣∣∣∣
J
+1 =

1

1− ∂u
∂x

∣∣∣∣
J

. (5.64)

Equation (5.63) is linearised using perturbations ū = u+ ũ, x̄ = x+ x̃, F̄ = F + F̃ and
σ̄ = σ + σ̃ as follows:

mI ¨̄uI =−∑
J∈S

mJ

ρ0
W

′
I (x̄I − x̄J ,h) F̄J σ̄J , (5.65)

mI ¨̄uI =−∑
J∈S

mJ

ρ0
W

′
I (x̄I − x̄J ,h)(σ + σ̃)(F + F̃), (5.66)

which yields

mI ¨̄uI =−∑
J∈S

mJ

ρ0
W

′
I (x̄I − x̄J ,h)(x̄I − x̄J ,h)(σJ FJ +σJ F̃J + σ̃J FJ) (5.67)

in (5.67) the product σ̃ F̃ was neglected.
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When perturbations x̄ = x+ x̃ are introduced, the smoothing function values change
as:

W (x̄I − x̄J ,h) =W ((xI + x̃I)− (xJ + x̃J),h)) (5.68)

with x̃I = uI and x̃J = uJ equation (5.69) can be rewritten as

W ((xI + x̃I)− (xJ + x̃J),h) =W ((xI − xJ)+(uI −uJ),h). (5.69)

Using Taylor’s series expansion yields:

W (x̄I − x̄J ,h) =W (xI − xJ ,h)+∆xW
′
(xI − xJ ,h) (5.70)

where ∆x = uI −uJ . Similarly, the derivative of the kernel function in equation (5.70) can
be approximated as:

W
′
(x̄I − x̄J ,h) =W

′
(xI − xJ ,h)+∆xW

′′
(xI − xJ ,h). (5.71)

Hence
W

′
(x̄I − x̄J ,h)−W

′
(xI − xJ ,h) =(ũI − ũJ)W

′′
(xI − xJ ,h) =

= W̃
′
(xI − xJ ,h).

(5.72)

Subtracting equation (5.60) from (5.67) yields:

mI ¨̃uI =−∑
J∈S

mJ

ρ0J
W

′
I (x̄I − x̄J ,h)(σJ FJ +σJF̃J + σ̃J FJ)+

= +∑
J∈S

mJ

ρ0J
WI(xI − xJ ,h)σJFJ .

(5.73)

Equation (5.73) after rearranging becomes:

mI ¨̃uI =−∑
J∈S

mJ

ρ0J

(
−W

′
I (x̄I − x̄J ,h)+WI(xI − xJ ,h)

)
σJ FJ−

=−∑
J∈S

mJ

ρ0J
(x̄I − x̄J ,h) (σJ F̃J + σ̃J FJ).

(5.74)

And after substituting equation (5.72) into (5.74) one gets:

mI ¨̃uI =−∑
J∈S

mJ

ρ0J

[(
W̃

′
I (x̃I − x̃J ,h)

)
σJFJ +W

′
I (x̄I − x̄J ,h)

(
σJF̃J + σ̃JFJ

)]
. (5.75)

To perform the Von Neumann stability analysis a Fourier form of perturbation was substi-
tuted into the linearised momentum equation

ũ = u0 ei(ω̄t+kX) (5.76)

where k is wave number and ω is frequency.
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The resulting dispersion relation for the current configuration is expressed as follows,
the reader is referred to Randles et al. [78][79] and Rabczuk et al. [73] for a detailed
explanation:

ω
2 =

C̄στ

ρ

[
∑
J∈S

W
′
( j∆x)sin(κ∆x)

]2

−

=−σ

ρ

∑
J∈S

W
′′
( j∆x) [1− cos(κ j∆x)]−

[
∑
J∈S

W
′
( j∆x)sin(κ j∆x)

]2


(5.77)

Upon inspection of equation (5.77) it is immediately clear that the three terms contained
herein yield three different conditions for stability:

1) When the material is unstable, in other words when C̄στ vanishes, which corresponds
to the material instability of the continuum (ω̄2 = (C̄κ2)/(ρ0), C̄ ≤ 0, equation
(5.11), Reveles [81]). This implies (5.77) could have two possible solutions: ω =
±i

√
x, the negative solution would yield Condition 2 outlined below.

2) At the cut-off wave number κ = π

∆x , j = −1, this is the onset of stability for the
particle equations in current configuration for an equally spaced particle arrange-
ment. In this case, the first term in the right hand side of equation (5.77) vanishes.
Again, two possible solutions exist: ω =±i

√
x, the negative solution would yield

Condition 2.
3) when σ > 0 and C̄στ ̸= 0, which is the tensile instability identified by Swegle. The

second term inside the brackets on the right hand side is always positive, hence, if
only

C̄στ

ρ

[
∑
J∈S

W
′
( j∆x)sin(κ∆x)

]2

and

(
∑
J∈S

W
′
( j∆x)sin(κ∆x)

)2

existed, the particle equation would be unconditionally stable (i.e. the only pos-
sible solution for ω is a positive real). However, if ∑

J∈S
W

′
( j∆x) [1− cos(κ j∆x)]

is sufficiently positive and σ > 0, the product of what is in brackets in equation
(5.77) and σ would yield a negative value, hence ω =±i

√
x and again, the negative

solution would yield Condition 2. This condition is given by Swegle et al. [87][88]
as σW

′′
> 0 which defines the onset of tensile instability of the SPH equations with

nodal integration.
Note that stability condition 1) is desirable as it represents the stability of continuum

equations. Conditions 2) and 3) are the result of the type of discretisation carried out in
SPH. From this analysis it is clear why some special smoothing functions can reduce or
eliminate the tensile instability altogether: as long as the smoothing function is carefully
selected, the second derivative might yield a negative value which can restore stability in
the particle equation. For the cubic spline, (widely employed for SPH approximations) the
value of the second derivative of the smoothing function at a distance u = 2/3 (Figure 5.4),
from particle I ispositive. Therefore, the onset of tensile instability is defined by σW

′′
> 0

Swegle [87].
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The stability analysis of the Eulerian SPH equations, presented above, has revealed
that the stability of the system is governed by three terms: a material stability term, which
is desirable since this term is also present in the continuum equations, and two more terms
which are the result of the type of discretisation carried out, namely the spurious singular
mode term and the tensile instability term.

An effective illustration of the distortion of material instability, by the spatial discreti-
sation, for the case of a hyperelastic material is given in Figure 5.5 taken from [73]. The
domains of material stability for the Lagrangian kernel, an Eulerian kernel and that of the
governing partial differential equation, i.e. the momentum equation are clearly identified.
The stable domains are defined in the space of the two principal stretches, λ1 and λ2.

Figure 5.5: (a) Stable domain for MLS particle method with stress point integration and Lagrangian kernel
compared to the stable domain for the PDE; (b) Stable domains of MLS particle methods for stress point
integration with Eulerian and Lagrangian kernel for hyperelastic material; dashed and solid lines bound the stable
domains for Lagrangian and Eulerian kernels, respectively [73].

5.10 Zero-Energy Modes
Zero-energy modes are a problem that is not unique to particle methods. These spurious
modes, which correspond to modes of deformation characterised by a pattern of nodal
displacement that produces zero strain energy, can also be found in the finite difference
and finite element methods.

Swegle [87] was first to show that SPH suffers from zero energy modes. These modes
arise from the nodal under integration. The fundamental cause is that all field variables
and their derivatives are calculated at the same locations (particle positions), which makes
the SPH method collocational. For instance, for a 1D oscillatory velocity field, illustrated
in Figure 5.6, the kernel approximation would give negligible velocity gradients and
consequently stresses at the particles. These modes of deformation are not resisted and
can be easily exited by rapid impulsive loading. Another explanation can be found in the
origin of the kernel approximation. As the kernel approximation, which is the basis of
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SPH, is an interpolation of a set of discrete data, a constant field, can be approximated
with a sinusoidal curve/surface if the order of the interpolation is high enough.

If one would approximate the derivative of the velocity field shown in Figure 5.5 with
a central difference formula:

dv
dx

∣∣∣∣
x=xi

=
f (vi+1)− f (vi−1)

xi+1 − xi−1
= 0 (5.78)

at all sampling points. Hence this mode can not be detected, and can grow un-resisted in
other words this mode could grow to a level where it dominates the solution.

Figure 5.6: Velocity field that corresponds to a zero energy mode of deformation.

Zero energy or spurious modes are characterised by a pattern of nodal displacement
that is not rigid body motion but still produces zero strain energy.

One of the key ideas to reduce spurious oscillations is to compute derivatives away
from the particles where kernel functions have zero derivatives. Randles [78] proposed
a stress point method. Two sets of points are created for the domain discretisation, one
carries velocity, and another carries stress. The velocity gradient and stress are computed
on stress points, while stress divergence is sampled at the velocity points using stress
point neighbours. According to Swegle et al. [87][88], these spurious modes can be
eliminated by replacing the strain measure by a non-local approximation based on gradient
approach. Beissel [11] proposed another way to stabilise nodal integration, the least square
stabilisation method.

5.11 Non-Local properties of SPH
SPH is by nature a nonlocal method, capable of overcoming difficulties related to material
softening without any additional regularisation measures. In this chapter, a local damage
model resulting in material strain-softening was used in a stable Total-Lagrange SPH code,
Vignjevic at al. [101]. The investigation was done by considering a simple uniaxial wave
propagation problem in a symmetrically loaded homogeneous bar, in presence of damage
induced strain-softening, which is defined by Bažant and Belytschko [8]. They derived
an exact solution for given initial and boundary conditions for stress wave propagation
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and demonstrated that for the FE spatial discretisation combined with a strain-softening
material, deformation localised in a single element. With strain localised in the element
undergoing strain-softening, stress wave propagation through the element stopped and the
rest of the bar unloaded elastically. Consequently, the numerical results were dependent on
the element size, i.e. showed pronounced mesh sensitivity.

This type of instability does not occur when SPH is used to analyse the same problem,
i.e. stress wave propagation continues in the presence of strain-softening and the waves
continue to propagate within the localisation zone. The SPH smoothing length represents
a damage related length scale independent of the particle spacing (spatial discretisation
density). This leads to the observation that the SPH method has inherent non-local
properties.

5.11.1 Theoretical Background of Strain-Softening
According to continuum damage mechanics CDM theory, the properties of an isotropic
material, including damage, have a homogeneous distribution within a representative
volume element (RVE). Damage is defined by a scalar damage variable ω , which has a
value between zero and one. ω = 0 corresponds to no damage and corresponds to complete
material failure.

One possible physical interpretation of damage is as a reduction in effective load
carrying area within the RVE, as originally proposed by Kachanov (1958). In this case, ω

is expressed as the ratio of damaged surface area, δSD, to the original undamaged surface
area, δS:

ω =
δSD

δS
. (5.79)

This interpretation of damage leads to a constitutive equation expressed in terms of effective
stress σ̃ , see Rabotnov [75]. The relationship between the true stress and effective stress
can then be derived from a definition of effective load carrying area δ S̃ = δS−δSDS̃ =
δS−δSD and the force equilibrium, σ̃δ S̃ = σδS:

σ̃ = σ
1

1−ω
. (5.80)

Making use of the effective stress, combined with equivalent strain principle, Hooke’s
law can be expressed in two equivalent forms, i.e. σ = Ẽεe or σ̃ = Eεe, where Ẽ is the
effective Young’s modulus and εe is the elastic strain. Note that the true stress σ results in
the same elastic strain for a damaged material as σ̃ for the virgin material. This provides a
relationship between ω and Ẽ:

ω = 1− Ẽ
E
, Ẽ = E(1−ω). (5.81)

The development of localised deformation is caused by a physical process occurring
on a sub-continuum scale. The process is defined by the initiation, growth and interaction
of cracks and voids, which finally lead to complete material fracture. In this investigation,
as proposed by Rudnicki [76], "localization is defined as instability in the macroscopic
constitutive description of inelastic deformation of the material". The instability allows the
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constitutive equations of an originally homogeneous material to reach a bifurcation point
and become unstable. Consequently, the deformation localises and becomes non-uniform,
while outside this instability zone, the material continues to be stable, Rudicki [76].

When the FE method, combined with a conventional local constitutive equation, is
applied to model the response of a softening material the results are nonphysical and mesh
dependent. This is a consequence of the ill-posed description of the governing differential
equations in the material softening zone. In static problems the partial differential equations
(PDEs) change from elliptic to hyperbolic in the softening zone, while in dynamic problems
they change from hyperbolic to elliptic.

A material is considered to be stable and stay in equilibrium, when the double con-
traction of stress-rate σ̇i j and strain-rate ε̇i j is positive. This criterion is also called general
bifurcation criterion, according to Neilsen [68], and is true as long as the stress-strain
relationship of the material has a positive slope.

σ̇i j ε̇i j > 0. (5.82)

The constitutive equations are written in the rate form, with a piecewise linear rela-
tionship between stress and strain rates through the material tangent stiffness tensor Di jkl
as:

σ̇i j = Di jkl ε̇kl (5.83)

Therefore, the inequality (5.82) reads:

Di jkl ε̇i j ε̇kl > 0. (5.84)

The material becomes unstable when the material reaches its limiting point, which
occurs when the condition (5.84) is violated. This criterion defines the bifurcation point
and is mathematically expressed as:

Di jkl ε̇i j ε̇kl = 0, ε̇i jDi jkl ε̇kl = 0. (5.85)

The bifurcation criterion is reached when the tangent stiffness tensor becomes singular
(not positive-definite) anymore:

det
(
Di jkl

)
= 0. (5.86)

The test problem chosen to illustrate nonlocal properties of SPH is based on the 1D
stress state dynamic softening problem for which Bažant and Belytschko [8] derived
an analytical solution. To make the problem more suited to analysis codes a 1D strain
was assumed, then a new analytical solution developed following procedure presented in
aforementioned work.
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Figure 5.7: Stress-strain diagram of softening material Bažant and Belytschko [8].

Figure 5.7 shows the stress-strain curve of a general strain-softening material, as
considered by Bažant and Belytschko [8]. For the linear elastic behaviour between the
points O and P, the material stiffness is defined by Young’s modulus E. The maximum
strength f

′
t is reached for the strain εp. The curve in the strain softening zone (between

points P and F) is defined by the function F(ε), and the slope of this part of the curve,
F

′
(ε), is negative. Function F(ε) reaches a zero stress for a finite strain ε or an asymptotic

strain ε → ∞. In the original paper of Bažant and Belytschko [8], unloading ε̇ < 0 and
reloading ε̇ ≥ 0 is considered to be elastic and occur with the undamaged Young’s modulus
E.

Figure 5.8: Geometry and loading of softening bar, Bažant and Belytschko [8].

The geometry and the loading conditions of the problem are shown in Figure 5.8. The
bar length is 2L, material density per unit length is ρ and the coordinate system is chosen
so that the longitudinal coordinate x is measured from the bar centre. The bar is loaded at
both ends with a constant velocity v, applied in opposite directions.

Two tensile step waves are generated in the bar, one travelling from the right boundary
in the negative x-direction and the other travelling from the left boundary in the positive
x-direction. These two step waves of constant strain meet in the centre of the bar (x = 0) at
time t = L

ce
. At this point the strain doubles instantaneously, and the midsection zone of

the bar enters the strain-softening regime.
For elastic material response the wave equation is hyperbolic:

c2
e

∂ 2u
∂x2 =

∂ 2u
∂ t2 (5.87)

where ce is the elastic wave speed, which for the 1D state of strain, is:

ce =

√
E(1−ν)

ρ(1−2ν)(1+ν)
. (5.88)
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The longitudinal displacement function for the linear elastic response is derived from
appropriate initial and boundary conditions:

u(x, t) =−ν

〈
t − x+L

ce

〉
+ν

〈
t +

x+L
ce

〉
(5.89)

where the expressions in the brackets ⟨· ⟩ need to be positive-definite. The corresponding
strain is obtained as:

εx =
∂u
∂x

=
ν

ce

[
H
(

t − x+L
ce

)
+H

(
t +

x−L
ce

)]
(5.90)

where H(·) is the Heaviside step function. The stress state induced by this deformation is:

σx =
E(1−ν)

(1−2ν)(1+ν)
εx (5.91)

This assumption of linear elasticity (5.89) only holds for t < L/ce, before the centre of
the bar enters the strain-softening regime at response time t = L/ce, when the two stress
step waves meet. At the centre of the bar, the slope of the stress-strain curve (the strain in
the bar satisfies the condition: εp/2 < ε ≤ εp) becomes negative, i.e. F

′
(ε)< 0, and the

wave speed c becomes imaginary. Consequently, the equation of motion in the softening
domain becomes an elliptic PDE:

c2
e

∂ 2u
∂x2 +

∂ 2u
∂ t2 = 0 with c2 =

F
′
(ε)

ρ
. (5.92)

Theoretically, the softening is limited to an area of zero width at x = 0. So, a disconti-
nuity with a displacement jump develops at this point, giving a difference in magnitude of
strain ε = 4ν⟨t −L/ce⟩. Strain increases towards infinity and stress drops to zero within
the softening zone. Release waves are generated from this point and propagate into the bar.

The infinite strain in the softening domain can be expressed by the Dirac Delta function
δ (x) as:

εx = 4νt − L
ce

δ (x). (5.93)

The solution for the strain field outside the softening zone, t > L/ce and x < 0,
(consequently in x > 0 part of the bar, due to symmetry of the problem), is then:

εx =
ν

ce

[
H
(

t − x+L
ce

)
−H

(
t − L− x

ce

)
+4ce t −Lν δ (x)

]
. (5.94)

Following Bažant and Belytschko [8] this analytical solution was used to derive a
comparison between an elastic (ε < εp/2) and a strain-softening (εp/2 < ε < εp) wave
propagation problem.

Figure 5.9 to Figure 5.10 show the solutions for longitudinal displacement, strain and
stress along the bar at time t = 3L/2ce, for both the elastic and strain-softening responses
of a local continuum. The elastic solution represents continuous wave propagation after
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superposition of the waves. The results for the strain-softening solution show clearly
the consequences of strain-softening; a displacement discontinuity develops after the
superposition in the localisation zone at x = 0 and this zone localises in an area of zero
width (see Figure 5.9). This discontinuity cannot propagate outside this zone, as the type
of PDE in this zone has changed to elliptic and interaction with areas x ̸= 0, which are
governed by hyperbolic PDEs, is not possible. Consequently, strain grows to infinity, as
illustrated in Figure 5.10, and simultaneously stress in the localisation zone drops to zero,
see Figure 5.11. Outside the localisation zone, the bar unloads as release waves travel to
the bar ends. One can observe that the softening zone effectively acts as a free boundary.

Figure 5.9: Elastic local and nonlo-
cal solutions for normalised longitu-
dinal displacement at t = 3L/2c.

Figure 5.10: Elastic local and non-
local solutions for normalised longi-
tudinal strain at t = 3L/2c.

Figure 5.11: Elastic local and non-
local solutions for normalised longi-
tudinal stress at t = 3L/2c.

Figure 5.12: Internal energy his-
tory for the local and nonlocal solu-
tions.

5.11.2 Main Aspects of the Smoothed Particle Hydrodynamics (SPH) Method as
Nonlocal Regularisation Method
In the local theory of continuum stress only depends on the deformation history at a
single point x. A nonlocal theory considers additionally the influence of the deformation
of surrounding points, ξ , in a representative volume element (RVE). This is done by
substituting the local variable η(x) by a weighted average η̄(x) of the variable in the
point’s spatial neighbourhood.
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Nonlocal integral theory aims to describe spatial interactions with weighted spatial
averages. A transformation rule is defined by an integral over a RVE domain, denoted as V
in the integral below:

η̄(x) =
∫
V

α(x,ξ )η(ξ )dξ (5.95)

where α(x,ξ ) is a weighting function for a local state variable in the spatial domain
V .

The size of the RVE is quantified by a characteristic length ℓ, also called the internal
length. It is understood as a material property which depends on the size of material
heterogeneities on the micro-scale. An example of a common weighting function α(x,ξ )
is Gaussian function:

α(r) = α(∥x−ξ∥) = 1
(2π)3/2 ℓ3 exp

(
− r2

2ℓ2

)
. (5.96)

With increase in distance from the point x, the influence of the surrounding material
reduces and reaches zero at the boundaries of the RVE. This averaging process is often
called smoothing.

As already stated, the SPH approximations of field variables are values smoothed over
the kernel function domains or, in its discrete form, over a number of neighbours for a
given particle I. This kernel smoothing/interpolation gives the SPH method non-local
properties. More specifically, the density, stress and velocity fields in SPH are smoothed
(discretised) using the kernel interpolation. Furthermore, in SPH constitutive equations are
integrated for all particles locally, i.e. all particles carry information about density, velocity,
stress and internal state variables, which makes this method collocational. In FE, based on
the isoparametric element formulation, constitutive equations are integrated at the Gauss
points and the discrete values for the velocity field are determined for nodal points, which
makes this method non-collocational.

An outline of a stable Total Lagrangian form of SPH, used in this work, is given below,
whilst the full information about this form of SPH can be found in Vignjevic at al. [101].

In the Total Lagrangian formulation the balance equations are written in the initial
configuration and expressed in terms of material coordinates. The Total Lagrangian
SPH form of the discretised balance equations are given in Table 5.2, Vignjevic at al.
[101]. These equations are discretised using the Total Lagrangian kernel function and its
derivatives are evaluated in the initial configuration, in terms of the initial coordinates x0

i
and x0

j of the i and j particles.
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Balance equations in continual and the SPH discrete forms
mass ρ = J−1 ρ0 ρ = J−1 ρ0 = [det⟨F⟩]−1 ρ0

momentum ρ0 ü = ∇0 ·P+b ⟨üt⟩=−
np
∑
j=1

m j

(
Pi

ρ02
i

+
P j

ρ02
j

)
∇x0

i
W
(
|x0

i −x0
j |, h0

)
+b

energy ρ0 ė = P : Ḟ ⟨ėi⟩=
Pi

ρi
:

np
∑
j=1

m j

ρ0
j
(vi −v j)⊗∇x0

i
W
(
|x0

i −x0
j |, h0

)
Table 5.2: Balance equations in continuum and SPH discrete forms Vignjevic at al. [101].

Where: F is deformation gradient, J = detF is the Jacobian of deformation gradient,
ρ is material density, u is displacement, P is first Piola-Kirchhoff stress, b is a body force
per unit mass, e is internal energy. The superscript 0 in the equation above indicates initial
configuration and dot above a variable denotes time derivative.

This SPH discretisation results in the following equation for the deformation gradient,
Vignjevic at al. [101]:

⟨Fi⟩=−
np

∑
j=1

m j

ρ0
j
(vi −v j)⊗ ∇x0

i
W
(
|x0

i −x0
j .|, h0) (5.97)

A normalised corrected version of SPH based on cubic B-spline kernel function was
used (for more details, see Vignjevic at al. [97]). These semi-discretised equations are
integrated in time using a central difference integration scheme (explicit time integration).
The update of particle positions was performed using a smoothed velocity (XSPH), Randles
and Libersky [77].

5.11.3 Numerical Experiments for the Evaluation of the SPH Method

The objective of the numerical experiments was to investigate the behaviour of the SPH
method, when used with a local continuum damage mechanics (CDM) material model
with strain-softening. Then to compare the results with equivalent analyses performed
with the FE method. The tests were conducted with an in-house Total-Lagrangian SPH
code (MCM) and with the FE code DYNA3D, Lin [50]. The 1D strain, wave propagation
problem, described above was used as the benchmark example.

An isotropic elastic material model with damage was used in this study, with a stress-
strain relationship is illustrated in Figure 5.13. The onset of strain-softening occurs when
strain reaches the damage initiation strain εi, which corresponds to the maximum strength.
After the onset of strain-softening, material strength reduces gradually until it reaches zero
at a strain equal to the critical failure strain ε f .
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Figure 5.13: Material model with strain-softening implemented into the MCM SPH code
and FE code DYNA3D.

The evolution of the damage variable was defined to give linear stress-strain behaviour
following the onset of damage growth. In the model, E is the Young’s modulus of a
virgin material, which defines material linear elastic behaviour. Material stiffness in the
softening regime is defined by the tangent stiffness (softening part of the stress strain
curve), Et . Material loading/unloading response in the softening regime was defined using
the secant stiffness, denoted as Ẽ = E. The secant stiffness is equivalent to virgin material
Young’s modulus. The parameters εi and ε f define the initiation and critical failure strains,
respectively, and ε∗ denotes the current strain.

The stiffness of the softening material was defined by the slope of the strain-softening
part of the stress-strain curve:

Et =
−E εi

ε f − εi
. (5.98)

Using equation (5.80) damage variable ω can then be expressed as:

ω =
ε f (ε

∗− εi)

ε∗(ε f − εi
. (5.99)

For ε∗ = εi, and for ε∗ = ε f , i.e. at the point of material failure ω f = 1.
A number of numerical tests were performed to illustrate the inherent nonlocal prop-

erties of the SPH method, where the smoothing length, in addition to its interpolation
meaning, represents material characteristic length.

The bar, used in the numerical experiments, has an overall length of 2ℓ= 200 [mm]
and a square cross section. In the SPH models symmetry planes were used to properly
enforce the boundary conditons on the long edges. The origin of the coordinate system
was located in the centre of the bar with the x axis aligned with the bar. All degrees of
freedom except for the longitudinal direction are restricted in order to ensure uniaxial
strain conditions. The material input data used in the simulations is given in Table 5.3.
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Value Label Samples Magnitude Unit
Density ρ 1.55·10−9 Tonnes/mm3

Young’s Modulus E 70800 MPa
Poisson’s ratio ν 0.125
Damage initiation strain ε 0.022
Failure strain ε f 0.060

Table 5.3: Input data for isotropic CDM model with linear strain-softening for FE
(DYNA3D) and SPH (MCM) codes.

The bar was loaded in tension by applying constant velocity in opposite directions to
its ends. In order to induce the softening regime in material, the applied velocity has to be
between.

Figure 5.14: Spatial discretisations used in the FE (DYNA3D) simulation of the strain-
softening bar.

To provide a reference data set for comparison with SPH, and to illustrate the mesh
dependency of the FE model, the bar problem was simulated with the nonlinear transient
FE code DYNA3D, using the local constitutive model described above. Four different
spatial discretisation densities (mesh densities) were considered: the bar was discretised
with 31, 101 151 and 201 elements along x axis, as shown in Figure 5.14

Similarly, in the SPH simulations, the bar was discretised with three different particle
densities, determined by inter-particle spacings: ∆p = 1.98,1.32 and 0.995 [mm], as shown
in Figure 5.15.
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Figure 5.15: Particle discretisation in SPH (MCM) of strain-softening bar.

The smoothing length, which determines the range over which particle velocities and
stresses are smoothed, is defined as:

h = λ ·∆p (5.100)

where λ is a factor, which relates the interparticle spacing to the smoothing length. For the
B-Spline kernel, the smoothing domain has radius 2h, which is user defined parameter in
SPH simulations.

The influence of the smoothing length on the results is illustrated with three numerical
experiments summarised in Table 5.4.

• The first experiment investigates the influence of variable h, where h was varied
by changing the interparticle distance ∆p while keeping parameter λ constant at
λ = 1.3. This is a typical value used in SPH analyses. In this experiment, the
number of neighbours if a given particle, i.e. particles that lie within a spherical
domain of radius 2h, was the same for all models.

• The second experiment investigates the influence of h on the size of softening
zone in the case of constant discretisation density (interparticle distance). The
interparticle distance was fixed as ∆p = 200[mm]/201, and λ varied. Parameter λ

was given values of λ = 1.25,2.25 and 3.25, corresponding to 5, 9 and 13 neighbour
particles in the loading direction, respectively.

• The third experiment investigated a fixed smoothing length of h = 2.5 [mm] for
different discretisation densities. In these tests, both the smoothing length parameter,
λ and the interparticle distance ∆p, were varied.

Interparticle distance ∆p [mm] Support domain factor λ (−) Physical smoothing length (h = λ∆p) Particles through thickness (y&z Directions)
Experiment 1: Influence of interparticle distance, ∆p=variable, λ = 1.3 = constant

200/101 260/101 5 101 2525
200/151 1.3 260/151 9 151 12231
200/201 260/201 11

Experiment 2: Influence of averaging over several neighbouring particles, ∆p=variable, λ = 1.3 = variable
1.25 250/201

200/101 2.25 150/67 11 201 243212.25 650/201
Experiment 3: Influence of averaging over several neighbouring particles, ∆p=variable, λ = 1.3 = variable, h = 25[mm]

200/101 1.2625 5 101 2525
200/151 1.8875 2.5 9 151 12231
200/201 2.5125 11 201 24321

Table 5.4: Summary of the SPH discretisation parameters used in the three numerical experiments.
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5.11.4 Numerical Results of the Strain-Softening in FE

The conventional strain-softening solutions, obtained with FE, are compared with the
analytical solution for longitudinal displacement, strain and stress. The stress-strain curves,
obtained at the elements located at x = 0 for the FE models with different mesh densities,
are shown in Figure 5.16.

Figure 5.16: Longitudinal stress vs. lon-
gitudinal strain curves for the central element
for different FE mesh densities.

Figure 5.17: Damage distribution for
different FE mesh densities at response time
t = 3/2·L/ce.

The damage was limited to this element only and propagates towards the bar ends by
the deformation of this element which undergoes softening. The size of these elements, i.e.
softening zones at response time t = 3/2·L/ce is shown in Figure 5.17 and Figure 5.22.
The size of the softening zone in which damage accumulates, was influenced by the initial
element size (mesh sensitive).

Figure 5.18, Figure 5.19 and Figure 5.20 respectively show the analytical solution
and the FE numerical results for longitudinal displacement, strain and stress at response
time t = 3/2·L/ce. The results show a strong dependence on the mesh density in the
strain-softening area −L/2 ≤ x ≤ L/2, as a consequence of the local strain-softening. It
can be observed that numerical results are converging to the analytical solution with the
increase in mesh density. The areas outside of −L/2 ≤ x ≤ L/2 are still governed by the
elastic solution.

Figure 5.18: Analytical solution and FE
results for longitudinal displacement at t =
3/2·L/ce.

Figure 5.19: Analytical solution and FE
results for longitudinal strain at t = 3/2·L/ce.
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Figure 5.20: Analytical solution
and FE results for longitudinal dis-
placement at t = 3/2·L/ce.

Figure 5.21: FE results for internal
energy.

Figure 5.22: Strain localisation at response time t = 3/2·L/ce in a single element due to material strain-
softening (fringe level: strain [−]).

Figure 5.22 illustrates the size of the strain/damage localisation zone at response time
t = 3/2·L/ce. It can be clearly seen that strain grows in a single element. Consequently,
the localisation zone reduces in size with the increase in mesh density and the strain
magnitude in the central element increases with the reduction in element size.

5.11.5 Strain-Softening in SPH Numerical Results of the Strain-Softening in SPH

Experiment 1 - Influence of interparticle distance, ∆p=variable, λ = 1.3 =
const.
The smoothing length, h = 1.3·∆p, was varied in these three test cases by changing the
inter particle distance, while maintaining a constant number of neighbouring particles.
Figure 5.23 shows the stress-strain curves, obtained for the central particle of the bar
(x = 0). It is clear that for all particle densities, strain-softening behaviour initiates at the
centre of the bar and propagates outwards.

Figure 5.24 shows the distribution of damage at response time t = 3/2·L/ce. It can be
seen that the width of the damaged area depends on the chosen interparticle distance, as
the smoothing length is a function of ∆p as λ is constant. The damage affected zone was
largest for the largest ∆p.
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Figure 5.23: Longitudinal stress vs. longitu-
dinal strain curves at the central particle obtained
with different particle densities, SPH-experiment
1.

Figure 5.24: : Damage distribution for differ-
ent particle densities at response time t = 3/2·L/ce;
SPH-experiment 1.

Figure 5.25a, Figure 5.25b and Figure 5.25c respectively show the profiles of longitu-
dinal displacement, strain and stress, plotted along the bar length for the three inter-particle
distances, along with the analytical solution. These results indicate that the stress waves
continue to propagate through the softening zone and are close to the nonlocal solution.
Damage stays limited to the softening zone.

(a) Analytical solution and numerical results for
longitudinal displacement at t = 3/2·L/ce; SPH-
experiment 1.

(b) Analytical solution and numerical results for
longitudinal displacement at t = 3/2·L/ce; SPH-
experiment 1.

(c) Analytical solution and numerical re-
sults for longitudinal displacement at t =
3/2·L/ce; SPH-experiment 1.

(d) Internal energy for 0 ≤ t ≤ 2·L/c; SPH-
experiment 1.

Figure 5.25: My composed figure.
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Figure 5.26 shows a graphical representation of the damage zone at response time
t = 3/2·L/ce. Damage is averaged over 5 particles along the length of the bar. This
number is constant for all particle spacings (∆p) considered, however this may be difficult
to observe in Figure 5.26 because of the significant difference in maximum damage
magnitude (see Figure 5.24). The width of the damage zone depends on the chosen
interparticle distance.

Figure 5.26: Localisation of damage within a limited area 4h in size h = 1.3·∆p around the bar symmetry
plane at response time t = 3/2·L/ce (fringe level: damage [-]. SPH experiment 1.

Development of damage in the centre of the bar, presented in Figure 5.26, shows that
the increase of the smoothing length results in increase of the size of the damage zone.
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Experiment 2 - Influence of averaging over several neighbouring particles,
∆p=constant, λ=variable

This experiment demonstrates the effects of the smoothing length size, varied by changing
the parameter λ and keeping constant the inter-particle distance. The bar with inter-particle
distance ∆p = 200[mm]/201 was used in these experiments with λ = 1.25, 2.25 and 3.25,
which correspond to 5, 9 and 13 neighbouring particles respectively.

Again, the particles in the centre of the bar undergo strain-softening, as illustrated in
the longitudinal stress - longitudinal strain curves in Figure 5.27. The damage distribution
at response time t = 3/2·L/ce, shown in Figure 5.28, indicates that the size of the damaged
(softening zone) was dependent on the size of the smoothing domain. Furthermore,
maximum peak value of damage was obtained with the smallest smoothing length.

Figure 5.27: Longitudinal stress vs. longitu-
dinal strain curves for the central particle obtained
with different values of λ ; SPH-experiment 2.

Figure 5.28: : Damage distribution obtained
with different values of smoothing lengths at re-
sponse time t = 3/2·L/ce; SPH-experiment 2.

Figure 5.29, Figure 5.30, Figure 5.31 and Figure 5.32 respectively show the profiles
of longitudinal displacement, strain and stress plotted along the bar length for the three
particle densities, along with the analytical solution. These results indicate that the stress
waves continue to propagate through the softening zone and are close to the nonlocal
solution. Damage stays limited to the softening zone.

Figure 5.29: Analytical solution and the nu-
merical results for longitudinal displacement at re-
sponse time t = 3/2·L/ce; SPH-experiment 2.

Figure 5.30: : Analytical solution and the
numerical results for longitudinal strain at response
time t = 3/2·L/ce; SPH-experiment 2.
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Figure 5.31: Analytical solution and the nu-
merical results for longitudinal displacement at re-
sponse time t = 3/2·L/ce; SPH-experiment 2.

Figure 5.32: : Internal energy for 0 ≤ t ≤
2·L/c; SPH experiment 2.

Figure 5.33: Localisation of damage within a limited area 4h in size (h = λ ·200[mm]/201) around the bar
symmetry plane at response time t = 3/2·L/ce (fringe level: damage [-]. SPH experiment 2.

Figure 5.33 shows the size of the damage zone, at response time t = 3/2·L/ce, obtained
in the SPH experiment 2. The three models have the same interparticle distance ∆p =
200[mm]/201; however, the smoothing distance h was varied and consequently the number
of neighbouring particles increased with increase of λ .
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Experiment 3 - Influence of constant smoothing length, ∆p = variable,
λ=variable, h = 2.5[mm]

Experiment 3 demonstrates the behaviour of SPH for different interparticle distances,
subjected to a fixed smoothing length size, h = 2.5[mm]. The particle density, i.e. the
number of neighbouring particles, was changed, by varying the interparticle distance used
in the model. Figure 5.34 shows the stress-strain curves for the three particle densities
considered. It is clear that all bars underwent linear strain-softening behaviour.

Damage distribution at response time t = 3/2·L/ce is shown in Figure 5.35 for the
central particle of the bar. The results indicate that the size of the damaged zone did not
depend on the interparticle distance ∆p, i.e. particle density. However, the damage peak
value was dependant on particle density (the lowest value obtained for the highest particle
density).

Figure 5.34: Longitudinal stress vs. longitu-
dinal strain curves for the central particle obtained
with different values of ∆p; SPH-experiment 3.

Figure 5.35: : Damage distribution obtained
with different particle densities at response time
t = 3/2·L/ce; SPH-experiment 3.

Figure 5.36: Analytical solution and the nu-
merical results for longitudinal displacement at re-
sponse time t = 3/2·L/ce; SPH-experiment 3.

Figure 5.37: : Analytical solution and the
numerical results for longitudinal strain at response
time t = 3/2·L/ce; SPH-experiment 3.

The distribution of longitudinal displacement, longitudinal strain and longitudinal
stress shown in Figure 5.36, Figure 5.37 and Figure 5.38, respectively, corroborate the
above statement and are independent of the particle density. The effects of damage are
smoothed out over an increasing number of particles with increasing interparticle distance.



200
Chapter 5. Review of Development of the Smooth Particle

Hydrodynamics (SPH) Method

These results indicate that the stress waves continue to propagate through the softening
zone and are close to the nonlocal solution.

Figure 5.38: Analytical solution and the nu-
merical results for longitudinal stress at response
time t = 3/2·L/ce; SPH-experiment 3.

Figure 5.39: : Internal energy for 0 ≤ t ≤
2·L/c; SPH experiment 3.

Finally, the physical size of the damage area, shown in Figure 5.40, is constant with a
finite size of 4h = 10[mm] and is independent of the interparticle distance.

Together the results from experiments 2 and 3 show that the width of the damage
zone is dependent on the smoothing length h, not the interparticle distance ∆p. This
suggests that when modelling a problem including material damage the smoothing length
should not be smaller than the characteristic length of the damage and should be set to the
characteristic length if the particle resolution permits.

Figure 5.40: Localisation of damage within a limited area 4h in size (h = 2.5[mm]) around the bar symmetry
plane at response time t = 3/2·L/ce (fringe level: damage [-]. The damage distribution is independent of the
interparticle distance ∆p; SPH experiment 3.
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5.12 Summary

This chapter provides an overview of the development of the SPH method. Especial
attention is given to the main shortcomings of the original form of the method namely
consistency, tensile instability and zero energy modes. These are important to understand as
the SPH method is increasingly used in engineering analysis, and without an understanding
of the method inappropriate conclusions may be drawn from numerical results.

The topics covered include:
• A discussion of the kernel interpolation that forms the basis of the SPH spatial

interpolation method. In kernel interpolation the variable at a particle is calcu-
lated from summing the contribution from all neighbouring particles. The use of
a differentiable kernel function allows the spatial gradient of the variable to be
approximated.

• An overview of the conventional SPH forms of the conservation equations of
Lagrangian continuum mechanics. It should be noted that in these forms the
boundary is diffuse and not clearly defined, which is important to understand when
modelling solids or liquids.

• A summary of the kernel function, varying smoothing length and neighbour search
algorithm that are commonly used in SPH implementations.

• An example of the derivation of a correction necessary to assure first order consis-
tency is given. The conventional SPH method is not first order consistent and is
not even zero order consistent except in the special case when particles are evenly
distributed.

• The introduction of corrected SPH required boundary conditions to rigorously
treated. In the conventional SPH method the deficiency in neighbour particles at
the boundary of the domain leads to an error in the interpolation that allows free
surfaces to be approximately treated.

• A summary of a stability analysis of SPH is presented and used to explain the so
called tensile instability problem. This problem is relevant for solid mechanics
simulations where the instability can lead to fracture occurring and preventing
accurate analyses of problems involving material fracture. A few proposed solutions
to this problem are described. Similar consideration is given with respect to the
zero energy modes typical for the collocational SPH method.

• In the SPH simulations of the softening materials, damage distribution is controlled
by the smoothing domain used in the kernel interpolation. Consequently, the
smoothing domain size represents a material characteristic length. The user can
control the damage localisation process by varying the smoothing length h. Stress
waves propagated through the softening zone.

• The numerical results in Section 8 demonstrate that, in the problem considered,
SPH performed as nonlocal method and did not suffer from the same instabilities as
FE. The sensitivity of results to the spatial discretisation can be removed in SPH by
adjusting the smoothing length appropriately, as the smoothing length represents
a characteristic length that controls damage/softening localisation. Consequently,
physically representative values for a material should be used when modelling
damage.
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The key aspects of the SPH method covered and discussed any user of the method
should be aware of.
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6. Introduction to
Computational Mechanics of
Discontinua

6.1 Introduction

The rapid development of computational mechanics of discontinua (CMD) emerged from
the need to model objectively the deformation, damage and fracture of quasi-brittle materi-
als with random, heterogeneous (or discontinuous) micro-/meso-structure and inferior (or
non-existent) tensile strength. For decades, prior to that, many researchers have tried to
model these material systems using classical methods of continuum mechanics but with
limited success. One of the main reasons for this "elusiveness" is that behavior of the sub-
ject materials is essentially defined by their heterogeneous/discrete character, which affects
the localization of deformation and damage evolution through the processes of nucleation,
propagation and coalescence of cracks on various sub-macroscopic spatial scales. These
phenomena are inextricably linked to the discontinuity of displacement, which clearly
violates the continuum hypothesis and the fundamental assumptions of differential calculus.
These difficulties have led to development of CMD whose basics are briefly summarized
in this introduction. Over the past few decades, CMD models have fought for their place
among the tools in the structural analysis and design. Finally, nowadays, they have become
complementary to continuum mechanics models and experimental methods thanks to their
ability to improve our understanding of damage and fracture and the ways they affect the
effective material properties.
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After introductory considerations, a summary of the basic concepts of traditional
methods of CMD is presented. It should be noted that this classification of methods is
somewhat subjective since their boundaries are blurred, domains overlap and distinctions
are iffy. Be it as it may, the tentative classification is as follows: molecular dynamics (MD)
and its coarser-scale offshoot dubbed herein particle dynamics (PD), the lattice methods
and the discrete element methods (DEM). Although these (particle-based) methods are
now widely used to model different classes of materials and various physical phenomena
and industrial processes, the most natural applications seem to be the simulations of
deformation and flow, damage, and fracture of systems that have the same topology as the
representative model structure. Therefore, the modern, advanced applications advocate a
modeling approach where it is insisted upon, as far as possible, the direct correspondence
between the experimentally determined material and the structure explicitly represented by
the numerical model.

All materials have a discontinuous (and heterogeneous) structure on some spatial scale
(if not macroscopic, perhaps mesoscopic, microscopic, by definition atomic) as illustrated
by Figure 6.1. When this scale is “very small” from the standpoint of engineering appli-
cations, the materials are considered continuous (and homogeneous) (Figure 6.2). This
discontinuity and heterogeneity lead to complex mechanical behavior difficult to reproduce
with models based on the classical theory of continuum mechanics since the material sub-
stance: (i) does not fill entirely the space it occupies, and (ii) the physical and mechanical
properties may vary significantly within that space and across various directions. Among
these complex phenomena notable is the evolution of damage with nucleation, propagation,
branching, mutual interaction and coalescence of (micro-/meso-/macro-scale) cracks and
other pre-existing flaws and features of material texture that can lead to appearance of
flow, diffuse or localized deformation and damage, fracture, and fragmentation. All CMD
methods described herein have in common that they cope with these complexities by
establishing a computational domain (approximating the material structure) by a collection
of discrete building units that are, or may be, interconnected. These models differ from
the computational models of continuum mechanics in the definition of the displacement
field only in the finite number of nodal points and, accordingly, in the formulation of the
problem using algebraic, instead of partial differential, equations.

During the 1960s, researchers and engineers working in various fields of mechanics of
materials and materials science noticed that solutions obtained using traditional continuum
mechanics often exhibited singularities or yielded results inconsistent with experimental
observations. In the decade that followed, the awesome development of computer capa-
bilities and the accompanying advances of numerical methods enabled the emergence of
novel particle-based computational methods that used various distinct structural-building
elements (atoms, springs, trusses, beams, particles or various shapes) to model materials.
CMD is nowadays firmly established as an integral part of not only the cutting-edge
research in various fields (e.g., nanotechnology, stem cell research, biomedical engineer-
ing, space propulsion) but also industrial processes covering a wide range of different
application fields (e.g., mining, machining, pharmaceuticals, civil construction, industrial
and systems engineering).
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Figure 6.1: Examples of discontinuous and heterogeneous material systems with representative spatial
scales. (a) epoxy-cemented glass bead material (courtesy of Idar Larsen (SINTEF) and Prof. Rune M. Holt
(NTNU)), (b) ultralight metalic microlattice (on Dandelion, courtesy of Dr. Tobias A. Schaedler), (c) Gypsum
sand (photgraphed by Prof. Mark A. Wilson), (d) concrete, (e) soil, (f) asphalt, (g) particle composite (Kerrock®

9057 – aluminum hydroxide particles with acrylic binder), (h) rock (Travertine /top/ and Nero Marinace Granite
/bottom/), (i) rock masiffs (courtesy of Prof. Radojica Lapcevic). (Note: black/white rectangles indicate length
scales.)
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Modeling using computer simulations is more flexible than analytical modeling and
has the advantage over experimental research in that the data are available at every stage
of the virtual experiment. This flexibility extends to the ability to configure loads, initial
and boundary conditions, and to tailor the custom-made models in accordance with the
topological, geometric, and structural disorder of material.

These, so called, virtual experiments are in main aspects very similar to the laboratory
experiments. First, a sample is prepared from the subject material rendering a simulation
object in virtual space ("numerical" or "virtual" material). The sample created in this way
is then connected to the necessary "virtual" measuring instruments so that the parameters
of the state can be recorded over a period of time. Since most measurements are subject to
statistical variations, the more time is available to average the results, the more accurate
the measurements become.

However, the virtual measurement resolution is inversely proportional to the size of
the averaging period and it is necessary to find a compromise between these conflicting
requirements taking into account the nature of the physical phenomenon being simulated.
Consequently, the most common errors made during virtual experiments are very similar
to those that can contaminate the results of actual laboratory experiments: the sample is
not adequately prepared; the measurement is too short; due to conceptual oversights, we
do not measure what we intend to measure...

All CMD methods offer some common advantages in damage and fracture analysis
compared to corresponding conventional computational methods based on continuum
mechanics (typically, FEM). Damage and its evolution are presented explicitly through
broken bonds or contacts; it is not necessary to use any empirical relations to define damage
or determine its effect on material behavior.

Variety of structural flaws nucleate, extend and merge into different types of macro-
scopic damage without the need to use numerical "ingenuities" such as convenient mesh
orientation, mesh reformulation or constant adoptive meshing. There is no need to develop
constitutive laws or damage models in order to represent complex nonlinear responses of
materials as they emerge naturally through the collective behavior of discrete units whose
interaction is guided by relatively simple rules.

A summary of the CMD models that will be considered herein is shown in Figure 6.2
in conjunction with the natural spatial scale on which they are most commonly used.

Figure 6.2: Spatial scales and corresponding traditional CMD models as tentatively classified herein for
typical brittle materials with random microstructure (e.g., concrete).
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It cannot be overemphasized that this classification is somewhat arbitrary, the bound-
aries between the models are hard to draw, and the associated length scales are subject to
definition for each material separately. For example, the spatial scale corresponding to the
meso-structure of concrete (of the order of centimeters or even decimeters as illustrated in
Figure 6.1d) or rock massifs (of the order of decimeters or meters, Figure 6.1i) exceeds that
of silicon carbide (SiC) by several orders of magnitude although they can all be classified
the quasi-brittle systems.

With reference to Figure 6.2, on the nano-scale (e.g., the crystal lattice), it is possible to
use the atomic models based on quantum mechanics. These rigorous methods1 are based on
the Schrödinger wave equation and semiempirical effective potentials which approximate
quantum effects [1]. In contrast, classical MD relies on Newton’s equations of motion
and empirical potentials. Therefore, the traditional MD sacrifices the quantum mechanics
rigor for the benefit of a much larger spatio-temporal modeling range. Observation scales
and corresponding numerical models of mechanics of discontinua (conditionally divided
into the three broad, intertwined categories: lattices, PD and DEM, as discussed above)
correspond to concrete (Figure 6.1d) (inspired by [2]).

The MD refers to models where the basic building object is a point mass which may
represent an atom, a molecule, a nanocluster, as well as a planet in a galaxy. In this short
introduction, we always consider atoms (thus, the length scale in Figure 6.2) but, in general,
it could be any of the above. From now on, the term MD, unless specified otherwise, is
used for the traditional (classic) MD where each atom is treated as a point mass mi (and,
generally, a fixed charge qi).

The term particle dynamics (PD), as used herein, designates "a coarse scale cousin to
molecular dynamics" [3] sometimes also called the quasi-MD [4] to emphasize this kinship.
It is developed to simulate phenomena on coarser spatial scales—the dynamic response of
a material, either solid or fluid—based on a generalization of the MD modeling approach.
The role of an atom is taken over by aggregates of atoms or molecules, represented by
a material point called a "continuum particle" or a "quasi-particle". Depending on a
particular application, this entity can represent, for example, a nanocluster, a ceramic grain,
a concrete aggregate, a composite particle, a clastic rock granule and can, therefore, cover
a wide range of spatial scales (up to the above-mentioned cosmological scales). Particle
models use tried and tested MD techniques to directly confront various challenges of
extremely complex physics. A critical step in the PD modeling is the transition from an
adopted atomic potential to an interparticle potential (bottom-up approach) or a definition
of an interparticle potential (a set of constitutive rules) on macro-scale (top-down), which
is a common theme in all CMD numerical approaches. Traditional references for particle
modeling are [4], [5], while [6] can be consulted for a review of recent developments.

Lattices are arguably the simplest CMD models (specifically, the spring-networks
among them), comprised of one-dimensional discrete structural units such as springs,
trusses or beams (Figure 6.3a,b). These elementary building units are assigned both geo-
metric and structural properties and fracture characteristics that allow them to mimic elastic
and inelastic deformation and fracture of the abstracted material. Lattice models could be

1So-called, "ab initio (first principle) MD", also known as "Born-Oppenheimer" or "Carr-
Parrinello" MD.
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considered meso-scale offshoots of both MD (micro-scale) but also the engineering truss
and frame structures well-known from structural mechanics (macro-scale). Lattices were
the original systems for modeling discontinuous media - various ideas of application in
engineering mechanics date, at least, to Hrennikoff’s pioneering work [7]. The modeling
of network structures on a much coarser spatial scale than the atomic one eliminates the
obvious need to work with a huge number of degrees of freedom, which could result
in both computer congestion and data overload (so-called "data glut"), which would be
inevitable if the atomic methods were used for modeling even the smallest structures on the
macro-scale. This approach also reduces to a relatively modest level the number of nodes
necessary to model the heterogeneity of the material structure. Comprehensive reviews of
lattice models were published by Ostoja-Starzewski [3,8].

Figure 6.3: (a) Irregular triangular Delaney lattice dual to Voronoi grain thessalation. (b) Mesostructure of a
three-phase composite projected on a regular triangular lattice. (c) Assembly of polygonal particles.

Unlike lattice models in which the basic structural elements are one-dimensional, in
DEM (discrete element method) models the basic building blocks are typically of the same
dimensionality as the considered problem. For example, planar DEMs include models of
discontinuous systems comprised of 2D basic constituent elements such as circles, ellipses,
or polygons (Figure 6.3c). These discrete elements are provided with geometric, structural,
and contact properties that allow their “assemblies” (conglomerates, agglomerates) to
approximate the complex phenomenological response of the subject material. In the most
concise terms, DEMs enable the simulation of the motion and interactions of a huge number
of discrete objects. It is important to note, that DEM unit blocks are actual geometric
objects characterized by their dimension and shape, unlike the MD atoms, lattice nodal
points, and particles (of PD) that are essentially material points. The macroscopic behavior
of DEM models emerges as a consequent feature of the system derived from a small set of
meso-properties of individual elements and their interactions. Contacts among discrete
elements are endowed with the proscribed cohesive strength (including zero cohesive
strength for non-cohesive, loose, material systems) and the ability to dissipate energy that
allows representation of both elastic and inelastic phenomena and the nucleation of cracks
and cooperative phenomena among them. It is important to emphasize that the properties
of the contacts between discrete elements should be, in principle, identifiable based on the
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material properties and the limited number of available experiments. Comprehensive DEM
reviews were published in [9-11].

Regardless of the type of the CMD model, the evolution of a system of particles (the
discrete structural elements in the most general sense) of known masses mi, moments of
inertia Ii, and positions ri (i = 1,2, . . . ,N) is obtained by solving a system of equations
of motion for each particle. Within classical mechanics, the equations that define the
translational and rotational motion are those that correspond to Newton’s second law

dpi

dt
=

d
dt
(miṙi) = Fi,

dLi

dt
=

d
dt
(Iiω i) = Mi

(6.1)

where pi and Li mark, respectively, the linear and angular momenta of i-th particle and
Fi and Mi corresponding forces and moments. Obviously, the motion of material points
(all CMD systems except DEM) is completely defined by Equation (6.1)1. (Hereinafter,
symbols in boldface designate vectors and tensors.)

Lastly, the following brief introduction to CMD stems out of the two-part essay
published in coauthorship with Antonio Rinaldi in “Handbook of Damage Mechanics:
Nano to Macro Scale for Materials and Structures” [1]. Despite renewed efforts to make it
as representative and comprehensive as possible, its content suffers unavoidably from the
author’s bias due to research backround and interests.

6.2 Molecular Dynamics

This short introduction aims to outline the basics of the traditional molecular dynamics
(MD) method based on the classical mechanics. This computational simulation technique
allows prediction of the temporal evolution of a system of material points (Figure 6.4)
interacting via empirical interatomic potentials or molecular mechanics force fields by
numerically solving Newton’s equations of motion. Simulation methods based on quantum
mechanics are beyond the scope of this overview, as well as many other advanced topics.

The first research article [12] in which Alder and Wainwright used MD to simulate
perfectly elastic collisions of hard spheres was published in 1957. In 1960, Gibson and
co-authors used a Born-Mayer potential to simulate a radiation damage of solid copper.
Rahman (1964) simulated liquid argon by using 864 atoms interacting with a Lennard-
Jones potential [13]. The first computer simulation of a simplified protein folding was
produced in 1975 [14]. These pioneering articles were published more than half a century
ago. Therefore, it is not surprising that many outstanding monographs devoted to computer
simulations in condensed matter physics are available to the interested researcher (e.g.,
[5,15-17]).
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Figure 6.4: Schematic representation of two different solid structures: (a) the body-centered cubic crystal
lattice, and (b) a molecular chain. The latter indicates 2-atoms (chemical bond), 3-atoms (angle bending), and
4-atoms (torsion; dihedral) interactions typical of the intramolecular bonding interactions.

The main feature of the MD method is the ability to analyze dynamics of (non)equilibrium
processes with spatial resolution on the atomic scale. Thus, MD simulations play a role
of computational microscope and have no computational alternative for many problems
including atomic-scale phenomena that cannot be observed directly.

MD can be considered a numerical simulation offshoot of statistical mechanics. It
has found research application in a wide range of problems prevalent in various scientific
fields; such as, for example:

• Theoretical and statistical physics: fluid theory; properties of a statistical ensemble;
structures and properties of small clusters; phase transitions,...

• Materials science and mechanics of materials: point, linear and plane defects in
crystals and their interactions; stable and metastable structures of complex alloys
and related phase diagrams; amorphous materials; radiation damage to materials;
microscopic damage and fracture mechanisms; surface reconstructions; melting;
growth of thin films; friction,...

• Biology, biochemistry and biophysics: molecular structure; chemical reactions; pro-
tein structure, functional mechanisms and folding process; drug design; vibrational
relaxation and energy transfer; membrane structure; dynamics of biomolecules,...
“Everything that living things do can be understood in terms of the jigglings and
wigglings of atoms” [18].

6.2.1 Basic Idea of MD
The basic idea is simple. First, to setup the atomic system one must:

i) define a set of initial conditions (initial positions ri and velocities vi of all atoms in
the system), then

ii) adopt the interatomic potential to define interatomic forces (internal forces), and
finally

iii) introduce (externally applied) load acting on the system.
After that, the evolution of a system of atoms (mi, ri, vi) (i = 1,2, . . . ,N) is determined

by solving a system of equations of motion (6.1)1 for each atom.
The resulting force acting on each atom at a given moment

fi j = |fi j|=− dΦ

dri j
; Fi =−∑

j
fi j

ri j

ri j
(6.2)
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can be obtained from the interatomic potential Φ which is, in general, a function of the
position of all atoms of the system (ri j = |ri j|= |ri − r j| being the intensity of the distance
vector between the atoms i and j, that is, the interatomic distance, Figure (6.4b)). Thus,
when the initial conditions and the interaction potential are defined, Equations (6.1)1 can
be solved numerically. Namely, the positions and velocities of all atoms of the system
as a function of time are obtained as a result of solving a system of algebraic equations
that approximates the system of differential Equations (6.1)1. Thus, the motion of each
individual atom (and each ensemble of atoms) is completely deterministic. In most cases,
analysts are not interested in the trajectories of individual atoms but in the macroscopic
properties of materials that result from the motion of a multitude of atoms. The information
resulting from computer simulations can be averaged at certain time intervals for all (or
selected) atoms of the system to obtain thermodynamic parameters (Chapter 6.2.4).

6.2.2 Empirical Interatomic Potentials
Empirical potentials used in materials science and mechanics of materials are called
interatomic potentials. The role of interatomic forces (6.2) is crucial since the MD
simulation is realistic only insofar as the interatomic forces are similar to those operating
between real atoms in the corresponding atomic configuration [16]. As already noted, the
classical definition of interatomic interaction, based on empirical potentials, represents
the rigorous quantum mechanical nature of materials in a limited way through impromptu
approximations.

The interatomic potentials depend on the states of the electrons, thus, the electrons
are the origin of the interatomic forces. Nonetheless, the electrons are not directly present
in the traditional MD model – their influence is introduced indirectly through analytical
functions that define potential energy solely on the basis of the atomic (nuclei) positions
(6.3). The creation of the analytical function of potential energy and the choice of input
parameters is often based on the fitting of the available experimental data that are of
greatest interest for the specific problem being studied (e.g., modulus of elasticity, cohesive
energy, phase transition temperature, vibration frequencies).

When forming an MD model, the interatomic potential is adopted either on the basis
of knowledge of the atomic nature of the simulated material or a priori. The construction
of interatomic potential is as much an art as it is a science, but from the point of view of
users, the choice is, nowadays, quite simplified thanks to the available literature. This
choice is essential not only because the adequacy and accuracy of the potential dictate the
quality of the simulation results but also due to the fact that its complexity determines the
efficiency of the code in terms of simulation duration. Although some compact potentials
may seem inadequate, many fundamental, generic aspects of a physical phenomenon can
be observed thanks to the advantages provided by their simplicity.

The empirical interatomic potential

Φ = Φ(r1,r2, . . . ,rN) =

= ∑
i

Φ1(ri)+∑
i

∑
j>i

Φ2(ri,r j)+∑
i

∑
j>i

∑
k> j>i

Φ3(ri,r j,rk)+ · · · (6.3)

represents the potential hypersurface of the non-bonded interactions [5]. In expression
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(6.3), the terms Φ1,Φ2,Φ3, . . . are, respectively, contributions due to external fields (e.g.,
gravitational or the container wall), pair, triple and higher order interatomic interactions.
In traditional MD, rigor is often sacrificed for the sake of efficiency, and interatomic inter-
actions among all atoms have been replaced by less computer-intensive approximations
in which each individual atom interacts only with a certain number of nearest neighbors
(so-called, first-nearest, second-nearest, etc.). Further, by neglecting the three-body inter-
actions (involving interatomic angles) and higher, the potential energy of the system can
be approximated by the sum of isolated empirical biatomic potentials (pairwise additivity
assumption)

Φ =
1
2 ∑

i
∑

j
φ(ri j). (6.4)

It is obvious that the concept of pairwise additivity (6.4) represents a huge simplifica-
tion with far-reaching consequences. For some crystal lattices, the pairwise interaction is
not able to take into account a good portion of the cohesive interaction [19]. Furthermore,
the interaction in ionic crystals may be a consequence of the polarization effects, attributed
to the action of the electric fields of the surrounding ions, which cannot be described by
simple pair potentials. However, the main interactions in the ionic and Van der Waals
crystal lattices are believed to be essentially pairwise [19]. Many more complex forms of
potential can be used as needed at the cost of increasing the duration of the simulation.
The consequence of choosing the central-force potential (6.4) is that the total energy of
the system is conserved. In the language of statistical physics, classical MD generates a
microcanonical ensemble (N, E, V ).

The pair potentials are the simplest potentials since the force of interaction of two
atoms is completely determined by their mutual distance. There is an extensive literature on
the ways in which these potentials are experimentally determined or theoretically modeled
(e.g., [20]). Strictly speaking, they realistically describe only noble gases. The simplest
potential of this type is the discontinuous potential of a "rigid sphere" which implies that
the value of the interatomic force is equal to either: (i) zero, if the interatomic distance is
greater than the prescribed value; or (ii) infinity, if the interatomic distance is equal to or
less than the prescribed value.

A more realistic interatomic interactions are obtained under the assumption that the
interaction force gradually varies from strongly repulsive (at small interatomic distances)
to attractive (at medium distances) until it finally converge asymptotically to zero (with
further increase in distance) (Figure 6.5). The best known potential of this type, which has
been widely used in the past when the focus of research was on the study of qualitative
trends (essential physics) rather than narrowly specific issues, is the Lennard-Jones 6-12
potential

φi j =−εLJ

[
2
(

1
r̄i j

)6

−
(

1
r̄i j

)12
]

(6.5)

originally developed for noble gases from van der Waals cohesion [21]. In expression
(6.5), εLJ represents the depth of the potential well, and r̄i j = (r/r0)i j ratio of current and
equilibrium distance between atoms i and j (Figure 6.5). These model parameters are
chosen with the aim of optimally reproducing the most desirable physical and mechanical
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properties of the material. The amount of published work with Leonard-Jones systems
since the creation of MD is unsurpassed by any other potential, and only for that reason, not
to mention others, its importance cannot be overemphasized. However, it can be ill-advised
to apply this potential for the quantitative study of more complex materials.

Figure 6.5: Schematic representation of pair potentials with unit depth of the potential well: Lenard-Jones
6-12 with corresponding force (solid black line), Morse for two parameter values αM which define the width
of the potential well. These curves illustrate the atomic hypothesis that „all things are made of atoms—little
particles that move around in perpetual motion, attracting each other when they are a little distance apart, but
repelling upon being squeezed into one another” [18].

The term r̄−12
i j in (6.5), which dominates the interatomic repulsion, is selected for

application convenience: as far as the physics is concerned, the exponential term is a
more appropriate choice. The simplest potential that takes this into account is the Morse
potential:

φ(r̄i j) = εM
{

exp[−2αM(r̄i j −1)]−2exp[−αM(r̄i j −1)]
}

The adoptable parameter αM defines the slope of the repulsive wall (that is, the width
of the potential well; Figure 6.5). The parameters εM , r0 and αM are, as in the previous
case, usually determined by fitting the material properties that are most relevant to the
problem being analyzed. The Morse potential was originally developed for covalent bonds
that are strongly spatially oriented, so the interatomic distance is not sufficient for a realistic
description of the interaction [22]. Although the inverse-power form of the interatomic
potential (6.5) is most often used in heuristic studies, the results of quantum mechanical
calculations, as already mentioned, favor the exponential form, which is later used in some
particle models (6.26).

If electrostatic charges are present, it is necessary to add the appropriate Coulomb
potentials

φ(ri j) =
qiq j

4πε̄pri j

where qi and q j are charges, and ε̄p the permittivity.
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The simple potentials also provide a direct way to estimate the modulus of elasticity
and the theoretical strength using expressions

E =
1
r0

(
d2

φ

dr2

)∣∣∣∣
r=r0

, σm =
1
r2

0

(
dφ

dr

)∣∣∣∣
r=rD

(6.6)

which follows from its physical nature [23]. In Equation (6.6)2, rD stands for the so-called
separation distance defined by the maximum value of the interatomic force d f (r)/dr = 0,
that is, the inflection point of the interparticle potential d2φ(r)/dr2 = 0 (Figure 6.5).

The basic purpose of any interatomic potential is to correctly reproduce the most
prominent characteristics of atomic bonds. Therefore, it should always be borne in mind
that the pair of potentials were “originally developed to describe atomic interaction in
systems in which these forms of potentials are physically justified” [24] and resist the
temptation to use them injudiciously for their simplicity.

The pair potentials cannot accurately describe interatomic interactions in more complex
systems [16] such as, for example, strongly covalent systems (e.g., SiC), most ceramics
characterized by fully populated orbitals, metals characterized by delocalized “sea of
electrons”, or semiconductors. However, in MD simulations from the 1950s to the 1980s, a
couple of these simplified potentials were used almost exclusively. Significant progress was
made during the 1980s with the development of many-body potentials for metals based on
the concept of atomic density (e.g., [25]). The main observation that needed to be modeled
was that interatomic bonds become weaker when nested in a "dense" local environment.
Accordingly, the force acting on an atom depends not only on the distance separating its
nucleus from nuclei of its neighbors, but also on the local atomic density. In other words,
the forces between ions are characteristically dependent on many bodies ("many-body in
character"), instead of simply being pairwise additive. The focus is usually on the attractive
part of the potential [16]. Accordingly, the so-called "glue model" potentials have been
developed (e.g., [26] and references cited therein). Among these potentials, the best known
is the so-called embedded atom method (EAM)

Φ(ri j,ρi) =
1
2 ∑

i
∑
j=i

φ(ri j)+Ψ = ∑
i

[
1
2 ∑

j ̸=i
φ(ri j)+ψ(ρ̄i)

]
,

ρ̄i = ∑
j ̸=i

ρ(ri j).

(6.7)

developed to approximate the interaction between ions in metals. The various forms of
(6.7) differ from each other only in the forms of functions: φ (pairwise term depending
entirely on the interatomic distance), ψ (density-dependent contribution - the embedding
energy necessary to insert the i-th atom into the background of the electron density ρ̄i),
and ρi j (atomic density function) [26].

Differences between pair potentials and many-body potentials have been discussed in
detail in the literature (e.g., [27], [28]). EAM potential has been used extensively to model
ductile metals.

Finally, empirical potentials in organic chemistry and molecular biology are often
called force fields. It should be noted that for complex macro-molecular chains (e.g.,
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synthetic polymers, biopolymers), in addition to non-bonding forces (van der Waals
and electrostatic), it is necessary to consider the intramolecular bonding interactions
illustrated in Figure 6.4b. The elementary models of this kind include contributions due to:

(i) bond stretching: 2-atoms vibrations about the equilibrium bond length (6.8)1
(ii) angle bending: 3-atoms vibrations about the equilibrium angle they define (6.8)2

1
2 ∑

bonds
kα

i j
(
ri j − r0i j

)2
,

1
2 ∑

bendangles
kβ

i jk

(
θi jk −θ0i jk

)2
, (6.8)

(iii) torsion (dihedrals, proper and improper, 4-atoms torsional vibrations), and
(iv) various cross-terms [29].

These so-called bonded interactions are not further discussed in this introduction. The
details are available in [29], [30].

Further considerations of empirical potentials go beyond the objectives of this intro-
duction and can be found in literature (e.g., [24], [30]; and many others). In the last thirty
years, empirical potentials have been developed in a targeted way - for specific material
systems with a range of applicability in mind. The ultimate test of any empirical potential is
its success in simulating properties of interest. However, it seems appropriate to conclude
this brief review by adding that in the constant competition between the more sophisticated
and the spatially larger MD models, under the constraints imposed by computational
capabilities, the latter are still considered more advisable in terms of meaningful results.
In other words, it is generally accepted that it is better to increase the size of the MD
system and simplify the potential, than to do the opposite. This trend has resulted in the
development of parallel processing [11], [31], [32] without which MD simulations in the
contemporary research cannot be imagined.

Shortening the range of potential
The empirical potentials presented in Chapter 6.2.2 have an unlimited range. In MD
simulations, it is a common custom to establish the cut-off distance (rcut) and to neglect
interatomic interactions for distances that exceed it because the corresponding forces are
insignificant (Figure 6.5). This neglect of interatomic action in the range of potential
asymptotic approach to zero leads to program simplification and huge computational
savings due to a drastic reduction in the number of interacting atomic pairs.

However, a simple shortening of the potential would lead to a new problem: whenever
the mutual distance between pairs of atoms "crossed" over the cutting distance, there would
be a small, abrupt change in the energy of the system. A large number of such events
could, on the one hand, have an impact on the law of conservation of energy, and on the
other, affect the physics of subtle micro-processes that depend on the details of the local
energy state. Therefore, limiting the range of potentials is most often done by a smooth
transition in the attractive range, for example, by using a cubic spline. As an example, the
approach of Holian et al. [27] is based on the Lennard-Jones potential (6.5) interrupted at
rspl ≈ 1.109r0 and replaced by the cubic spline in r2

φspl(r) =−A (r2
cut − r2)2 +B(r2

cut − r2)3

which reaches zero at rcut . The spline parameters are chosen to ensure continuity of
coordinates, inclination and curvature (C0, C1, and C2) at the point of intersection (r = rspl):
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φLJ = φspl , φ ′
LJ = φ ′

spl and φ
′′
LJ = φ

′′
spl . Note that, since the cubic spline is defined in r2

instead of r, rooting and division operations with r are avoided in the MD simulation,
while differences in the appearance of the function are often practically imperceptible [27].

Physical quantities are, of course, somewhat influenced by this shortening of the range
of potentials. Overall, the eventual assessment of these effects is a problem specific to each
application (e.g., [16], [17]).

6.2.3 Integration Algorithms
The core of the MD program is the integration algorithm necessary for the integration of
the equations of motion (6.1)1. These algorithms are based on the finite difference method
in which time is discretized within a finite network and the time step, δ t, represents the
distance between successive points on the network. Knowing the position and some of its
time derivatives in the current time (t), allows calculation of the same quantities in the next
time (t +δ t). In addition to being as accurate as possible, the integration algorithm should
be both fast and of modest memory requirements, to allow the application of the longest
possible time step, and to be simple for implementation.

Several different methods are available for this purpose but only one will be discussed
herein. The Verlet algorithm is still the most widely used, although more powerful
techniques for integrating finite difference equations are available. The derivation of this
algorithm is based on the development of the atomic position function in the Taylor series
at an arbitrary time t

ri(t +δ t) = ri(t)+vi(t)δ t +ai(t)δ t2 +
d3r(t)

dt3 δ t3 +O(δ t4)

that is

ri(t −δ t) = ri(t)−vi(t)δ t +ai(t)δ t2 − d3r(t)
dt3 δ t3 +O(δ t4).

Adding the previous two expressions yields

ri(t +δ t)+ ri(t −δ t) = 2ri(t)+2ai(t)δ t2 +O(δ t4).

The time-reversible equation for calculating the next position has the form

ri(t +δ t) = 2ri(t)− ri(t −δ t)+δ t2
∑
j ̸=i

fi j(ri,r j)

mi
+O(δ t4). (6.9)

This method of integration is very compact and easy to implement. Since no dissipative
forces act between the atoms, the dynamic system is conservative. Therefore, the force
by which the atom j acts on the atom i is fi j =−∇iφ(ri j), and its calculation is by far the
most demanding part of MD simulations. The Verlet method seems to be the least time-
consuming and thus the most suitable for modest computing resources, which explains
its popularity. The main disadvantages of the Verlet algorithm are clumsy handling of
velocities

vi(t) =
ri(t +δ t)− ri(t −δ t)

2δ t
+O(δ t2)
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which requires knowledge of the next position ri(t + δ t) and is susceptible to rounding
error due to relatively large residue O(δ t2). However, it is possible to obtain more
accurate estimates of the velocity (and thus the kinetic energy of the system) using various
modifications of the Verlet algorithm.

The Störmer algorithm is a such modification of the Verlet algorithm, where the most
pronounced computational advantage stems from the fact that at no time is the difference
between two large numbers used to calculate a small number [5]. The computational
scheme has the form

ri(t +δ t) = ri(t)+δ t vi

(
t +

δ t
2

)
. (6.10)

In addition to current positions and accelerations, recorded quantities include mid-step
speeds

vi

(
t +

δ t
2

)
= vi

(
t − δ t

2

)
+δ t ai(t). (6.11)

Since the Störmer algorithm is only a modification of the Verlet algorithm, it produces
identical trajectories. The problem, evident in expressions (6.10), arises because the
velocities are not calculated at the same time points as their positions, which complicates
the calculation of the total energy of the system.

The above-mentioned algorithms, and similar ones available in literature, are com-
pletely adequate for most MD simulations. However, it is sometimes necessary to use
higher-order integration schemes which use higher-order position vector derivatives in the
Taylor approximation. These algorithms not only achieve higher calculation accuracy for
the same time step but also allow use of a longer time step without losing accuracy (at least
in a short run). Unfortunately, the use of these higher-order algorithms (an example is the
popular predictor-corrector method) is coupled with many implementation difficulties that
go beyond the scope of this introduction and have been discussed in detail in the literature
(e.g., [5], [17]).

6.2.4 Calculation of Macro-parameters of State

Statistical physics provides the connection between microscopic behavior of the system
and the macroscopic world described by thermodynamics. In order to calculate a certain
physical parameter of the state of a macroscopic system (such as stress, strength, tempera-
ture, damage) it is necessary to define it as a function of the raw MD output data (that is,
the atomic positions, velocity and forces (r, v, a)). Strictly speaking, this can be achieved
only when the thermodynamic system is: (i) large enough to be statistically homogeneous,
and (ii) either in equilibrium or close enough to equilibrium (measured by the Deborah
number [33]). If these preconditions are not met, the meaning of the continuum concepts
becomes disputable.
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Stress, strain and effective stiffness
The elastic strain energy of the system in the (proximity of) equilibrium can be developed
in the Taylor series [34]

U =U0 +
1
1!

∂U
∂εαβ

εαβ +
1
2!

∂ 2U
∂εαβ ∂εγδ

εαβ εγδ + · · ·=

=U0 +σαβ εαβ +
1
2

Cαβγδ εαβ εγδ + · · ·
(6.12)

In the (proximity of) equilibrium state, the resultant forces acting on any atom of the
system (6.2)2 are (close to) zero, which implies that each atom lies in its potential well.
Such system must be, by definition, stable in the event of an infinitesimal disturbance, such
as the one imposed by the homogeneous strain tensor εαβ acting as an external load.

The linear (second) term in the Taylor series (6.12) represents the stress tensor. It
is important to note that this is a general thermodynamic relation independent of the
applicability of Hooke’s law [35]. With regards to the potential energy of a system, if the
interatomic actions can be successfully approximated with the EAM (6.4), the stress tensor
components are

σαβ =
1

2V̄ N ∑
i, j
j ̸=i

dφ

dri j

(ri j)α (ri j)β

ri j
+

dΨ

dV̄
δαβ =− 1

2V̄ N ∑
i, j
j ̸=i

fi j
(ri j)α (ri j)β

ri j
+

dΨ

dV̄
δαβ

(6.13)
where V̄ is the average volume per atom, while (ri j)α and (ri j)β are corresponding (α and
β ) projections of the distance vectors ri j [35], [36]. Since the stress definition (6.13) is
inherently related to the static equilibrium state, it is, strictly speaking, applicable only to
static (or quasi-static) deformation where the resultant force acting on each atom (6.2)2
are equal (or “close enough”) to zero. On the other hand, dynamic deformation implies
wave propagation and, in order for expression (6.13) to be applicable, it must be tacitly
assumed that the nonequilibrium process can be represented by a successive series of
equilibrium processes. This concept is routinely used, out of necessity, in thermodynamics
of nonequilibrium processes.

The third term in the Taylor series (6.12) defines the elastic stiffness tensor

Cαβγδ =
1

2V̄ N ∑
i, j
j ̸=i

(
d2

φ

dr2
i j
− 1

ri j

dφ

dri j

)
(ri j)α (ri j)β (ri j)γ (ri j)δ

r2
i j

−

− 1
2

dΨ

dV̄

{
(δαγ δβδ +δβγ δαδ )(2−δαβ )−

1
2

δαβ δγδ (4−δαγ −δβγ −δαδ −δβδ )

}
+

+V̄
d2

Ψ

dV̄ 2 δαβ δγδ

(6.14)
In the case of pair potentials (6.4), Ψ = 0 and only the first terms of Equations (6.13)

and (6.14) remain. When the EAM (6.7) or related methods are used to model interatomic
interactions, it is necessary to use the complete Equations (6.13) and (6.14) that take into
account the density (the average volume per atom) dependence of the potential [24].
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The strain tensor components are calculated based on the deviation of the current
network configuration from the reference configuration defined at the initial moment.
Since atomic positions are known at all times (therefore, in both the initial and the current
configuration), calculating the strain components is a straightforward task. For example,
the components of the left Cauchy-Green strain tensor, corresponding to i-th atom of the
plane system, are commonly (e.g., [37]) defined as follows

bαβ =
1
3

6

∑
j=1

(r̄i j)α (r̄i j)β , (r̄i j)α = (ri j)α/r0. (6.15)

It should be noted that, unlike the stress definition (6.13), the virial equation (6.15) is
instantaneously valid in time and space, that is, it does not require time averaging.

Temperature
The temperature evaluation during dynamic processes raises some fundamental questions
related to the thermodynamics of nonequilibrium processes in relation to basic thermostatic
concepts such as entropy and absolute temperature of nonequilibrated systems (e.g., [34],
[38], [39]). That discussion is bypassed herein. It is deemed sufficient just to point out
the Callen’s [40] claim that the nonequilibrium definitions of entropy and temperature are
based on uncertain premises. Be it as it may, a consensus has been reached, over time, on
the use of a standard definition of temperature, known from the kinetic theory of gases.
This definition is based on the equipartition theorem that provides a relationship between
the average kinetic energy and the instantaneous kinetic temperature of the system: atomic
velocities establish a thermometer. According to this theorem, each degree of freedom
contributes kBT/2 to the internal energy of the system from where it follows

T ≡ 2
3kB

⟨Ek⟩=
2

3kB

〈
mv2

2

〉
. (6.16)

where kB is the Boltzmann constant. The definition (6.16) is firmly established in statistical
mechanics as it derives from the distribution of the highest probability of a canonical
(N, V , T ) ensemble [34], [41]. Thus, expression (6.16) tacitly implies that the system
is thermally equilibrated, and the atomic velocities distributed in accordance with the
Maxwell-Boltzmann distribution (6.17) [42]. As argued by Holian and coworkers [39],
the instantaneous kinetic temperature is the only meaningful definition in nonequilibrium
situations.

Importantly, the intensity of velocity vector v(vx,vy,vz) appearing in Equation (6.16)
corresponds to the vibratory motion and, therefore, does not contribute to the resultant
momentum. Nonetheless, it possesses a finite kinetic energy that is identified with the
thermal energy and is related to the absolute temperature in MD simulations. With reference
to Figure 6.6a, the vibrational velocity components could be obtained by subtracting the
velocity of correlative (systematic) motion (full black line) from the total (individual)
atomic velocity (dashed red line). The total velocity of each atom is obtained directly by
solving Newton’s equations of motion (6.1)1. The associated velocity of correlative motion
can be calculated by spatially averaging the total velocities of all atoms belonging to a
particular averaging region centered at the atom in question (Figure 6.6b). This averaging
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volume (surface in 2D) plays a role of a virtual sensor (thermometer in this case). This
approach is reminiscent of the division of the motion of molecules, in the kinetic theory of
gases, into a "random" and a "systematic" part [44].

Figure 6.6: (a) A typical time history of atomic speed recorded in the course of 0.408 [km/s] ballistic Taylor
test [45]. The full black line represents the systematic velocity of (correlative) motion while the dashed red line
represents the corresponding total velocity of the individual atom. The difference between the total velocity and
the associated systematic velocity results in the velocity of vibratory motion which defines the thermal energy of
random vibrations related to the instantaneous kinetic temperature (6.16) (Adopted from [43]). (b) Averaging
area (in general, volume) superimposed on an irregular lattice for evaluation of the macroscopic state parameters
in MD simulations (virtual sensor).

The instantaneous kinetic temperature (6.16) is averaged in both time and space. In 2D
simulations, the averaging area is usually taken to be the same circular region (shaded in
Figure 6.6b) that was previously used to calculate the correlative motion velocity. Therefore,
each node in the network also represents the center of the averaging area of radius Rav,
characterized by the corresponding velocity of correlative motion and the temperature
obtained by averaging within the specified area. The size of the averaging region is the
result of a compromise between contradictory requirements for the largest possible size of
statistical sample and the finest possible calculation (measurement) resolution. An example
of the arrangement of the averaging regions is shown in Figure 6.7 for the case of a slender
flat-head projectile hitting a rigid wall (the Taylor ballistic test [45]). The circular averaging
areas (6.6b), which play the role of measuring gages, follow the movement of the atoms on
which they are centered during the sample deformation. Accordingly, if during deformation
the atoms, on which the averaging surfaces are centered, approach the edge of the deformed
object, incomplete averaging may occur, which has different consequences for different
macroscopic parameters (depending on their definitions; Equations (6.13)-(6.15)) which
should be carefully examined in each specific case.
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Figure 6.7: Temperature evolution for the simulation of the Taylor ballistic test (the (nano)projectile collision
with the rigid wall). (a-c) Sequence of deformed nanoprojectile configurations upon vimp = 7[km/s] rigid-wall
collision with the marked positions of the eight averaging areas ("measurement gages") used to evaluate the
macroparameters of state: (a-c) 0.2[ps], 6[ps], 12[ps], respectively (Adopted from [46]). (d) An example of
time histories of temperature recorded at four measurement locations A−D equidistantly distributed along the
longitudinal axis of symmetry of the nanoprojectile at the impact velocity vimp = 4[km/s] (Adopted from [43]).
(e-g) Examples of temperature field evolutions during the vimp = 0.7[km/s] simulation; the images correspond
10[ps], 20[ps], and 50[ps], respectively. The scale of values on the label refers to the absolute temperature in
degree Kelvin.

Thermal initialization of the system
Assignments of the initial and boundary conditions necessary for an MD simulation imply
definition of the initial positions and initial velocities of all atoms of the system. The
vibrational part of the initial velocities are generally defined by selecting the velocity
intensities for each atom from the Maxwell-Boltzmann distribution for the desired initial
sample temperature (T0) while the velocity directions are assigned randomly.

The Maxwell-Boltzmann distribution of the vibrational velocities provides the proba-
bility density for atoms with the velocity intensity v and has the form

pd f (v) = 4π

(
m

2πkB T0

)3/2

v2 exp
(
− mv2

2kBT0

)
. (6.17)
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Figure 6.8 illustrates the Maxwell-Boltzmann velocity intensity distribution for tung-
sten (W) at temperatures of 300 [K] and 1000 [K]. As can be seen, the distribution is not
symmetric: the average value of the velocity intensity (6.18)1 is always greater than the
most probable value (6.18)2 (corresponding to the maximum of the distribution curve)

⟨v⟩=
√

8kB T0

πm
, vm =

√
2kB T0

m
=

√
π

2
⟨v⟩. (6.18)

Figure 6.8: The Maxwell-Boltzmann speed distributions for tungsten for two different temperatures.

6.2.5 MD Simulation Cell and List of Neighbors
The response of small systems can be dominated by surface effects that may obscure
the physical response of the bulk material. A simulation cell with periodic boundary
conditions (Figure 6.9) is introduced to eliminate these contaminating surface effects
whenever it is of interest to study behavior of the bulk material. The volume (surface area
in 2D) of a periodic cell is representative of bulk material in the sense that it is considered
to be composed of periodic cells surrounded on all sides by their exact replicas [5] as
illustrated in Figure 6.9. This periodicity implies that the atom, in the bottom-right cell
corner of Figure 6.9, leaving the MD simulation cell instantaneously reappears at the
bottom-left cell corner.

This elimination of unwanted surface effects using these periodic cells is achieved
at the cost of introducing non-physical periodicity into the atomic system. Adverse
consequences include: (i) unrealistically rigid response, (ii) unnatural wavelengths in the
solution fields, (iii) suppression of localization that might otherwise occur [47], and (iv)
violation of the conservation of angular momentum [15].

In order to simulate the most general loading conditions, it is necessary to be able to
change the shape and size of the periodic cell and maintain constant values of certain state
parameters (typically, temperature or pressure; the NT P ensemble). The restriction that the
shape of the periodic cell must remain unchanged has a negative impact on the applicability
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of the periodic cell. Therefore, several alternative MD methods have been proposed as
potential solutions for above mentioned problems in a series of papers [48]-[51]. In these
studies, the shape of a periodic cell is treated as a phenomenological variable subject to
change over time.

Figure 6.9: Periodic boundary conditions and the simulation cell.

The time required to calculate the interactions between the N atoms of a 2D system
using algorithm (6.9) is proportional to N2 [5]. In order to improve the speed of program
execution, it is very useful to maintain a list of neighbors of each atom that Verlet
originated in his classic work [52]. For example, the list of neighbors of the i-th atom
is formed by including all atoms at a distance less than the prescribed cut-off distance.
Between periodic updates of the neighbor list (typically, several calculation cycles), the
program does not check all other atoms in the system but only those that appear in the list
for a given atom.

6.2.6 Temperature and Pressure Control

In the absence of dissipative forces, the equation of motion of classical mechanics results
in the conservation of the total energy of the system which corresponds to a microcanonical
(N, V , E) ensemble. The calculated temperature (6.16) and pressure in the standard MD
formulation are not constrained and can vary significantly during the simulation (Figure
6.7). Most often, it is of utmost importance to evaluate these temperature and pressure
changes. On the other hand, sometimes it is of interest in MD simulations to constrain
temperature or pressure or both. The importance of temperature and pressure control
has made the topics of virtual thermostats and barostats very popular among researchers,
resulting in an abundance of different methods (e.g., [53]-[55]).
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Nose-Hoover thermostat

Atomic velocities establish a thermometer, as argued in Chapter 6.2.4. All algorithms
performing the role of thermostat use some modifications of Newton’s second law of
motion to provide a constant average temperature of the particle ensemble by adding and
removing its energy [55]. The temperature control is illustrated here by the Nose-Hoover
algorithm as formulated by Holian and co-authors [39].

The Nose-Hoover thermostatted MD has a theoretical basis in the classical thermody-
namic concept of "connecting" a thermodynamic system (in this case, the MD cell) with a
heat reservoir that ensures a constant temperature during the simulation. Consequently,
the given atomic ensemble becomes, by definition, canonical (N, V , T ). The Nose-Hoover
model uses the classical temperature concept (discussed in Chapter 6.2.4) based on the
instantaneous kinetic energy of the system. The technique of providing thermostatic condi-
tions is of the integral-feedback type. First, an additional term is inserted into Newton’s
second law of motion

r̈i =
Fi

mi
−ϑH ξH ṙi (6.19)

to control the „jigllings and wigllings“ of atoms. Second, the dynamic variable, ξH , must
satisfy the additional equation of motion

ξ̇H = ϑH

(
T
T0

−1
)

(6.20)

which provides the necessary feedback. In the differential Equation (6.19), ϑH is the
coupling speed of the atom with the thermal reservoir. The standard form of Newton’s
equation of motion is recovered from expression (6.19) for ϑH = 0. The variation of the heat
distribution variable ξH ensures that the long-term average kinetic energy (consequently,
the average temperature as well) remains constant, while allowing fluctuations in its current
value (Figure 6.10).

Numerical integration of Nose-Hoover equations of motion using the Störmer central
difference algorithm ((6.10) and (6.11)) [56] reduces to the following expressions

r(t) = r(t −δ t)+δ t ṙ(t −δ t/2)+O(δ t3),

ξH(t) = ξH(t −δ t)+ϑH

[
T (t −δ t/2)

T0
−1
]

δ t +O(δ t3), (6.21)

ṙ
(

t +
δ t
2

)
=

1
1+ϑHξH(t)δ t/2

{
ṙ
(

t − δ t
2

)[
1− 1

2
δ tϑHξH(t)

]
+

F(t)
m

δ t
}
+O(δ t3).

A detailed consideration of this method is available in [39]. A more advanced version
of the thermostat is available in [57].
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Figure 6.10: Main panels: Examples of current temperature fluctuations in time for a constant mean value of
373[K] in systems with the number of atoms: (a) 1300, and (b) 34000. Inserts: Corresponding fluctuations of the
dynamic variable ξH which ensure the constant temperature.

6.2.7 Advantages and Disadvantages of Traditional MD
The main advantages of conventional MD methods are:

(i) The only model input (excluding boundary and initial conditions) is the interatomic
potential. Other than that, there are no classical constitutive models that postulate
the relationships between the main thermomechanical parameters of the state.

(ii) No assumptions are made regarding the nature of the physical mechanisms or
simulated processes that are the subject of the study. Accordingly, the possibility
opens up for a well-designed virtual experiment to provide a detailed and unbiased
insight into the main mechanisms of the studied physical phenomena.

(iii) The above-mentioned insight into the mechanisms of the studied physical phenom-
ena can be achieved with extremely high spatio-temporal resolution.

The main disadvantages of classical MD methods are:
(i) Classical description of interatomic interactions, based on empirical potentials,

greatly simplifies the rigorous quantum mechanical nature of the material.
(ii) Classical description of interatomic forces in which Newton’s second law of

motion replaces the Schrödinger equation of quantum mechanics. One of the
indicators of the validity of this approximation is the de Broglie wavelength, which
for thermal motions has the form

Λth =
h√

2πmkBT

where h is the Planck constant, m the atomic mass, kB is the Boltzmann constant and
T is the absolute temperature [16]. Quantum effects are considered to be negligible
if the de Broglie wavelength is less than the interatomic distance, Λth < r0, or if
the frequency of vibrational motion, ν , is such that hν < kBT . In other cases, the
atoms of most chemical elements (except the lightest ones like H, He, noble gases)
can be considered the material points at sufficiently high temperatures and classical
mechanics can be used to describe their motion.

(iii) Spatio-temporal constraints which include the size of the MD model and the
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duration of the simulated phenomenon, limit the range of problems that can be
solved by MD methods.

Although MD has advanced tremendously and gained in popularity on the wave of
the extremely rapid development of computer technology, the current state the matter still
makes unthinkable the macroscopic modeling of even the shortest physical phenomena. For
example, MD modeling of a 1[mm]3 copper sample is not even closely achievable, because
it consists of approximately 1021 copper atoms, which exceeds by far the capabilities of
even the most powerful computer systems at present. The size of the MD simulation cell is
limited typically up to 108 atoms nowadays, which ordinarily corresponds to a few tens of
nanometers. According to the available data, it appears that the current record of 4.1·1012

atoms (equivalent to a 4.5×4.5×4.5[µm] cubic simulation cell) has been achieved on the
computer platform “SuperMUC” (Leibniz Supercomputer Center of the Bavarian Academy
of Sciences) using 131072 processors and over 500 TFLOPS.

The simulation duration is defined by the size of the time step and the number of cycles.
A typical time step in MD simulations is of the order of femtosecond. As an example, for
2D Leonard Jones systems, the initial time step estimate is based on the expression

δ t =
(

1
60

÷ 1
30

)
2π

ωE
, ωE =

√
3ω0 (6.22)

where ωE denotes the Einstein frequency associated with the fundamental harmonic fre-
quency ω0 =C0/r0 defined in terms of the speed of sound and the equilibrium interatomic
distance [39].

The small time step required for MD simulations of atomic systems severely limits
the total duration of the event simulated. By using modern computers and massively
parallel processing it is possible to calculate approximately 108 time cycles (that is, to
simulate physical phenomena that occur within 100[ns]). This is a serious limitation
for many problems involving thermally activated processes (Table 6.1, Table 6.2), which
is why several methods have been developed for their acceleration for the purpose of
studying surface diffusion, film deposition, and the evolution of point defects. A record
MD simulation of the order of 10 [µs] describes the rapid bending of protein chains [58].

Increasing the physical duration of simulated processes is a constant, active research
area that includes the improvement of numerical algorithms, parallel processing, and the
continuous development of hardware capabilities.

Table 6.1: Examples of representative temporal and spatial scales necessary to observe some typical
deformation mechanisms under step-pressure loading of single-phase metals (adopted from [59]).

Mechanism Representative Length Scale Representative Time Scale
Phase transformation 10 nm 10 ps
Dislocation nucleation 50 nm 50 ps
Twin formation 1 nm 1 ns
Interaction of dislocations 100 nm 100 ns
Spallation; tensile damage 1 µm 100 ns
Adiabatic shear 100 µm 10 µs
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Table 6.2: Examples of representative temporal and spatial scales necessary to observe some typical
deformation mechanisms under step-pressure loading of amorphous brittle materials (adopted from [59]).

Mechanism Representative Length Scale Representative Time Scale
Crack nucleation 100 µm 10 ns
Crack coalescence 1 mm 100 ns
Comminution 1 mm 1 µs
Fragment flow 1 mm 1 µs
Interfragment friction 10 mm 10 µs
Interfragment rotation 10 mm 10 µs

(iv) Output oversaturation (“data glut”). The above-mentioned detailed insight into
the mechanisms of the studied phenomena on the atomic scale with extremely fine
time resolution can lead to the oversaturation with the raw MD output data (r,v, a).

6.3 Particle Dynamics
Particle dynamics (PD) is one of many computational methods developed to bridge the
gap between the microscopic and macroscopic spatial scales (Figure 6.2). As presented
herein, it is an engineering offshoot of MD on an arbitrarily selected spatial scale (Figure
6.11). Since PD has MD techniques at the root, it is sometimes called quasi-MD. Thus,
the basic distinguishing features of PD in relation to MD lie in the coarser spatial scale
and, in that regard, the phenomenological constitutive model that defines the interparticle
interaction. It will be shown in this chapter that this constitutive model may or may
not have a functional form of the empirical interatomic potentials. Other than that, the
computational simulation techniques used in PD modeling are largely the same as those
well known from the traditional MD literature [5], [15], [17]. Greenspan [60] contributed
the most to the early development of particle methods as presented in this introduction.

6.3.1 Basic Idea of PD
Basically, the PD system consists of material points (referred to as particles in this chapter)
of known masses mi, and positions ri (i = 1, . . . ,N). Depending on the material being
modeled (fluid, amorphous or crystalline solids), these material points can be arranged
randomly or regularly according to the topology of an underlying network. As discussed
in Chapter 6.2, the known initial configuration defines the reference state. The calculation
methodology requires an approximate solution of the system of differential equations with
given initial conditions. At an arbitrary time (t > 0), the position and momentum of each
particle are completely determined by Newton’s laws of motion (6.1)1. Therefore, the
movement of each particle is deterministic.

As already mentioned, the well-established MD techniques have been adapted to
simulate such coarser-scale material systems with the role of atoms being taken over by a
different kind of material points—the large chunks of material—often called a continuum
particle or quasi-particle. For simplicity, these material points often interact with each
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other according to a simple central-force rule that completely determines the strain energy
density function based on their mutual position. A system of Newton differential equations
of motion for a system of particles with defined momenta pi = miṙi is then approximated
by an appropriate system of finite difference equations and then solved using one of the
many available integration algorithms as outlined in Chapter 6.2.3.

Figure 6.11: Schematic illustration of mapping between a molecular (or atomic) structure and the PD model
(represented by a coarse-grained MD model).

It is interesting to note that the time-reversible equation for calculating the next particle
position of the system (6.9) can be modified into the following form

ri(t +δ t) = ri(t)+η [ri(t)− ri(t −δ t)]+δ t2 ai(t) (6.23)

where η marks the dumping coefficient. The reversible scheme (6.23) is used (often
with η = 0.95) in PD simulations of quasi-static problems for the purpose of dissipating
kinetic energy in order to obtain an equilibrium configuration in a time-efficient manner.
Assuming that the interparticle forces are conservative, the intensities of the central force
with which the particle j acts on the neighboring particle i and the resulting force with
which all the first neighbors act on the particle i can be calculated using expression (6.2).
The standard form of time-reversible Equation (6.9) is recovered from (6.23) for η = 1 (no
dissiption).

6.3.2 Interparticle Potentials
The interparticle potential (which, as already mentioned, in the PD models plays the role
of constitutive law) must be adopted as an initial modeling step. Along with the spatio-
temporal scale of simulations, this potential represents the basic difference between MD
and PD. One of the most commonly used pair potentials for interparticle interactions

φ(ri j) =−
(

1
p−1

)
P

rp−1
i j

+

(
1

q−1

)
Q

rq−1
i j

, q > p > 1,

fi j =−
dφ(ri j)

dri j
=− P

rp
i j
+

Q
rq

i j

(6.24)

represents a generalization of the well-known Lennard-Jones 6-12 potential (6.7). The limit
case of the exponent p = 1 was analyzed in detail by Wang and Ostoja-Starzewski [61]
with an alternative form of potential that is necessary due to the singularity of expression
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(6.24) for this value of the exponent. With regards to relation (6.24), P, Q, p and q are
positive constants, and q > p in order to obtain a repulsive force necessarily much stronger
than the attractive one. The Greenspan trailblazing method [60], based on interparticle
interaction (6.24), exerted a profound influence on development of PD.

Note that the condition of zero-stress state in the equilibrium configuration (6.24)2
results in the expression for the equilibrium interparticle distance

ri j0 =

(
Q
P

) 1
q−p

(6.25)

defined in tems of the four parameters of the interparticle potential (6.24)1. In principle,
the equilibrium interparticle distance can be shrinked to the level of a few angstoms in
which case the PD model is reduced to the MD model.

An ubiquitous step, common to all CMD methods, is to ensure that the assignment
of model parameters results in appropriate physical and mechanical properties of the
material. With regards to that crucial step, Wang and Ostoja-Starzewski [61] introduced a
novel principle of equivalence between the meso-scale particle model and the micro-scale
MD model, while using the Greenspan modeling approach based on the interparticle
potential (6.24). This was achieved by establishment of four equality conditions (releted to
mass, elastic strain energy, modulus of elasticity and tensile strength) for the purpose of
determination of four unknown model parameters in (6.24). In this way, the equations for
parameters P, Q, p and q are derived and an appropriate parametric study conducted in
order to determine the model parameters under given conditions.

For example, Figure 6.12 shows the dependence of the modulus of elasticity and
tensile strength on the parameters (p,q) of the interparticle potential (6.24)1, arrived at
by simulations at constant values of the sample volume and the equilibrium interparticle
distance [61].

Figure 6.12: Modulus of elasticity and tensile strength dependance upon a pair of parameters (p,q) at fixed
values of the interparticle distance (0.2 [cm]) and sample volume (8.0×11.4×3.1 [cm3]). (Reproduced from
reference data [61].)
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Given the range of physical characteristics of copper and its alloys (E0 = 120−
150[GPa] and σm = 250−1000[MPa]) it is obvious that, among the three options offered
in Table 6.3, the most favorable is (p,q) = (7,14).

It is important to emphasize that this selection is not unique: the similar values of
E0 and σm could be obtained with slightly different combinations of parameters (p,q)
from which, on the other hand, different values of fracture toughness of materials on the
macro-scale can be derived. Accordingly, the analyst has an additional "degree of freedom"
to adjust the physical and mechanical properties of the target material to a certain extent.

Another potential that has found wide application in PD [62], for simulations of the
behavior of brittle materials with random mesostructure, is a combination of Born-Mayer
(6.26)1 and Hookean (6.26)2 potentials.

φ
r(r̄i j) =

ki jr2
0i j

(B−2)

(
1
B

eB(1−r̄i j)− r̄−1
i j

)
, r̄i j < 1;

φ
a(r̄i j) =

1
2

ki jr2
0i j(r̄i j −1)2, r̄i j ≥ 1;

f r(r̄i j) =
ki jr0i j

(B−2)

(
eB(1−r̄i j)− r̄−2

i j

)
, r̄i j < 1;

f a(r̄i j) = ki jr0i j(r̄i j −1), r̄i j ≥ 1.

(6.26)

In expression for this hybrid potential (6.26), superscripts r and a designate, respec-
tively, a repulsive and attractive branch of interaction, ki j bond stiffness (related to modulus
of elasticity by (6.27), while the adjusting parameter B defines the slope (steepness) of the
repulsive wall (Figure 6.13, on page 243). The parameter B is, in principle, identifiable
from shock experiments (e.g., it is conceptually related to the particle-velocity multiplier
in the linear form of the ballistic equation of state) [62].

Table 6.3: Parameters P and Q of potential (6.24)1, modulus of elasticity and tensile strength determined for
different pairs of (p,q) parameters shown in Figure 6.12. The reference [61] offers a more precise estimate of
these quantities as well as a change in the modulus of elasticity with increasing initial interparticle distance in a
given range which is conveyed here in the last line.

(p,q) (3,5) (5,10) (7,14)

P 2.5·107 1.8·106 1.1·105

Q 9.9·105 5.7·102 1.4
E0[GPa] 15. 70. 150.
σm[MPa] 90. 270. 440.
∆E0[%]

r0:(0.1→0.5)cm -15. -16. -16.



6.3 Particle Dynamics 243

Figure 6.13: Nonlinear hybrid potential (6.26). Schematic representation of the interaction between particles
that (a) are or were first-nearest neighbors, and (b) were not first-nearest neighbors initially. The yellow arrow
indicates the effect of increasing the parameter B, which defines the slope of the repulsive wall [62].

The latter can be identified in dynamic simulations, for example, by matching the
ballistic equation of state. Thus, the average link stiffness of the interparticle potential is
determined uniquely by the value of modulus of elasticity of the pristine material

ki j =
8

5
√

3
E(3D)

0 . (6.27)

The expression (6.27) is equivalent to (6.41) of the corresponding triangular lattice
model with central interactions. This equivalence also implies the fixed value of Poisson’s
ratio, v(3D) = 1/4 (6.39)1. The hybrid potential (6.26) was introduced to reproduce some
underlying features of the deformation process typical for the considered materials, such as:
brittle behavior in tension, increase of shock wave velocity and decrease of compressibility
with increasing pressure.

It should be noted that linear interparticle interactions, characteristic of elastic-brittle
behavior of materials (and the traditional spring-network models of Chapter 6.4.2), can
be considered a modification of the above hybrid potential, with the attractive part of the
potential (6.26)2 being used in the repulsion domain as well [63].

Finally, Watson and Steinhauser [64] used a conceptual solution of interparticle inter-
action very similar to the one of Mastilović and Krajčinović [62] to model the phenomena
of hypervelocity impact. The main difference is that their interparticle repulsion instead of
the Born-Meyer (6.26)1 used the ubiquitous Lennard-Jones 6-12 potential (6.7), while the
Hooke potential (6.26)2 was used in unaltered form in the attractive branch. It is interesting
to note that for the purposes of their 3D simulations, Watson and Steinhauser [64] adjusted
the remaining two parameters of the model—corresponding to the depth of the potential
well in (6.7) and the bond stiffness in (6.26)2 — by a fitting procedure based on a series
of hypervelocity impact experiments (a sphere colliding with a thin plate). This nicely
illustrates the connection between physical (laboratory) and virtual experiments that is
becoming an integral part of contemporary computational modeling.
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As already noted, the PD simulation is completely deterministic. However, the particle
configurations that mimick the modeled material are not necessarily associated with an
ideal lattice. As an example, in order to describe the deformation of the brittle material
with a random microstructure, it is necessary to introduce the quenched disorder into the
computer model. This initial disorder can be topological (unequal coordination number),
geometric (unequal bond length) or structural (unequal bond stiffness and/or strength). It
can be introduced through the probability distributions of strength, stiffness, and missing
bonds (which mimics porosity or pre-existing damage). This (so called, quenched) disorder
increases with damage evolution (the induced disorder) in the course of deformation
process. Therefore, the nature of damage evolution is inheretly stochastic due to the initial
stochasticity of the PD model (although each individual physical realization of the given
statistics is deterministic).

6.4 Lattices

Lattice models are a class of CMD models based on the concept of computation domain
discretization with an assembly of one-dimensional elements (springs, trusses, beams)
endowed by elementary constitutive rules and rupture criteria. They are closely related to
PD, as outlined in the preceding chapter, since every system of particles can be associated
with a lattice, especially in the case of solids. (As an example, the mentioned modification
of the hybrid potential (6.26), with the attractive part of the potential (6.26)2 being used in
the repulsion domain as well, constitutes the simplest lattice model - the spring network.)
The first application of the lattice method is attributed to the Russo-Canadian engineer
Alexander Hrennikoff [7], who devised it to solve the plane stress problem of a thin elastic
plate loaded with in-plane forces. The method then fell into oblivion and remained dormant
until the 1980s when its remarkable capabilities for introducing material disorder and
heterogeneities into the computational model in a simple and natural way were noticed.
Ever since, simplicity and inherent ability to capture localized failure mechanisms led
to rapid development of lattice models. Not surprisingly, these models are of special
importance for studies of mechanical fracture of quasi-brittle materials (e.g., concrete),
which were necessarily of phenomenological character. Nonetheless, applications for
metals, ceramics, polymers, composites, granular materials are available in literature ([65]-
[67]).

The chronological development and adaptations of lattice models to different types
of materials and loads are encapsulated herein in a most concise form. To begin with, it
should be noted that the continuum can be discretized by lattice models in various ways
(plane or spatial lattices, of regular or irregular (random) geometry, with overlapping or
non-overlapping elements). Lattice models can also differ in the number of degrees of
freedom per node (truss vs. beam), which has proven to be a source of important distinction
when it comes to their ability to realistically reproduce physical phenomena. Over time, a
consensus was reached that lattice models of irregular geometry with beam interactions
were most suitable for fracture simulations, especially in materials characterized with a
distinctly heterogeneous structure.
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6.4.1 Basic idea of Lattice Models
When formulating the lattice model, it is crucial to establish the relationship between the
lattice parameters and the mechanical properties of the solid material being simulated.
The gist is that under the uniformly applied load, the lattice should reproduce the linear
elastic behavior of the corresponding equivalent continuum and its uniform deformation.
Different approaches have been proposed in this regard (e.g., [67]-[71]).

The methodological approach employed herein is based on the deformation energy
equivalence and follows closely the original works of Ostoja-Starzewski and co-workers
[3], [8], [72], [73]. The basic idea is to ensure the equivalence of the deformation energy
contained in the deformed unit cell of the lattice (e.g., the hexagonal unit cell in Figure
6.14a) with that in the associated continuum structure (of the same volume V )

Ucell =Ucontinuum. (6.28)

The deformation energy is defined in continuum mechanics by expression

Ucontinuum =
1
2

∫
V

σ : ε dV =
1
2

∫
V

σαβ εαβ dV. (6.29)

If we restrict ourselves to a uniform strain field ε , Equation (6.29) becomes

Ucontinuum =
V
2

ε : C : ε =
V
2

Cαβγδ εαβ εγδ (6.30)

In order to establish relationships between the macroscopic material properties (e.g., the
effective stiffness components Cαβγδ ) and the lattice parameters, it is necessary to define a
lattice unit cell based on specific periodic arrangements of the associated nodal points and
their mutual interactions. For brevity, only the regular triangular lattice with the hexagonal
unit cell will be used in the following deliberations (Figures 6.14-6.16).

6.4.2 Lattices with Central Interactions (α Models)
The lattice with central-force interactions (also known as the spring-network or α model)
is the basic model in the sense that each bond represents a truss or a spring that transmits
only an axial force: f = fnn directed along the bond direction defined by the unit vector
n (Figure 6.14). The deformation energy contained in a unit lattice cell with central
interactions is the sum of deformation energies of the constituent lattice elements (bonds)

Ucell = ∑
b

E(b) =
1
2

Nb

∑
b
(f ·u)(b). (6.31)

In Equation (6.31), u = ui j = ui −u j designates the resulting change of length of the
lattice element that connects the lattice nodes (material points) i and j, b is bond index
(b-th truss/spring), and Nb is their total number. If we restrict ourselves to linearly elastic
interactions, Equation (6.31) can be written as

Ucell =
1
2

Nb

∑
b
(kn u·u)(b) (6.32)
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where kn designated the bond stiffness. (Compare with (6.8)1 and (6.26)2.)
At this point, it is necessary to define an associated unit lattice cell. The derivation

of the equations of the connection between the bond (spring) constants and the effective
stiffness components is based on equivalence (6.28). A key step in this process is to
establish a connection between u and ε , which depends on the specific geometry of the
lattice unit cell and the specific model of the interaction between lattice nodes.

Triangular lattice with central interactions

The only truss lattice to be considered in detail herein is an equilateral triangular lattice with
the central-force interactions between the first-nearest neighbors. The lattice, illustrated in
Figure 6.14, is based on a hexagonal unit cell and six lattice elements (springs or trusses)
of length ℓ, equal to a half the equilibrium distance, r0, between lattice nodes which defines
the equilibrium lattice geometry (the reference state). The area (volume of unit thickness)
of a hexagonal unit cell is V = 2

√
3ℓ2. Each bond b, belonging to a given unit cell, is

characterized by a spring constant α(b) and unit vector n(b) defining the bond direction,
with corresponding angles θ (b) = (b−1)π/3 (b = 1, . . . ,6) with respect to the horizontal.

Figure 6.14: (a) Regular triangular lattice with a hexagonal unit cell and central interactions between the
first neighbors (α model); (b) a serial connection associated with a link between two adjacent unit cells.

The deformation energy stored in the unit hexagonal cell consisting of six evenly
stretched connections is

Ucell =
1
2

6

∑
b=1

(α u·u)(b) = ℓ2

2

6

∑
b=1

α
(b) n(b)α n(b)

β
n(b)γ n(b)

δ
εαβ εγδ . (6.33)

Based on equivalence (6.28), the components of the elasticity tensor can be identified
in the following form

Cαβγδ =
1

2
√

3

6

∑
b=1

α
(b)n(b)α n(b)

β
n(b)γ n(b)

δ
(6.34)
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which, in the case of equal spring constants α(b) = α (b = 1, . . . ,6), reduces to

C1111 =C2222 =
9

8
√

3
α =

E
1−ν2 ,

C1122 =C2211 =
3

8
√

3
α =

Eν

1−ν2 ,

C1212 ==
3

8
√

3
α =

E
2(1+ν)

.

(6.35)

It should be noted that expressions (6.35) satisfy the isotropy condition

C1212 = (C1111 −C1122)/2. (6.36)

In addition, since the value of the apparent plane-strain Poisson’s ratio2 is fixed, the
spring constant defines only the plane modulus of elasticity of the unit lattice cell

ν =
C1122

C1111
=

1
3
, E =

α√
3
. (6.37)

Importantly, for all types of lattices, the upper limit of the plane Poisson’s ratio is
defined by the value (6.37)1. This value could be modified in various ways. For example,
it is possible to define the so-called “triple honeycomb network” (sometimes the term
α −β − γ model is also used [8]) in which the base of the unit cell is a regular hexagon
but, in the notation used in Figure 6.14, α(1) = α(4) ̸= α(2) = α(5) ̸= α(3) = α(6). This
selection of spring stiffnesses results in the following expression

ν = 1− 2[
1+ 2

9

(
α(1)+α(2)+α(3)

)( 1
α(1) +

1
α(2) +

1
α(3)

)]
for the plane Poisson’s ratio, which can reproduce values in the range 1/3 to 1. When
α(1) = α(4) = α(2) = α(5) = α(3) = α(6) = α , the value (6.37)1 is recovered.

The plane coefficients E and ν , defined by (6.37) in terms of the spring stiffness α ,
are not material properties but simply their 2D counterparts, mere parameters, obtained
by combining the elastic properties under the plane-strain (or, generally, the plane-stress)
conditions. Since, the 2D triangular lattice (Figure 6.14) is equivalent to three-dimensional
continuum under the plane strain conditions [74], the corresponding relationships between
the real (3D) and the apparent (2D) material properties are

ν =
ν(3D)

1−ν(3D)
, E =

E(3D)

1− [ν(3D)]2
. (6.38)

Consequently, Poisson’s ratio and the modulus of elasticity corresponding to Equations
(6.37) are

ν
(3D) =

1
4
, E(3D) =

5
√

3
16

α. (6.39)

2The apparent plane-strain Poisson’s ratio and the apparent plane-strain modulus od elasticity are
henceforth, for brevity, referred to as the plane Poisson’s ratio and the plane modulus od elasticity.
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Note that the fixed value of Poisson’s ratio, 1/4 (6.39)1, is a reasonable approximation
for many engineering materials.

Finally, in lattice modeling it is often useful to designate the spring stiffnesses directly
to the bond between two lattice nodes (instead of using the half values associated with
the hexagonal unit cell). With regards to Figure 6.14b, since the two springs between the
adjacent unit cells A and B are connected in series, their equivalent spring stiffness is

1
αeq

=
1

α
(2)
A

+
1

α
(5)
B

⇒ αeq =
α
(2)
A α

(5)
B

α
(2)
A +α

(5)
B

. (6.40)

For the case of equal spring stiffnesses, α(b) = α (b = 1, . . . ,6), for all unit cells, the
preceding expression (αeq = α/2) in combination with (6.39)2 yields

αeq =
8

5
√

3
E(3D). (6.41)

Thus, Equation (6.41) provides a direct link between the (meso-scale) spring stiffness
αeq of the equilateral triangular lattice with the central interactions and the (macro-scale)
material property E(3D). (Compare with expression (6.27).)

Chronology of development of lattices with central interactions
Lattices with central interactions, as the simplest lattices, gained popularity very early in
the failure modeling of heterogeneous materials with disordered microstructure. Although
they began to be used earlier, they achieved the greatest momentum through the pioneering
works of Bažant and his associates [67], [68]. Schlangen and van Mier [75], [76] noticed
very early the possibilities of the α model to simulate qualitatively the process of damage
and fracture of concrete represented by a network of aggregates (as lattice nodes) bonded by
the cement (as lattice elements) of inferior tensile strength. However, it should be borne in
mind that these simple models are inherently unable to realistically capture more complex
crack propagation patterns and reproduce fracture shapes resulting from a combination
of basic failure modes [69], [74], [77], [78]. For example, if α models are calibrated to
reproduce cracks due to tension and fracture in the first mode, they will do that reasonably
well; however, that same model will significantly exaggerate the compressive strength and
will not realistically reproduce the stress-strain curve in the post-critical (softening) regime.
Also, α models are not able to accurately predict fracture envelopes at complex stress
states due to the oversimplified unit-cell stiffness. Despite all of the above, thanks to their
simplicity and computational efficiency, these models are—regardless of the abundance of
more sophisticated methods—still popular among researchers for simulations in which
these shortcomings are not fully expressed [79], [80].

Bažant and co-authors [67], [68], [81] used a central-force lattice with irregular
geometry to model the brittle heterogeneous material. In contrast to lattice models in
which the distance between nodes is an arbitrary input parameter, they selected the lattice
node initial locations by mapping the actual meso-structure of concrete. In other words, the
positions of the lattice nodes coincide with the centers of aggregates; therefore, the lattice
topology reflects the actual concrete texture. As it will be discussed later, this modeling
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approach innovatively introduces the post-critical behavior as a part of the micro-scale
constitutive model. Ever since, various approaches were devised to deal with the softening
of lattice elements [97]. This model has been immensely influential in development of
numerical techniques for these classes of materials (e.g., [70], [82]-[85]).

It cannot be overemphasized that Bažant and co-authors [67], [68] used the post-
critical softening regime (i.e., the progressive degradation of stiffness) in the constitutive
stress-strain relations for the bonding matrix and the interface despite the fact that it is not
considered an inherent material property. The softening, thus introduced into the model, is
then defined indirectly by the fracture energy of the interparticle bond. More than a decade
after this model gained prominence, the assignment of the softening properties to the
micro/meso scale has not been not fully defined despite great efforts in that direction (e.g.,
[86]-[88]). The standard test to determine softening parameters is still elusive due to the
unavoidable experimental material-structural interaction. Consequently, the introduction
of softening in constitutive relations on the meso-scale was criticized by van Mier [87],
on the grounds that there is a danger that the basic mechanisms may be missed due to the
fact that the desired results are achieved by introducing additional model parameters. At
the same time, many authors advocated the use of softening in constitutive modeling as
indispensable (e.g., [89]) since, in their opinion, the meso-scale heterogeneity alone cannot
account fully for the experimentally-observed dissipative response at the macro-scale. This
difference of opinion is important to point out since the introduction of softening on micro-
and meso-scales (based on macroscopic observations) is a common practice as well as an
active research topic nowadays due to the computational benefits it provides.

6.4.3 Lattices with Central and Angular Interactions (α −β Models)

The lattice with a central-angular interaction (also known as the α −β model) was created
by upgrading the α model by adding an angular spring between adjacent connections
that meet at the same node [90]. Consequently, the energy is necessary to overcome the
bending angle resistance reminiscent of (6.8)2.

The triangular α −β model was considered in detail by Kale and Ostoja-Starzewski
[91] in the context of studying the material damage.

Triangular lattice with central and angular interactions

A triangular lattice with central and angular interactions was obtained by introducing angu-
lar springs in the manner illustrated in Figure 6.15. The stiffness of these angular springs
is defined by the spring constant β (b). According to the conditions of symmetry of the unit
cell with respect to the corresponding lattice node, the elastic properties of a hexagonal unit
cell are completely determined by six independent spring constants {α(b),β (b), b= 1,2,3}:
α(b) = α(b+3) and β (b) = β (b+3) for b = 1,2,3 (isotropic Kirkwood model).
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Figure 6.15: A regular triangular lattice with a hexagonal unit cell and a central and angular interaction
between the first neighbors (α −β model).

The angle of the angular spring with respect to the horizontal axis, in the reference con-
figuration, illustrated in Figure 6.15, is θ (b) = (b−1)π/3 (b = 1, . . . ,6). The infinitesimal
change of that angle is

∆θ
(b) = ∆θ

(b)
γ = eγαβ εβδ nα nδ , (α,β , δ = 1,2 and γ = 3) (6.42)

with remark that eγαβ is the permutation tensor (with γ = 3 for 2D). With regards to Figure
6.15, the corresponding infinitesimal change of the angle between two adjacent bonds (b
and b+1), associated with the angular spring constant β (b), is ∆φ (b) = ∆θ (b+1)−∆θ (b).
Therefore, the deformation energy stored in the angular spring β (b) is

E(b)
β

=
1
2

β
(b)|∆φ

(b)|2 = 1
2

β
(b)
{

eγαβ εβδ

[
n(b+1)

α n(b+1)
δ

−n(b)α n(b)
δ

]}
. (6.43)

The components of the effective stiffness tensor of the triangular α −β model can be
derived by summation of the deformation energies of the central interactions (6.33) and all
six angular springs ((6.43).

Ostoja-Starzewski [3], [8] arrived at the following non-zero components of the effective
stiffness tensor

C1111 =C2222 =
1

2
√

3
9
4

(
α +

β

ℓ2

)
=

E
1−ν2

C1122 =C2211 =
1

2
√

3

(
3
4

α − 9
4

β

ℓ2

)
=

Eν

1−ν2

C1212 =
1

2
√

3

(
3
4

α +
9
4

β

ℓ2

)
=

E
2(1−ν)

(6.44)

With respect to Equations (6.44), it can be shown that the isotropy condition (6.36)
is satisfied, so that only two independent elastic constants remain. Based on the same
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equations, the plane Poisson’s ratio and the plane modulus of elasticity can be expressed
as functions of the axial (α) and angular (β ) spring constants

ν =
C1122

C1111
=

1
3

[
1−3β/(αℓ2)

1+β/(αℓ2)

]
, E =

α√
3

[
1+3β/(αℓ2)

1+β/(αℓ2)

]
(6.45)

Importantly, the two 2D parameters (6.45) are also dependent upon the model resolu-
tion defined by ℓ.

Substitution of β = 0 in Equations (6.45) recovers the plane moduli of the α model
defined by Equations (6.37). Complete range of definition of the plane-strain Poisson’s
ratio

−1 < ν < 1/3

can be obtained from expression (6.45)1 for two boundary cases: β/α → ∞ and β/α → 0
(α model).

The plane moduli of compression and shear are defined as functions of the axial (α)
and angular (β ) springs constants by the following expressions

K =

√
3

4
α, µ =

√
3

8
α

(
1+3

β

αℓ2

)
which demonstrates that angular springs have no effect on volume change.

6.4.4 Lattices with Beam Interactions
The lattice with beam interactions (beam lattice) is the result of upgrading the α model
(truss lattice, spring network) by replacing structural elements capable of transmitting only
axial force (F) with beam elements that can also transmit shear forces and moments (Q,
M; Figure 6.16). The beam lattice represents a micro-polar continuum with independent
nodal displacement and nodal microrotations fields. As a result there are six (three)
degrees of freedom per lattice node in 3D (2D, Figure 6.16c) models. The beam lattice
presentation that follows is based mainly on articles of Ostoja-Starzewski [8] and Karihaloo
and co-authors [89].

Figure 6.16: (a) Triangular beam lattice with (b) two adjacent hexagonal unit cells; (c) Degrees of freedom
per 2D beam lattice node: two translational and one rotational.
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Triangular Bernoulli-Euler beam lattice
Bernoulli-Euler beams that transmit axial and shear forces and bending moments are
commonly used in beam lattice models to simulate crack propagation and fracture (Figure
6.16). In 2D micropolar continuum (u3 = 0, ϕ1 = ϕ2 = 0), kinematics of such beam
lattice is described with three functions: a nodal displacement (u1,u2), and a nodal rotation
(ϕ3 = ϕ). The additional kinematic function ϕ = ϕ3 is completely independent of the
displacement field (i.e., it is independent and different from the antisymmetric rotation
(u j,i −ui, j)/2 of the classical continuum theory). Adoption of the linearity assumption of
the three kinematic functions leads to the expressions for the local asymmetric strain (γ)
and the torsional strain (curvature, κ)

γαβ = uβ ,α + eβα3ϕ, κδ = ϕ,δ (6.46)

that fully describe the micropolar deformation. With regards to (6.46), recall that eβα3
stands for the permutation tensor, and the repeated Greek indices imply summation. Thus,
the nodal rotation ϕ does not contribute to the normal strains (i.e., the elongation of the
generic material fiber), which implies that there is no difference between the normal
strains in the micropolar and the classical continuum theories (γ11 = ε11, γ22 = ε22). The
“micro-polar strain” defined by (6.46)1 has the same form as the one used in Cosserat
model [92].

The average normal (axial) strain in the half-beam of the unit cell is

γ
(b) = n(b)α n(b)

β
γαβ , (6.47)

which is to say that γ(b)L(b) is the average change of beam length.
The difference between the angle of rotation of the beam chord and the rotation of its

end nodes is
γ̃
(b) = n(b)α ñ(b)

β
γαβ = n(b)α ñ(b)

β
uα,β −ϕ. (6.48)

Where n(b) and ñ(b) designate, respectively, the unit vectors in the longitudinal and lateral
directions (Figure 6.16c).

Therefore, the difference between the angles of rotation of the beam ends (correspond-
ing to the lattice nodes) is

κ
(b) ≡ n(b)

δ
κδ . (6.49)

The Bernoulli-Euler beam theory implies that in each beam the relations between
forces and displacements, and moments and angles of rotation, are of the following form

F(b) = E(b)A(b)
γ
(b), Q(b) =

12E(b)I(b)

(L(b))2
γ̃
(b), M(b) = E(b)I(b)κ(b). (6.50)

In Equations (6.50) the familiar relations for the area, A(b) = t(b)·h(b), and axial
moment of inertia, I(b) = t(b)[h(b)]3/12, of the beam cross-section are used (Figure 6.30b).
For the triangular beam lattice with a hexagonal unit cell and the spacing of the mesh L(b)

(Figure 6.30), the deformation energy of the unit cell is

Ucell =
1
2

6

∑
b=1

[
F(b)

γ
(b)+Q(b)

γ̃
(b)+M(b)

κ
(b)
] L(b)

2
. (6.51)
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The deformation energy of the equivalent micropolar continuum is

Ucontinuum =
1
2
(
γαβCαβγδ γγδ +κα Dαβ κβ

)
V (6.52)

where V = (
√

3/2)L2t denotes the volume of the continuum corresponding to the unit cell
(Figure 6.16b), while t is the thickness (which, in the general case, should be distinguished
from the thickness of the half-beam t(b) perpendicular to the lattice plane, shown in Figure
6.16).

The condition of equivalence (6.28) of deformation energies (6.51) and (6.52), leads
to the following expressions

Cαβγδ =
6

∑
b=1

n(b)α n(b)γ

[
n(b)

β
n(b)

δ
R(b)+ ñβ

(b)ñδ
(b)R̃(b)

]
, Dαβ =

6

∑
b=1

n(b)α n(b)α S(b) (6.53)

where

R(b) =
E(b)A(b)
√

3Lt
, R̃(b) =

12E(b)I(b)√
3L3t

, S(b) =
E(b)I(b)√

3Lt
. (6.54)

It should be noted that, given (6.54)1 and (6.54)2 and the above-mentioned definitions
of the cross-sectional properties, it is straightforward to show that

R̃(b)

R(b)
=

(
h(b)

L(b)

)2

=
(

h̄(b)
)2

(6.55)

where the height of the beam cross section normalized with its length (Figure 6.16),
h̄(b) = h(b)/L(b), represents a geometric parameter inverse of the slenderness of the beam
element.

Referring to the properties of the unit cell illustrated in Figure 6.16b

θ
(b) = (b−1)π/3, n(b) =

(
n(b)1 ,n(b)2

)
= (cosθ

(b),sinθ
(b)),

ñ(b) =
(

ñ(b)1 , ñ(b)2

)
= (−sinθ

(b),cosθ
(b)), b = 1,2,3,4,5,6

and assuming equality of beams (R(b) = R, . . .), the non-zero stiffness components are
obtained from (6.53) in the following form

C1111 =C2222 =
3
4

R
(

3+
R̃
R

)
, C1122 =C2211 =

3
4

R
(

1− R̃
R

)
C1221 =C2112 =

3
4

R
(

1− R̃
R

)
, C1212 =

3
4

R
(

1+3
R̃
R

)
C2121 =

3
4

R
(

1+3
R̃
R

)
, D1 = D22 = 2S.

(6.56)

Corresponding Lame coefficients are

µ =
3
4

R
(

1+
R̃
R

)
=

√
3

4
t(b)

t
h̄(1+ h̄2)E(b), λ =

3
4

R
(

1− R̃
R

)
=

√
3

4
t(b)

t
h̄(1− h̄2)E(b)

(6.57)
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and the plane Poisson’s coefficient and the modulus of elasticity

ν =
1− R̃/R
3+ R̃/R

=
1− h̄2

3+ h̄2 , E = 6R
(

1+ R̃/R
3+ R̃/R

)
= 2

√
3

t(b)

t

(
1+ h̄2

3+ h̄2

)
E(b) (6.58)

based on well-known elasticity relations (e.g., [106]).
Given the expression (6.58)1, it is evident that for slender beams (h(b) ≪ L(b) ⇔

h̄(b) ≪ 1), shear bending loses importance and the value of the plane Poisson’s ratio
approaches the upper limit of 1/3. Given the assumption of beam slenderness inherent in
the Bernoulli-Euler formulation, the lower limit of the plane Poisson’s ratio is ≈ 0.2 [89].

Finally, it is easy to show that in the limit case of negligible shear bending stiffness
(h̄ → 0), the plane-strain parameters (6.58) are reduced to their α model counterparts
(6.37).

The disadvantages of the Bernoulli-Euler beam lattices are: (i) the results are sensitive
to the size of the beam elements and the direction of application of the load, (ii) the material
response is excessively brittle (especially if ideally-brittle behavior is used for individual
beams), (iii) the beam elements in the pressure zones could overlap, and (iv) exceptional
computational effort is required at the structural level. All these shortcomings can be
reduced in various ways. For example, the first one can be remedied by using an irregular
geometry [94]. The second, by 3D modeling, using very small unit cells [95], as well as
using a nonlocal approach in calculating the deformations of beam elements [94].

Triangular Timoshenko beam lattice
When the lattice model contains short beams it is more appropriate to use lattice elements
based on Timoshenko beam theory that takes into account shear deformation and rota-
tional bending effects. This formulation is presented herein in a much abbreviated form
in comparison with Bernoulli-Euler beam presented in the preceding chapter. Unlike
Bernoulli-Euler formulation, during the actual beam deformation, the cross sections of the
beam remain neither perpendicular to the neutral line nor flat/straight (i.e., warping takes
place). Timoshenko kept the assumption of a flat section, but introduced an (additional)
shear-induced angular deformation, so that the cross section is no longer perpendicular to
the neutral line. Thus, Timoshenko beam theory implies

Q(b) =
12E(b)I(b)

(1+ ςT )(L(b))3
L(b)

γ̃
(b), ςT = =

12E(b)I(b)

G(b)A(b)(L(b))2
=

E(b)

G(b)
h̄(b) (6.59)

while the relations F(b)− γ(b) (6.50)1 and M(b)−κ(b) (6.50)3 remain unchanged. The
dimensionless parameter (6.59)2 is the key ingredient of Timoshenko beam theory. When
the shear stiffness is dominant, ςT ≪ 1, the shear displacement is relatively small and
Bernoulli-Euler beam theory is applicable. In contrast, at low shear stiffness, the shear
displacement is no longer negligible and it is necessary to use Timoshenko beam theory.

From the equivalence of strain energies (6.28), identical expressions for the com-
ponents of the elasticity tensor (6.56) as for the Bernoulli-Euler beam follow, with the
difference that

R̃
R
=

12I
L2A

1
1+ ςT

=

(
h
L

)2 1
1+ ςT

=
h̄2

1+ ςT
(6.60)
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Note that identical geometry of beams is assumed in derivation of Equation (6.60)
and the subscript (b) is, consequently, omitted from geometric parameters for brevity.
By comparing expressions (6.55) and (6.60), it follows that the stiffness components and
elastic constants of Timoshenko beam theory are obtained from Bernoulli-Euler beam
theory when h̄2 is replaced by h̄2/(1+ ςT ). Therefore, the plane Poisson’s ratio and the
modulus of elasticity expressions

ν =
1− h̄2/(1+ ςT )

3+ h̄2/(1+ ςT )
, E = 2

√
3

t(b)

t
h̄
(

1+ h̄2/(1+ ςT )

3+ h̄2/(1+ ςT )

)
E(b) (6.61)

should be used in lieu of (6.58).
In general, Tymoshenko beams are by definition more appropriate for use than

Bernoulli-Euler beams when lattice elements are not very slender but rather stocky. As
an example, in order to directly include the interface layers in the model (Figure 6.3b),
the network resolution (i.e., the beam span) must be limited by the interface thickness.
Consequently, there are practical difficulties and extremely large computational efforts.
This problem has led to the development of alternative lattice models based on generalized
beams [96].

6.4.5 Various Aspects of Lattice Modeling
The selection of lattice elements is crucial for simulation of complex cracking. Schlangen
and Garboczi [93], [94] performed a paramount, and later very influential, comparative
analysis of simulation techniques using lattice modeling of heterogeneous materials with
random micro structure. Experimental crack propagation patterns obtained using a con-
crete double-edge-notched specimen were compared with those obtained by computer
simulations using lattice models with different types of interactions and spatial lattice
orientations. The selected results are illustrated in Figure 6.17.

It is important to note that the geometric disorder was not used in these lattice models
to emphasize the ability of a particular type of lattice element to capture the fracture pattern.
With respect to Figure 6.17, it is obvious that—in the absence of geometric disorder—the
beam elements are superior in the reproduction of experimentally observed complex crack
patterns compared to the two truss lattices. Nevertheless, it is noticeable that the shape
of the cracks even in that case (Figure 6.17d) reveals the bias inevitable in geometrically
regular lattices.

Thus, another important selection for correct prediction of complex crack patterns is
related to the lattice geometry, especially its regularity. The cracking directions of regular
lattices are strongly predetermined (as illustrated in Figure 6.17) but it is easy to achieve
the uniform deformation. On the other hand, the irregular lattices are characterized by
less biased cracking patterns but, in general, do not behave homogeneously under uniform
loading. Schlangen and Garboczi [93] demonstrated importance of the lattice geometric
disorder for realistic simulation of crack propagation by comparing crack patterns obtained
by computer simulations using four different lattices (based on a square grid, two differently
oriented triangular grids, and irregular triangular grids). They also proposed an approach
(based on iterative adjustment of the beam properties) to obtain an irregular lattice with the
elastically uniform deformation.
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Figure 6.17: Schematic illustration of a prediction of crack path in shear test: (a) the geometries of the
experimental setup of the Nuru-Mohammed shear-load test specimen with a double-edge-notched specimen and
corresponding crack propagation patterns in a concrete slab (red). Crack propagation patterns were obtained by
computational simulations using a geometrically regular triangular lattice with: (b) central interaction (Chapter
6.4.2), (c) central-angular interaction (Chapter 6.4.3), and (d) beam interaction (Chapter 6.4.4). (Reproduced
based on [93]).

As far as computer implementation procedures are concerned, lattice models simulate
the process of damage and fracture by performing an analysis for a given load with the
removal from the network of those bonds that meet the prescribed fracture criteria. In
the case of beam lattices, the forces and moments are calculated using the appropriate
beam theory. A global stiffness matrix is formed for the whole lattice, the corresponding
inverse matrix is calculated which is then multiplied by the load vector to obtain the
displacement vector. The heterogeneity of the material structure can be taken into account
in different ways by: (i) assigning to the beams different tensile strengths, (ii) assuming a
random distribution of cross-sectional dimensions and/or beam lengths, or (iii) mapping to
beams different material properties (aggregates, cement matrix, interface layers,...; Figure
6.3b). These various types of disorder (geometrical, topological, chemical,...) could be
introduced by using statistical distributions.

When lattice models are used for fracture analysis, the breaking rule of the basic one-
dimensional structural element (that is, the rupture criterion on the micro- or meso-scale)
must be defined in advance. Again, depending on the type of material that is the subject of
modeling, several bond-removal criteria can be applied based on strength theory, energy
dissipation, fracture mechanics. The simplest examples include those used for the lattices
with central interactions

f (b) = fcr, ε
(b) = εcr, E(b) = Ecr, (6.62)

where the critical parameter—as indicated by subscript (cr) — refers to the bond axial
force, elongation, or elastic strain energy, respectively.

Naturally, more complex bond rupture criteria are commonly used for beam lattices,
characterized by more complex stress states. This complexity necessitates the failure
definition in terms of the failure envelopes that take into account contributions of all
relevant deformation types. For example, van Mier and co-workers [65], [66] established
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the following criteria for removal of beam elements

σ
(b)
e f f =

F(b)

A(b)
±ζ

(|M(b)
i |, |M(b)

j |)max

W (b)
= σcr,

F(b)/A(b)

σcr
+

|Q(b)|/A(b)

σcr
> 1

(6.63)

where W (b) and ζ designate the section modulus of the beam, and the fitting parameter;
while, σcr and τcr are the tensile strength and the shear strength, respectively.

With beam lattices, it is possible to reproduce very complex patterns of damage. They
are able to simulate the nucleation and propagation of microcracks, crack branching, crack
curvature, bridging and coalescence of cracks etc., which results in a complete picture of
macroscopic damage and fracture. The model also makes it possible to “capture” the effect
of sample size. The advantages of this approach are simplicity and direct insight into the
fracture process at the level of the microstructure.

The recent development of lattice models and their “peculiarities” are reviewed recently
by Nikolić and co-authors [97].

6.5 Discrete Element Methods
6.5.1 Basic idea of DEM

DEM is a Lagrangian technique of computational simulations in which the computational
model is made of discrete (rigid or deformable) elements of the same (or even higher)
Euclidean dimensionality as the analyzed problem. These discrete elements of different
shapes interact through contact algorithms (smooth or rough contacts) [98]. The material
is, therefore, modeled by a set of Voronoi cells (mimicking grains, granules, particles,
aggregates) representative from the point of view of heterogeneity of material texture,
whose meso-scale dynamic interactions determine its macroscopic behavior. Obviously,
the contact algorithms are at the physical core of a group of computational techniques
custom-made to solve problems characterized by extremely large discontinuities in the
internal structure or geometry of materials or both [99]-[101].

DEM was introduced by Cundall [99] to analyze the intermittent progressive fracture
of rocky slopes, to be later applied to the analysis of granular assemblies by Cundall
and Strack [100]. Although DEM is now widely used for modeling different classes of
materials (such as geomaterials, biomaterials, composites), the most natural applications
are for simulations of deformation or flow of material systems that have the same topology
as the representative group of discrete elements (e.g, Figure 6.1a,c-g). Cundall and Hart
[102] summarized succinctly the methodological approach by defining DEM as a method
that allows finite translations and rotations of discrete bodies3 (rigid, solid, breakable),
including complete separation of their mutual contacts, as well as automatic recognition
of newly established contacts during simulation. The mechanical behavior of the whole

3Throughout this chapter, the term “particle” (grain, as well) is used, when convenient, for the
DEM building block – the discrete element; it should not be confused with particles used occasionally
in relation with other CMD models in this introduction, which are material points.
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conglomerate is described on the basis of the motion of these individual elements and
specification of the constitutive rules or contact forces among them. Like other methods of
CMD, DEM provides a detailed temporal evolution of the system by solving Newton’s
equations of motion of individual discrete elements (6.1), including the complex damage
mechanisms that naturally arise from such simulations. This chapter outlines only the
traditional DEM; the review of more advanced DEM models is beyond the scope of this
short introduction. The same goes for advanced topics and specifics of DEM technique
such as packing and grain shape, flow laws, capillary effects, high deformation loadings,
which are available, for example, in the review paper by Donze and co-authors [10] and
references cited therein.

It is common to classify DEM models based on the load transfer mechanisms illustrated
in Figure 6.18.

Figure 6.18: (a) A group of particles or grains (with a cluster of three highlighted) with prominent interacting
lines forming an associated network. Based on the load transfer mechanism used in the model, DEM are divided
into models with: (b) Central interactions (these models represent the generalization of the α model of Chapter
6.4.2); (c) Central and angular interactions (generalization of the α −β model of Chapter 6.4.3); (d) Central,
shear and bending interactions (generalization of the beam lattices described in Chapter 6.4.4; this is a typical
DEM, which can be called a “local inhomogeneous micropolar continuum” [3]); and (e) Central, shear, bending
and angular interactions. (Adopted from [3].)

The DEM problem-solving methodology is based on the MD formalism, which
includes explicit finite difference schemes in which the computational cycle involves
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applying Newton’s second law of motion (6.1) to each discrete element using a specified
load-displacement rule to all contacts to determine new element positions. During the
global conglomerate (sample) evolution, new contacts may appear (between particles that
have not previously touched) and existing contacts may disappear. Therefore, the global
stiffness matrix of the whole group of discrete elements must be constantly updated, from
cycle to cycle. For non-cohesive (loose) materials and particle systems, there is another
reason why it is necessary to update the global stiffness matrix: namely, the interactions
among discrete elements, both in the normal and shear directions, are not necessarily linear,
which means that the stiffnesses kn and kt , which define these contacts (e.g., Figure 6.19),
must be recalculated continuously [103]-[105].

Unlike computational methods of continuum mechanics, such as FEM, in DEM the role
of primary variables is played by forces and displacements. Accordingly, it is necessary to
develop and apply methods for describing the continuum parameters (stresses and strains)
based on these forces and displacements (i.e., mesoscopic parameters of the state of the
individual elements that make up the assembly). This process is called homogenization.
The starting point in this procedure is to define a representative volume element, which
serves as an averaging volume for calculating mean values of macroscopic parameters
(e.g., [106], [107]). Thus, homogenization and constitutive modeling techniques make it
possible to take into account the micro-/meso-structure within the application of continuum
methods, but only indirectly in terms of the "mean field". The DEM model parameters
are typically adjusted using experimentally observed behavior and a large number of
such parameters are necessary to reproduce complex phenomena. The homogenization
is, very often, a demanding job because the parameters that control geometric properties
and constitutive behavior do not always have a clear physical meaning and can also show
complex interdependencies [10]. Despite the open questions highlighted throughout this
chapter, DEM modeling (especially the mechanical behavior of geomaterials) is on the
rise not only in research but also in geotechnical engineering (e.g., [108]). The main
cause of this DEM popularity is the ability of natural reproduction of localization (a
phenomenon ubiquitous in quasi-brittle materials with random texture) that is difficult to
capture objectively by computational methods of continuum mechanics based on network
discretization (e.g., FEM).

6.5.2 Contact Algorithms
It is obvious from the DEM basics outlined above that contact algorithms are the essential
DEM feature. Most often, realistic and detailed modeling of particle contacts is not only
too complex but also unnecessary. Therefore, in the following considerations, the force of
the interaction of the particles i and j is related to their overlap illustrated in Figure 6.19a.
The Hertz theory of contact mechanics [109] defines the basic law of elastic contact of two
spheres of radius Ri and R j by a nonlinear relation

(
f n
i j
)

ela =
4
3

(
1−ν2

i
Ei

+
1−ν2

j

E j

)−1√
Ri j(un

i j)
3/2 (6.64)

between the normal contact force, f n
i j, and the maximum overlap, ui j. In Equation (6.64),

(E,ν) are pairs of elastic constants of two materials in contact and R−1
i j = R−1

i +R−1
j the
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equivalent radius. The force on particle j exerted by particle i is obtained by applying
Newton’s third law, fn

ji =−fn
i j. Equation (6.64) is derived under the following assumptions:

(i) the spherical elements are ideally smooth, (ii) the materials are elastic and isotropic, (iii)
the shear component of the elastic contact force has no effect on the normal force, and (iv)
the overlap is small relative to the size of spherical elements. This law is essential for the
simulation of certain phenomena in granular materials, such as the propagation of elastic
waves. However, it should be remembered that the Hertzian contact model is adequate
only for the elastic contact (i.e., when the forces do not exceed the yield strength anywhere
in the contact zone). For more complex cases, contact models based on viscoelasticity and
elastoplasticity have been developed ([110] and references cited therein).

Figure 6.19: Schematic representation of (dry) contact of two circular elements according to the classical
theory. (a) Definition of meso-parameters; (b) contact forces; (c) basic interaction model - bonding contact
without damping; and (d) a more complex contact model involving damping and friction.

At small deformations, compact geomaterials (e.g., sand in Figure 6.1c) are charac-
terized by a linear elastic response. The force with which two spherical elements of such
material act on each other can be decomposed into the elastic normal force, fn

ela, and the
incremental shear force, ft , which are (in the classical interpretation) related to the relative
normal and the incremental tangential displacements, respectively, through the coefficients
of normal and secant shear stiffness (kn and kt )

(fn
i j)ela =−knun

i j, ft
i j = {ft

i j}updated − kt
∆ut

i j.

The elastic response is completely defined by this pair of constants (kn,kt). The
incremental shear force should reset to zero, {ft

i j}updated = 0, whenever the elements can
slide relative to each other, which happens when the Mohr-Coulomb type limit is reached

| f t
i j|= f t

coh +µ f f n
i j. (6.65)

The limit value (6.65) is defined by the local values of the contact friction coefficient, µ f ,
and the cohesion, f t

coh (which is by definition equal to zero for non-cohesive materials).
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It cannot be overemphasized that DEM is essentially defined by contact interactions.
In addition to the above simple interactions of the discrete elements in contact, more
complex contact relationships should be mentioned that take into account subtle details of
bonds such as: rotational stiffness (corresponding to rolling stiffness in 2D [66]), capillary
cohesion [111], solid cohesion [112], plasticity [113], plasticity with temperature and
relaxation [114]. Finally, the general criteria for DEM contact failure are discussed at
length by Ibrahimbegovic and Delaplace [115], Tavarez and Plesha [116], Sheng and
co-authors [117].

6.5.3 DEM Modeling of Particulate Systems

Particulate systems, as used throughout this DEM overview, include not only non-cohesive
(loose) materials but also systems of distinct objects in general (e.g., various industrial
transport processes involving flow of "particles” representing a wide variety of objects).
The emphasis herein is on the former. Their overall behavior can be described as a contact
problem of a large number of bodies, making them ideal for DEM. Therefore, DEM has
been used extensively to study the deformation, transport processes, and flow of these
non-cohesive systems as seen from a number of references such as [66], [118]-[120]. The
corresponding numerical techniques are based on the trailblazing work of Cundall and
Strack [100]. Since loose materials are large conglomerates of particles, this model, in the
absence of adhesion, was based on the “primordial” properties of these discrete elements:
their shapes, sizes, and interactions. Discrete elements have two forms of movement,
translational and rotational, or three (six) degrees of freedom per element in the case of 2D
(3D) problems. Inherently discrete, DEM models represent the non-cohesive system as
a group of interacting distinct objects, so computational implementation techniques are
based on alternating transitions from the application of Newton’s second law of motion
(6.1) and the contact force-displacement laws (e.g., Figure 6.19) at every single contact.

Thus, the three main aspects of the particulate system dynamics are:
(i) discrete element shape and size distribution (physical parameters),

(ii) contact behavior of discrete elements (mechanical parameters; e.g., coefficient of
contact friction, contact stiffnesses, contact tensile strength), and

(iii) numerical techniques for solving systems of equations of motion (6.1).
The existence or non-existence of the ability of a material to carry tensile loading

represents the essential difference between cohesive (adhesive, solid) and non-cohesive
(loose, particulate, granular, fluid) materials. The slip aspect of the DEM model takes into
account the limited shear resistance—defined by Coulomb’s law of friction (6.65) - that
the contact provides before sliding.

As particulate systems evolve, collision, sliding, and rolling contacts give rise to forces
and moments (Figure 6.19) that the DEM tends to calculate in order to determine new
particle positions. The discrete elements - the basic building blocks of the DEM model, can
be randomly generalized geometric objects whose size distribution (log-normal is a frequent
choice) reflects the inherent heterogeneity of the system. The circular/spherical elements
are the simplest option. They are fully described by only one parameter—radius—that
defines both their geometry and the one and only type of contact that can be easily observed
(Figure 6.19). Accordingly, circles and spheres are often adopted for their simplicity. (For
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the same reason - to keep the formalism as simple as possible, the basic equations are
presented only for circular geometry in this introduction.) However, this computational
convenience comes at a price. First of all, the circular/spherical shape of discrete elements
significantly underestimates the rolling resistance among them. Second, they cannot
reproduce more complex configurational rearrangements of particles (such as the particle
interlock), which typically occur when discrete elements are of more complex shape. These
two computational aspects result in an inherent underestimation of macro-strength. An
additional artifact introduced by the circular/spherical particle geometry is the numerical
porosity, which should not be confused with actual porosity.

Moreover, the discrete elements are often modeled as rigid, but a certain overlap
between them (as indicated in Figure 6.19a) is allowed to model the occurrence of relative
displacement and localized contact deformation (soft or smooth contact). The contact
dynamics methods based on “non-smooth” formulations, which exclude the possibility
of the particle overlap, are not addressed in this introduction; the interested reader is
referred to the review paper of Donze and co-authors [10] and the references cited therein.
The rigidity assumption is reasonable when the movements along the interfacial surface
represent the largest part of the deformation in the assembly of discrete elements, which is
typical for loose materials (such as dry sand Figure 6.1c) and industrial transport processes
and flow phenomena. Whatever model is adopted or developed for a certain problem, it
will naturally be based on a greater or lesser simplification of the actual physical processes
on the meso-scale which is not only inevitable but also desirable, given that many details
of the meso-scale contact do not have to be significant for the macro-scale response of the
system as a whole. Research challenges include not only realistic quantitative simulations
of large particulate systems, with the ability to predict responses and their experimental
validation, but also the transition from the meso-scale contact properties to the macroscopic
properties of materials. This meso-macro transition should make it possible to understand
the collective behavior of the large conglomerate of discrete elements as a function of their
contact properties [110].

A typical example of a non-cohesive system are dry granular materials (e.g., dry sands)
mentioned above. They are characterized by the dominance of non-cohesive interparticle
actions of short range: elastic or inelastic contact forces and contact friction between
touching grains. The simplest rheological model of such contact interactions is presented
in Figure 6.19c with one spring in the normal and tangential directions at the point of
contact. According to the more complex approach of Xiang et al. [121], any contact
between particles can be rheologically represented by a Kelvin spring-damper element in
the normal direction and a spring-damper-slider element in the tangent direction (Figure
6.19d). The contact of the particles in the normal direction is ideally elastic in the case of
mutual pressure while the tensile strength of non-cohesive materials is by definition equal
to zero. Thus, the generalized contact behavior of particles of a simple central-angular
type of interaction (Figures 6.16 and 6.18d represent two isomorphic interaction models)
takes into account: normal interactions, shear interactions, and slip. In the general case,
the forces acting on the particle j include: the gravitational force (m jg), and normal (fn

ji)
and shear (ft

ji) components of the elastic contact force between elements i and j (Figure
6.19b). Accordingly, taking into account the basic law of dynamics (6.1) and 2D geometry,
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the translational and rotational motion of the particle is defined as follows

mi
dvi

dt
= mig+

Ni

∑
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fn
i j + ft

i j
)
, Ii

dω i

dt
=

Ni
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j=1

(
Tt

i j +Tr
i j
)

(6.66)

where Ii designates the moment of inertia of particle i, while the translational (v) and
rotational (angular) (ω) particle velocities are indicated on Figure 6.19a. Tt

i j is the torque
of the tangential component of the contact force, while Tr

i j is the torque of the rolling
friction force.

In the case of multiple interactions, the forces and torques on each contact points
are evaluated and added to calculate the resultant action on the discrete element. When
calculating the contact forces, the contact between the particles is modeled with a pair of
linear rheological models of the spring-damper-slider type [100] in both tangential and
normal directions (Figure 6.19). Contact force vector fi j, which represents the action of a
discrete element j on its neighbor i, can be decomposed into tangential (shear) and normal
directions

fi j = fn
i j + ft

i j

{
fn
i j =−

[
knun

i j +ηn(vi j·ni j)ni j

]
,

ft
i j = min{ktut

i j −η tvt
i j, µ f |fn

i j|ti j}
(6.67)

wherein both components of the force include dissipative terms, η . The detailed discussion
of the this model is presented by Xiang and co-authors [121]. Obviously, Equation (6.67)
with µ f = 0 and ηn = η t = 0 (no energy dissipation by friction and damping) corresponds
to the simpler case of Figure 6.19c.

Alonso-Marroquin and Herrmann [122] give an almost identical representation of the
DEM methodology, with the discrete elements being in the form of convex polygons. For
tetrahedra, one can consult, for example, Munjiza’s book [11], and for clusters [123]. Nat-
urally, all grain shapes more complex than circular and spherical ones require much more
complex algorithms, for both contact detection and definition of appropriate interactions
[122], [124], [125], which will not be subject of this elementary review. However, it should
be noted that complex grain shapes are more demanding in terms of computer memory
and processing time, which may reduce number of grains that can be used in modeling.

The model parameters (e.g., those figuring in Equation (6.67) and Figure 6.19d) in
DEM infancy were typically determined by an ad hoc procedure of calibrating the results
of numerical simulations of standard laboratory tests with the corresponding experimental
results (e.g., [126]). However, the parameters determined in this way depend on the size
of the typical discrete element. Tavarez and Plesha [116] systematically approached the
determination of meso-parameters of the model by deriving expressions for elastic stiffness
coefficients

kn =
Et√

3(1−ν)
, kt =

1−3ν

1+ν
kn (6.68)

as a function of unit cell thickness t, and the plane elastic coefficients E = E(2D) and
ν = ν(2D). It should be noted that Equations (6.68) are derived for a densely-packed,
ideal triangular 2D lattice using displacement equivalence conditions. The expressions
(6.68) also apply to the corresponding irregular lattice obtained by the DEM cluster
consolidation process [116]. Also, it should be noted that the condition of non-negativity of
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the tangential stiffness coefficient (6.68)2 defines the upper limit for the value of Poisson’s
ratio ν(2D) = 1/3, which implies νmax = 1/3 for the plane stress and νmax = 1/4 the plane
strain. Similar expressions for determining the meso-parameters of the DEM model are
available in the literature for different spatial arrangements of particles. For example,
Masuya et al. [127] and Potyondy and Cundall [128] derived kn = Et, which corresponds
to a simple cubic lattice; while Wang and Mora [129] obtained

kn =
E(3D)

√
2(1−2ν(3D))

, kt =
1−3ν(3D)

1+ν(3D)
kn (6.69)

for a face-centered cubic lattice.
Equations (6.66) are usually solved by different finite-difference schemes. The Verlet

and Störmer algorithms, summarized in Chapter 6.2.3, are often used for this purpose, and
the force-displacement law (6.67) and Newton’s second law of motion (6.1) are used in
each computational cycle. In order to obtain the correct motion of each discrete element by
integration, the time step must be chosen carefully as already discussed in Chapter 6.2. By
analogy between the contact (with stiffness kn) and the oscillating material point m, it can
be shown that the time step must be chosen as a small part (usually the tenth or twentieth)
of the half-period of oscillation [10]. Numerical stability can, for example, be improved by
using local, contact dissipative damping as (ηn,η t ) in Equations (6.67).

Finally, the macroscopic constitutive laws of continuum mechanics connect the stress
tensor and the specific deformation tensor, while the meso-scale contact constitutive
relations connect the contact force with the relative displacement at the points of contact
of the particles. Kruyt and Rothenburg [130] derived micromechanical expressions for
stress tensors and relative deformations as a function of microscopic contact parameters.
The same authors also developed statistical theories of elastic modules for plane groups of
particles [131].

6.5.4 DEM Modeling of Solid Materials
The defining property of solid (cohesive) materials is the ability to transfer tensile force
between connected particles. Thus, the Cundall’s original concept [99], [132], developed
for blocky rock systems, has been extended to take into account the interface tensile
strength [81], [133], [134]. This DEM adaptation for solid materials was achieved usually
by adding a bond at the point of contact of two discrete elements. This bond mimics the
presence of a cement matrix attached to the contacting particles, which is able to impart
cohesion [135]. This approach has been used to model a wide variety of classes of hetero-
geneous cohesive materials such as sedimentary rocks, concrete, ceramics, grouted soils,
solid rocket propellants, explosives, biomaterials. All these materials, in principle, can be
represented by the simple model shown in Chapter 6.5.3 (Figure 6.19) with an important
proviso that in the case of cohesive (adhesive) contact, the spring in the normal direction
provides resistance to both compressive and tensile loads. If, during the deformation
process, the bonded contact between two discrete elements is broken (according to some
prescribed bond-rupture criterion), the contact becomes purely compressive and frictional
(as illustrated in Figure 6.19), if it survives at all (two grains could be separated instead of
pressing against each other). Regarding the simple central and angular interaction (pre-
sented in Figure 6.18c and generalized in Chapter 6.4.3) as a combination of a viscoelastic
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contact strength model (represented by the Kelvin element) and a slip model, the only
difference in non-cohesive and cohesive applications is the ability transmission of the
tensile force in the normal direction.

As noted above, DEM models allow the particles of the cohesive material to be
interconnected but also separated, if the bond-rupture criterion is met. In the case of the
action of an external load such that either the tensile strength or the limit deformation
or the fracture energy are exceeded, the bonds between the particles are separated and a
crack is formed on the scale of the model (meso, macro). Therefore, damage modes and
their interactions naturally arise from the process of gradual particle separation. The DEM
approach to discretization of the computational domain is the most pronounced advantage
over the continuum-based methods of computational mechanics, since common problems
(such as dynamic composite response, crack singularity, crack formulation criterion itself)
can be avoided due to naturally discontinuous and random representation of material
meso-structure [136].

Application of DEM for rocks
Rock mechanics is the discipline from which DEM originated. The basic idea is to repro-
duce the quasi-brittle behavior of rocks by simulating the nucleation, growth, branching
and merging of local cracks. Although rocks may not look like granular materials at first
glance, the main features of many types of rocks and, especially, rock massifs (Figures
6.2h,i) are the pre-existing damage and the high degree of heterogeneity and discontinuity
of their structure (at various spatial scales). That is the reason why rock massifs can
be considered as conglomerates of discrete blocks interconnected by different models
of cohesive forces (“blocky rock systems” [99]). Therefore, the mechanical behavior of
the whole jointed-rock assembly evolves from the collective contribution of these dis-
crete blocks during loading. Accordingly, the separation of two discrete units mimics the
elementary meso-damage event, which represents the basic building-block of complex
damage-evolution phenomena. Detailed reviews by Jing [137] and Jing and Stephansson
[98] include techniques, advances, problems, and then predictions of future directions of
development in computational rock modeling.

In general, the discrete elements may represent separate rock blocks of (up to) tone and
meter levels that, in 2D-DEM rock simulations, can be modeled with randomly generated
circles, ellipses, or convex polygons interconnected by introducion of a specific bond
into the contact area. The shapes and methods of packing of discrete elements have
far-reaching effects on the distribution and intensity of interaction forces. The bond
strengths may be allowed to vary from contact to contact, which may represent another
source of heterogeneity in the simulated material. The very influential explicit DEM
method in rock mechanics is Cundall’s method of "distinct" elements [132], [138] with
quadrilateral / prismatic blocks developed in the computer programs UDEC and 3DEC
(ItascaTM Consulting Group, www.itascacg.com). The focus of this brief introduction
to DEM implementation for rocks will be on a simpler DEM – the bonded-particle
model (also, often called the parallel-bond model) [128]. This model is based on circular /
spherical discrete elements as illustrated in Figure 6.20. This approach to modeling has
been generalized by Potyondy [139] and developed over the years through the commercial
packages PFC2D and PFC3D (ItascaTM Consulting Group).
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Potyondy and Cundall [128] devised the bonded-particle model to simulate rock
massifs and other heterogeneous, brittle systems of intermittent sub-structure. In the
original variant, the model consisted of a densely packed group of rigid circular/spherical
grains of different sizes interconnected at contact points by additional parallel bonds that
represent the cohesive action of the cement (Figure 6.20). The rigid discrete elements
interact only through soft contacts (i.e., small overlaps are allowed) that possess limited
normal and shear stiffness. The model is fully dynamic. It is able to describe complex
phenomena of rock damage evolution such as nucleation, growth, branching and merging of
microcracks resulting in the damage-induced anisotropy, hysteresis, dilatation, postcritical
softening, strength-increasing with lateral confinement. At the beginning of 2000s when
this modeling approach commenced, the DEM modeling of discontinuous media was still
in its infancy compared to the mechanics of the continuum. Therefore, the authors paid
great attention to the systematic development of an appropriate modeling methodology
that included not only careful virtual experimentation and qualitative comparison of results
with physically observed mechanisms on micro- and macro-scale but also quantitative
comparison with experimentally measured properties.

Figure 6.20: Bonded-particle model for simulation of heterogeneous materials composed of cemented grains.
Schematics of (a) the behavior of grains in contact (the non-cohesive bond), and (b) cement behavior (the parallel
bond). If the cement (which provides the parallel bond) is not present, then only the grain behavior remains and
the slip model with rolling (outlined in Chapter 6.5.3) is recovered. In general, the model is defined by the density
of the particles, their shape and the size distribution, their packing, and the meso-properties of the grains and the
cement. Potyondy and Cundall [128] used circular / spherical elements corresponding to the PFC2D / PFC3D

programs (Itasca Consulting Group). Note the striking similarity with the epoxy-cemented glass beads of Figure
6.1a.

It cannot be overemphasized that, unlike some other computational methods in CMD,
the term "particle" in this context means a discrete element that occupies a finite part of
space (the term “grain” will be also used interchangeably). The radii of the circular discrete
elements (particles, grains) are drawn from a uniform distribution bounded by Rmin and
Rmax and dense packaging was obtained by following the appropriate material generation
procedure. The rigid particles can independently translate and rotate and interact via soft
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contacts (Figure 6.20). They can act on each other exclusively through contacts which
are, having in mind their simple shape, always uniquely defined. The grain overlaps
are assumed to be small compared to their size to ensure that the contacts occur “at the
point”. The set of meso-properties consists of the parameters of stiffness and strength
of both elements and bonds. The bonds are of finite stiffness and limited strength. The
force-displacement dependence in each contact relates the relative displacements of the
discrete elements with the forces and moments acting on each of them.

Dynamic response of the system is calculated using a finite difference algorithm
comprehensively presented by Cundall and Hart [102]. The DEM simulation technique is
based on the assumption that the time step is small enough so that, in one calculation cycle,
the perturbations cannot extend beyond the first neighbors of each grain. Potyondy and
Cundall [128] discussed in detail the advantages of an explicit numerical scheme. Since
DEM is a fully dynamic formulation, attenuation can be introduced as needed to dissipate
kinetic energy. This damping mimics microscopic dissipative processes in real materials,
such as the internal friction or wave scattering.

Figure 6.20 illustrates the way in which the bonded-particle model simulates the
mechanical behavior of a group of circular grains connected by parallel bonds. The total
force and moment acting in each contact consist of the contact force fi j, which is the
result of the overlap of the particles (Figure 6.20a) and represents the grain behavior
(Equation (6.67) with or without damping), and the force and moment, f̂i j and M̂i j which
are transmitted by the parallel bond and represent the cement behavior (Figure 6.20b).
These quantities contribute to the resultant force and moment acting on both circular
elements (by virtue of Newton’s third law of motion) involved in the contact and represent
the input data for computational integration (Newton’s second law for a dynamic system
(6.1)) using an explicit finite difference scheme to obtain grain trajectories.

The constitutive rule of the contacting grains is described by the same non-cohesive
interaction with friction (Chapter 6.5.3 for the case without contact damping) defined with
the normal and shear stiffness, kn and kt , and the friction coefficient, µ f . This contact is
established as soon as the two grains overlap. The contact stiffnesses of the bond thus
established (in the directions normal to, and in, the contact plane, designated respectively
by superscripts n and t) are determined by the serial connection (6.40). The overlap,
although physically impermissible, mimics, in a sense, the local deformation of the grains
(especially when the contact surfaces are not smooth but rough). The contact force vector
of each bond can be decomposed into a normal and a shear component as already shown
by (6.67)1. The contact behavior of the circular particle is already discussed in Chapter
6.5.3: if un

i j ≤ 0 there is a gap (note the sign convention), and the normal and shear forces
are equal to zero by definition; if un

i j > 0, there is an overlap, and sliding is defined using
the Mohr-Coulomb type limit (6.65). In doing so, in contrast to the normal force (which
is at any time proportional to the size of the overlap with secant stiffness, kn, as the
coefficient of proportionality), the shear force is calculated in an incremental manner: after
establishing contact, f t in initialized to zero; from each subsequent increase in the relative
displacement of the particles in the direction of the tangent, ut , there is an increase in shear
force, ∆ f t =−kt∆ut , where kt tangential stiffness (as opposed to secant from which it is
distinguished by the subscript). Contact displacements are calculated in each calculation
cycle on the basis of the contact velocity which depends on the translational and angular
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velocities of the grains; see the original reference [128] for details.
The behavior of the parallel bond mimicking cement behavior is defined by five

parameters: normal and shear stiffness coefficient (k̂n, k̂t), the tensile and shear strength
(σ̂m, τ̂m), and multiplier λ̂ which defines the diameter of the parallel bond depending on
the diameter of the circular elements in contact. The interaction of the grains is represented
by the total force and moment, f̂i j and M̂i j, transmitted by the parallel bond (Figure 6.20b).
The force and moment can be projected in the directions of normal and tangent in the
following way

f̂i j = f̂ n
i jni j + f̂ t

i jti j, M̂i j = M̂n
i jni j + M̂t

i jti j (6.70)

where f̂ n
i j, f̂ t

i j denote the normal and shear forces, and M̂n
i j, M̂t

i j the twisting and bending
(rolling) moments (naturally, there are two of the later in 3D), respectively. (Note that
M̂n

i j ≡ 0 for 2D models and the bending moment acts in the out-of-plane direction.) At
the initialization of the parallel bond, f̂i j and M̂i j are set to zero; each subsequent relative
increment of translation and angle of rotation (∆un

i j,∆ut
i j,∆θi j = (ω j −ωi)∆t) lead to the

corresponding increase in the components of force and moment (Figure 6.20)

∆ f̂ n = k̂nA∆un, ∆ f̂ t =−k̂tA∆ut , ∆M̂n =−k̂tJ∆θ
n, ∆M̂t =−k̂nI∆θ

t (6.71)

which are added to the current values. The geometrical properties of the parallel-bond
cross section in (6.71) — area (A), axial (I) and polar (J) moment of inertia — are defined
by well-known expressions in terms of the parallel-bond radius, R̂, for the 2D (PFC2D)
and 3D (PFC3D) models.

The maximum normal and shear stresses acting on the circumferences of the parallel
bond are calculated using the elementary beam theory

σ̂
max =− f̂ n

A
+

|M̂t |
I

R̂, τ̂
max =−| f̂ t |

A
+

|M̂n|
J

R̂ (6.72)

If the value of the maximum normal stress (6.72)1 exceeds the tensile strength (σ̂max ≥
σ̂m) or the maximum shear stress (6.72)2 exceeds shear strength (τ̂max ≥ τ̂m), the parallel
bond is broken and removed from the model, which corresponds to the nucleation of
the tension/shear mesocracks. The cracking of the cement reduces the contact of the
corresponding pair of grains (e.g., the glass beads in Figure 6.1a) to the usual non-cohesive
interaction with friction.

Potyondy and Cundall [128] demonstrated the ability of this model to reproduce a
number of rock behavior characteristics such as fracture, damage-induced anisotropy,
dilatation, softening, and confinement-driven strengthening. The evolution of damage is
explicitly presented as a process of progressive accumulation of broken ties; “no empirical
relations are needed to define damage or to quantify its effect on material behavior ” [128].
The obtained damage patterns agree well with the experimental observations and reveal
some subtle details of the influence of lateral confinement.

As for the model’s ability to reproduce the macroproperties of granite; the modulus
of elasticity, Poisson’s ratio and uniaxial compressive strength were reproduced with
satisfactory accuracy (especially in the case of 3D models). On the other hand, the tensile
strength and friction angle obtained by the simulations show large discrepancies with the
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experimental results. In particular, there is a marked disparity in strength in the presence
of lateral confinement.

Potyondy and Cundall [128] also considered in detail the effect of particle size (given
by the minimum diameter of 2Rmin as the defining length scale) on the properties of the
material macro-properties. They demonstrated that the discrete-element size is not only an
independent parameter of the model that controls the DEM resolution but also an essential
part of the material characterization coupled with the macro-properties of tensile strength
and fracture toughness. Elastic constants are rather independent of the discrete-element
size due to the scaling of the stiffness of the parallel bond as a function of particle size.
The unconfined compressive strength seems to show a similar trend of model objectivity.
On the other hand, the splitting tensile strength in the Brazilian test ("Brazilian strength")
shows a clear dependence on particle size as well as fracture toughness in the first mode
(opening). This observation, that the discrete-element size, which controls the model
resolution, cannot be chosen arbitrarily because it is coupled with the fracture toughness of
the material (expressed by the critical stress intensity factor; KIc), is not surprising because
the very definition of the stress intensity factor implies an internal length scale. Moon and
co-authors [140] developed a general procedure for calculating the fracture toughness of
random packing of grains of unequal sizes.

Figure 6.21: 3DEC simulation of collapse of jointed rock masses around an underground excavation due to
seismic loading. Field (a) of the maximum principal stress and (b) velocity magnitudes in two planes with given
color interpreters. (Courtesy of Dr. Branko Damjanac.)



270
Chapter 6. Introduction to

Computational Mechanics of Discontinua

In line with the observed problems with oversimplified particle shapes, the later model
improvements include the use of breakable, deformable, polygonal discrete elements
which, in the long run, led to the development of UDEC and 3DEC (ItascaTM Consulting
Group) software packages [108]. These programs nowadays represent an indispensable
tools for the calculation od intermittent (fractured and jointed) rock massed in the vicinity
of underground facilities (Figure 6.21).

Potyondy [141] improved this model by including time-dependent behavior by intro-
ducing into the parallel bond the law of damage rate that mimics stress corrosion. Mas
Ivars and co-authors [142] performed an important synthesis and rounding up of the whole
approach by extending the model of parallel bonds to simulate natural cracks in rock
masses by including joints on scales larger than the grain scale. When 3DEC is used to
study the stability of cracked rock masses, the considered block is usually divided into
several discrete segments defined by the intersection of natural cracks or joints that are
piecewise straight (Figure 6.21). These segments (which emulate jointed rock blocks; see
Figure 6.1h) are then assigned constitutive properties. The external boundary conditions
of discrete segments are set while the internal boundary conditions are calculated from
contact interactions which allows explicit modeling of existing cracks in fractured rock
[108].

Finally, a detailed overview of the bonded-particle method as a research tool in
rock mechanics and engineering applications with current trends and future directions of
development is presented by Potyondy [139]. In that reference, an exhaustive list of papers
is given in which the method is applied in a wide range of phenomena in rock mechanics
and beyond.

Equivalence of beam lattice and DEM representations
A set of nodal points (Figure 6.22a), randomly located in general, can be connected with
beams and represented by the beam lattice (Figure 6.22b). Alternatively, these nodal points
could be considered centers of circular/spherical particles (Figure 6.22c) connected in the
manner illustrated by Figure 6.18d; this particle network is the typical DEM. In general,
the stiffness between two particles engaged in contact is represented by the three types of
springs (a normal, a shear and a rotational defined, respectively, by the spring constants
kn,kt ,ka), which is depicted by the symbol shown in Figure 6.22d.

Figure 6.22: (a) A set of nodal points in space and the corresponding: (b) beam lattice and (c) DEM (network
of circular particles). (d) The symbol for the particle contact reflecting three types of springs: a normal, a shear,
and a rotational.
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It is demonstrated by Chang and co-authors [66] that, for a 2D case (the inter-particle
twisting stiffness is by definition equal to zero), the behavior of the particle network is
equivalent to that of the beam lattice if the following relationships

kn =
E(b)A(b)

L(b)
, kt =

12E(b)I(b)

(L(b))3
, ka =

E(b)I(b)

L(b)
, (6.73)

hold true between the spring constants and the beam properties.
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