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PREFACE

The aim of macroscopic fracture mechanics is to provide for engineers a means
of designing against fracture in engineering structures in a more quantitative
manner tham is possible using traditional toughness testing techniques. At the
same time, an understanding of the micro-mechanics of fracture provides for
metallurgists a scientific basis for the development of materials of high tough-
ness. Since both engineers and metallurgists are striving to produce structures
and materials which are more resistant to fracture, it is important for them to
gain a mutual understanding of the others’ concepts, techniques and problems.
A metallurgist has to learn that the very way in which a piece of metal breaks is
inherently affected by the stress state in service: an engineer must appreciate
that different materials have different properties, not all of which can be neatly
represented by algebraic symbols in equations. This book is designed to deal
mainly with the macroscopic aspects of fracture mechanics, so that the idiosyn-
crasies of particular materials are not discussed in detail. The micro-mechanics
of fracture processes in simple systems are, however, described in some depth to
show that the models, devised to explain why cracks propagate or voids
coalesce at the particular stresses or strains that they do, are often of a similar
nature, whether the events are on a scale measured in microns or metres.

The selection and presentation of material has turned out to be highly
personalised; in effect, defining a view of what the field of fracture mechanics
should properly include. Selection is very necessary, because the literature con-
nected with all possible aspects of the subject is overwhelming in its sheer mass
and volume. There is more in the book relating to notched bars and micro-
mechanisms than might be expected from a ‘conventional’ interpretation of its
title, because an understanding of crack tip phenomena on the microscopic scale
can be more easily gained by analogy with fracture events near blunt stress
concentrators.

It is inevitable that the book has a fairly large mathematical content. Fracture
mechanics is concerned with the quantitative treatment of fracture, and this
must involve precise and accurate stress analysis. There is no easy way round
such analysis, but attempts have been made to explain the physical principles
from which the equations are developed and the formal mathematics has been
kept to a minimum. On a first reading, it may be wise to move on to Chapter 4
as soon as the going becomes difficult, but even Chapter 3 should not present
too many problems to a final year science or engineering undergraduate. An



PREFACE

impression of the course of the subject can be gained fairly rapidly from
Chapters 1, 4, 5 and parts of 6 and 9, but the reader then has to take for granted
many pieces of information which are discussed in detail elsewhere.

I am indebted to many friends and colleagues who have helped, knowingly or
unknowingly, in the production of this work. My thanks are due primarily to
members and ex-members of my research group, particularly Richard Smith and
Rob Ritchie. The book includes many of their experimental results and micro-
graphs. I was extremely fortunate in having the opportunity to discuss some of
my ideas with Professor James Rice, during the year that he came as an Overseas
Fellow to Churchill College. Within the Department of Metallurgy and Materials
Science, fracture mechanics research has been continually encouraged and
supported by Professor Robert Honeycombe. Thanks for helpful discussion are
due also to Professor Edwin Smith, Dr Graham Qates, Dr Michael May,

Dr David Elliott, Mr Frank Walker, Dr Richard Dolby and Mr Len Wortley.

I have had many opportunities to sample the most recent advances in fracture
mechanics and I hope that I have been able, in this book, to present a balanced
and clear account of all the work that has been done and is being done.

March 1973 JF.K.
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One

MODES OF FAILURE

1.1 Introduction

One of the fundamental requirements of any engineering structure is that it
should not fail in service and much of the skill of the structural engineer lies in
recognising that there are several possible modes of failure and in guarding
against them in his design. In addition to chemical failure by environmental
corrosion, the main modes of mechanical failure in which the designer is usually
interested may be listed as:

failure by elastic instability (buckling);

failure by excessively large elastic deformation (jamming);
failure by gross plastic deformation (yielding);

failure by tensile instability (necking);

failure by fast fracture (cracking).

We shall consider each of these in turn.

1.2 Buckling and Jamming

Failure by elastic buckling occurs classically in circumstances where a long,
slender strut is subjected to large compressive forces (see Figure 1.1). In practice,
the line of action of the forces does not lie exactly along the central longitudinal
axis of the strut and a bending moment is produced about its centre. For small
end loads, the elastic restoring forces in the strut are sufficient to allow it to
straighten back into its original position, if it is subjected to a slight sideways
deflection, i.e. the system is in stable equilibrium. As the end loads are increased,
a point of neutral equilibrium is reached at a critical load, where the buckling
and restoring forces are exactly matched, so that any value of sideways deflec-
tion is maintained. Loads higher than this critical value induce elastic failure: the
slightest deviation of the strut from its initial linearity produces buckling which
increases catastrophically until the bent strut either yields or fractures, or until

1



2 MODES OF FAILURE

its ends touch. In this last case, the strut is said to be an elastica. The critical
buckling load is that needed to produce neutral equilibrium and depends on the
slenderness of the strut, on the elastic modulus of the material from which it is
made and on the means by which the loads are transmitted to its ends.

Fl F F
ta) ib) (c)

Figure 1.1 Buckling of a strut. (a) Both ends pin-jointed; (b) both ends fixed; (c) one
end fixed; one end pin-jointed

For pin-jointed ends (Figure I.1a), the theoretical buckling load, F, is given

by Euler’s formula:
270
F=7T12U (1.2.1)

where £ is Young’s modulus, and [ and 7 are respectively the length and the
moment of inertia of the strut. If the ends are fixed, rather than pin-jointed
(Figure 1.1b), points of inflection are produced at positions one- and three-
quarters the way along the length and the central portion behaves like a pin-
jointed strut of length /2. The buckling load is therefore increased by a factor
of four. Conversely, if one end is fixed and the other end is pin-jointed and free
to move sideways ( Figure 1.1c), the strut behaves like half a double pin-jointed
strut of length 2/ and the buckling load is decreased by a factor of four. It is
this form of loading which is demonstrated in pole-vaulting and the employment
of the elastic restoring forces in a pole to give the vaulter lift represents one of
the few deliberate uses of large elastic deflections in a slender strut. The use of
relatively low-modulus fibre-glass poles has, in recent years, led to substantial
improvements in pole-vaulting records.

More commonly, elastic strains in structures are kept to the very low values
associated with traditional design in materials such as mild steel. Excessively
large elastic deflections can produce failure by jamming: for example, in engines,




MODES OF FAILURE 3
where the clearances between rotors and stators are small, too large a deflection
when load is applied would cause the engine to seize. A major aim of modern
fibre technology, outside pole-vaulting, is to produce high modulus fibres so
that the engineer can utilise high stresses without being embarrassed by high
elastic strains. In conventional structural design, the ratio of modulus to specific
gravity is fairly constant for most materials and low deflections can be obtained
only by the use of thick struts or suitable framework configurations. A recent
development has been the introduction of ‘box-girder’ sections which increase
the moment of inertia for a given weight of material. In thick struts, ultimate
failure is produced by simple crushing.

1.3 Yielding

If the critical load is exceeded, a slender strut begins to buckle catastrophically
and may eventually suffer complete collapse by yielding. Regarding the section
of a strut undergoing sideways deflections as if it were a simple beam subjected
to pure bending (figure 1.2), yielding starts on the tension and compression
faces when the bending moment, M, has attained a value such that:

_ayW?B

- (1.3.1)

where Wis the width and B is the thickness of the strut (assumed to be rectangu-
lar in cross-section) and o+ is the material’s yield stress. Because there is a
gradient of stress, from tension to compression, across the width, the complete

M
—_—
Tension Compression
+ o
———
M

Figure 1.2 Beam under pure bending (the stress is zero along the dashed line in the
centre of the beam)
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cross-section does not yield at this value of bending moment. Plastic collapse can
be said to have occurred only at a higher value, given by:
2
L (13.2)
4

We shall call this general collapse general yield and define it simply as follows:
‘A body is said to have undergone genera! vielding when it is no longer possible
to trace a path, across the load-bearing cross-section, from loading point to load-
ing point, through elastically deformed material only’.

This is a most important definition, because ‘yielding’, as a phenomenon, is
commonly identified with general yielding and general yielding only. As will be
seen later, such an identification can prove to be confusing when talking about
fracture behaviour.

It is clear that, for the case of a simple rectangular beam in pure bending,
the load required to produce yielding initially in the outermost fibres is only
two-thirds that needed to spread the yield completely across the cross-section.
For a British Standard ‘I"-beam, similarily subjected to pure bending, the load
required for plastic collapse is 1.15 times greater than that required for initial
yielding.

Plastic collapse is familiar to us as the failure mechanism observed when a tin
can is crushed. It may occasionally be used deliberately as a feature of engineer-
ing design, for example in cars, where the reaction on the driver of the large
forces experienced in a crash is reduced by allowing the energy of collision to be
absorbed in plastic crumpling of the bodywork.

In an ideally elastic/plastic solid which exhibited no work-hardening, com-
plete plastic instability would occur in a simple tension test when the applied
tensile stress was equal to the material’s yield stress. In general, this behaviour is
not observed in annealed metals, because their capacity for work-hardening
enables them to deform in a stable manner at all stresses up to the ultimate
tensile stress in the tension test. Only if a metal has been heavily cold-worked
before testing will the onset of yielding immediately produce plastic instability
(i.e. continuing deformation under constant load) and then only if the test is
controlled by loading-rate (a ‘soft’ testing system) rather than by displacement-
rate (a ‘hard’ system). Similarly, the sharp drop in load that may occur when a
tensile bar of mild steel first yields is observable only in a hard system. In the
ideally soft loading system, annealed mild steel shows no decrease in load-bearing
capacity until the ultimate tensile stress is reached.

If an engineer wishes to design against failure by plastic collapse, his variables
are no longer restricted to those associated with elastic constants and with the
geometry of the structure, because he has a choice of materials which possess
different yield strengths. The difference between an annealed mild steel and a
quenched and lightly tempered alloy steel represents about a six-fold increase
in load-bearing capacity if a piece is designed to be resistant to failure by plastic
instability on the basis of the initial yield stress, and about a three-fold increase
if the design is based on the ultimate tensile stress.
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Early principles of structural design ensured that the material’s yield stress
was nowhere exceeded in a structure, but, in recent vears, it has become widely
recognised that localised yielding can be permitted, provided that large
deformations of the total structure are prevented. This condition, that the struc-
ture shall not deform generally as a ‘mechanism’, is known as the ‘Plastic
Design’ concept and is equivalent to saying that the beam in bending (Figure 1.2)
may be stressed at levels above that required for initial yielding (equation 1.3.1),
provided that the stress level is below that needed to produce general yielding
(equation 1.3.2). Using plastic design analysis, tolerable applied stresses are
calculated by considering the effects of stress distribution on the spread of yield.
Although the work-hardening capacity of a material may permit the applied loads
to be increased still further, this factor is not generally taken into account in
calculations. The development of higher strength structural materials has therefor
been based on the achievement of higher yield strength, often at the expense of
high work-hardening capacity.

For simple framework structures, it is, in principle, relatively easy, although,
in practice, rather tedious, to calculate the load required to produce general
plastic collapse. The calculations become more complicated for large, thick
pieces because allowance has to be made for effects of triaxial stresses on the
spread of yielding.

1.4 Necking

The likelihood of failure occurring by plastic instability (necking) should be
small, because it requires the presence of tension members which are subjected
to a soft loading system. Such configurations may arise when wire ropes are
used as stays or to carry crane hooks, but the designer would automatically
ensure that the stress in such a wire rope was substantially less than the
material’s ultimate tensile stress, so that failure would occur only as a result of
a gross overload. Heavily cold-drawn wires will of course possess very little
uniform elongation, and if they do fail on overloading they may well give the
impression that the failure has been produced by a crack propagation mechanism,
rather than by plastic instability as such. A typical example is the failure of a
metal violin string which has been over-tautened. The general feeling which once
persisted, that a material should have a high work-hardening capacity to obviate
failure by plastic instability, seems now, as described above, to have been
replaced by a more rational appreciation of the yield stress as the material
property required to prevent failure by general yielding.

The overall behaviour depends on the interaction of material properties with
the structure’s geometry and the applied stress system. The decrease in uniform
elongation produced by cold-working, which could give rise to catastrophic
failure in a violin string, does not imply that cold-worked conditions are always
to be avoided in service. Indeed, in a process such as the autofrettage of a
pressure tube, large plastic deformations are deliberately introduced near the



6 MODES OF FAILURE

internal diameter so that a favourable, compressive residual stress system is
present in service. Much the same philosophy underlies the ‘proof testing’ of
large pressure vessels. The theme of interaction between several variables is one
which will be pursued later with regard also to failure by fast fracture.

1.5 Principles of Engineering Design

Assuming that failure by necking is prevented simply by ensuring that tensile
stresses in the structure are less than the material’s ultimate tensile stress, and
that buckling is prevented by design of the structural configuration, practical
design trends will be made most clear if we concentrate on prevention of failure
by general yielding. The applied design stresses are related to the material’s
yield stress through an appropriate design code. On the basis of pure plastic
design reasoning, the design code ought simply to be the relationship between
the uniaxial yield stress and the general yield stress of the structure, but the
practical engineer is more conservative and applies a further ‘safety factor’ to his
design, to reduce the allowable levels of applied stress. The main reason for the
use of a safety factor is that, even when detailed stress analyses have been carried
out, there still exists a degree of uncertainty concerning the situation in a real
structure. One problem which arises is that the operative values of local stress
are often not known at all well. Residual stresses, remaining in metal plates or
sections after forming operations, give rise to one major uncertainty and other
unknowns can arise from the stresses induced by the fabrication procedure or by
uneven loading and bracing during erection. The engineer therefore usually
follows a design code which ensures that the calculable stresses in his structure
shall nowhere exceed the material’s yield or ultimate tensile strength, divided by
an appropriate figure for the safety, or ‘ignorance’ factor. The figure usually lies
in the range 1.5—2 for designs based on the yield stress, depending on the parti-
cular application, and, hopefully, compensates for any local enhancement of
calculated stresses.

The safety factor applied to the material’s yield stress is therefore used as
part of the rationale of plastic design in that it assists in the prevention of failure
by general yielding. The use of a safety factor applied to the ultimate tensile
stress seems to be of less value, particularly since the factor applied is often in
the range 2.5—4, and therefore produces rather pessimistic results for the
magnitude of tolerable applied stress. Failure by plastic instability (necking) will
normally not be the critical failure mode, but, presumably, could become so if
there were a situation where the local enhancement of stress were not uniform
throughout the piece. If plastic design had allowed a tensile member to be
strained sustantially whilst still preventing the deformation of a framework as a
mechanism, non-uniform stress enhancement could imply that necking would
precede general yielding. There does not seem to be any reason, however, why
the safety factor applied to the ultimate tensile stress should be any larger than
that applied to the yield stress, if the contribution from work-hardening in the
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structure is similar to that in the tensile test. The design code ought then to
revert automatically to one based on uniaxial yield stress.

Whether based on yield stress or ultimate tensile stress, an engineer’s design
code implies that, if higher applied stresses are to be put on a structure of given
geometrical configuration, material of higher uniaxial strength must be used. It
has been the availability of higher strength structural materials, together with
the bold use of plastic design concepts, that has enabled engineers in recent years
to produce slender, graceful structures which are subjected to stresses much
higher than those of previous generations. On the other hand, counterbalancing
this elegance and efficiency, it has become distressingly apparent that such
structures are particularly prone to failure by fast fracture.

1.6 Cracking

The essence of fast fracture is that it is a failure mechanism which involves the
unstable propagation of a crack in a structure. In other words, once the crack
has started to move, the loading system is such that it produces accelerating
growth. In the history of failure by fast fracture in service structures, the frac-
tures have almost always been produced by applied stresses less than the design
stress calculated from the appropriate code and safety factor. This has naturally
enhanced the catastrophic nature of the fractures and has led to the general
description of them as ‘brittle’. As we shall see later, the microscopic mechanisms
by which the cracks propagate may be anything from low strain cleavage or
intergranular fracture to fully ductile shear separation (in thin sheet material).
However, in practical terms, the engineering definition of ‘brittle” must be
retained and it must refer to the onset of instability when the applied stress is
Jess than the general vield stress. In this book, we shall interpret a brittle fracture
as ‘one in which the onset of unstable crack propagation is produced by an
applied stress less than the general yield stress of the uncracked ligament
remaining when instability first occurs’.

Numerous brittle fractures have occurred in service and examples may be
drawn from most fields of structural and mechanical engineering. Details of
catastrophic service failures in ships, bridges, turbogenerators, structural steel-
work, pressure vessels and gas pipe-lines may be found in references 18 listed
at the end of this chapter. The sum total of failures and the amount of damage
done is awesome to contemplate. As far as the present book is concerned, we
consider only the major features which these failures hold in common. These are,
primarily, the presence of gross stress-concentrators in fairly large pieces and a
loading system which does not relax the applied stress as any crack formed
begins to grow. Brittle fractures in steels occur particularly at low temperatures
and in thick sections but, both in steel and in aluminium alloys, it is equally
possible to suffer disastrous fractures, ‘brittle’ in the engineering sense of the
word, in very thin sheets. One example of this occurred in the final fracture of
*Comet’ aircraft fuselage skins which contained large fatigue cracks. In all cases,
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the introduction of defects or metallurgical embrittlement during manufacture
worsens the situation.

If a piece is to fracture in a brittle manner (i.e. before general yield) it must
contain a stress concentrator, because it is necessary to confine the mechanism
by which cracking is produced to a small localised region. We shall therefore be
interested predominantly in the ways in which fracture can be produced ahead of
a pre-existing crack or other stress concentrator and in how these may be related
to the applied stress system. Before we study these matters in more detail in the
following chapters and show how they lead to the general formulation of
Fracture Mechanics, it is, first, worth describing the more traditional methods by
which resistance to failure by fast fracture has been assessed in the past, to under-
stand why they are not entirely satisfactory.

1.7 Notched Impact Testing

It has long been accepted that measurements of ductility in the tensile test, such
as elongation or reduction in area, whilst providing convenient figures for specify-
ing material quality in general terms, are not really suitable for predicting the
material’s resistance to fast crack propagation in service. For steels particularly,
measurements of ‘brittleness’ have usually been obtained by observing the amount
of energy absorbed when a notched specimen is broken, generally under condi-
tions of impact loading. Specimens differ in their detailed design, but the
principle is employed in many well-known tests, including those of Charpy, Izod,
Schnadt and Van der Veen. Typical results for a low-strength structural steel are
indicated schematically in Figure 1.3 where the energy absorbed and the percent-
age of ‘crystalline’ fracture on the broken surfaces are plotted as functions of
test temperature. It can be seen that there is a fairly sharp transition from low- to

=]
o

—— 120

\ 'Upper shelf’

w
=)

% Crystalline fracture (dashed curve)

Energy absorbed in fracture, J (solid curve)

|
|
NbT FAITT

Temperature ——»

Figure 1.3 Schematic impact transition curves (behaviour typical of mild steel)
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high-energy fracture over a very narrow temperature range and that this is closely
associated with the change from bright crystalline to dull fibrous fracture. As
will be described in detail in Chapters 7 and 8, the bright crystalline appearance
is produced by reflection from {! OO}CIeavage facets and the dull fibrous appear-
ance is due to a fracture mechanism which involves the very localised ‘internal’
plastic necking of material between non-metallic inclusions.

Material quality is defined in terms of such an impact energy transition curve
either by specifying that a certain minimum amount of energy (say 30J) must
be absorbed at a given test temperature or by determining a ‘transition
temperature’ at which the sharp change in behaviour occurs. Various ‘transition
temperatures” have been employed, including the temperature at which the
energy curve first begins to rise [the nil ductility temperature (NDT)], that at
which the fracture appearance is 50% crystalline, 50% fibrous [the fracture
appearance transition temperature (FATT)], and that at which the fracture
appearance first becomes entirely crystalline.

The information obtained from notched impact tests cannot be applied
directly to assess the resistance to fast crack propagation of a piece in service,
because neither the fracture appearance nor the amount of energy absorbed can
be related in a quantitative manner to the applied design stress, even if the
geometry and strain rate associated with the impact test could be said to pro-
duce effects identical to those produced by service conditions. Impact-test
information should really be used only to correlate with known performance in
service. Provided that such correlations are made, the impact test provides com-
parative measurements of the toughness of different batches of steels of the
same nominal composition, i.e. it may be used to give figures for quality control.
Extensive correlations of this type have, however, been made for only a few
specific applications.

One example is given by the tests carried out on steel plates from ‘Liberty
Ship’ hulls, which fractured by brittle cleavage fracture during or after the
Second World War®. Here, it was found that notched-impact testpieces cut from
plates which had failed in a brittle manner absorbed less than 20 J (15 ft1b) at
10°C, whereas those cut from ‘tough’ plates absorbed more than 20J. The
figure of 20J energy absorption at 10°C was therefore suggested as a critical
value for ensuring that ship steel is not susceptible to brittle fracture. Much
more extensive analysis of failures suggested that a criterion of greater than
47 J (35 ft1b) energy absorption and less than 70% crystallinity at 0°C was
necessary to prevent brittle fractures®. Present specifications relate the required
impact properties both to the strength level of the steel and to the thicknesses
of plate used in service.

An alternative treatment applied to impact results is the measurement and
specification of the transition temperature. This is primarily a feature of the
impact test itself, but can again be correlated, for a given material and applica-
tion, with a transition temperature which is characteristic of the service
conditions. Often, an intermediary large-scale test is used to simulate the antici-
pated extremes of service environment in the testing laboratory. The transition
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curve for the large test then represents (hopefully) the worst case that could
occur and the “worst case’ transition temperature is compared with the transition
temperature in notched impact. Typically, a specification for material quality
would then be that its notched impact transition temperature should be greater
than, say, 30°C below the operating temperature in service. We shall consider
this type of specification in more detail in Chapter 8.

To summarise, it is clear that, by operating within closely defined limits, the
notched impact test may be used to give comparative values of the toughness of
nominally identical steels. It is, therefore, generally suitable for routine quality
control testing. The information obtained cannot, however, be used to calculate
the magnitude of applied stress to produce rapid crack propagation in a structure
containing defects of varying size and geometry and so the designer is forced to
seek an alternative, quantitative measurement of the resistance of a material to
such crack propagation. This resistance is said to be a material’s ‘fracture
toughness’ and may be said to control failure by fast fracture in much the same
way as the general yield stress controls failure by yielding. Both parameters
depend very much on test temperature, strain-rate, geometrical configuration,
and on the material’s microstructure. The following chapters provide a basis for
the characterisation of fracture toughness in terms of both the macroscopic
mechanics and microscopic mechanisms of crack propagation, beginning with an
analysis of the stresses and deformation around the stress concentrators at which
fracture initiates.

1.8 Conclusions

The present chapter has emphasised the several possible modes of mechanical
failure and has drawn attention to the ways in which they may be guarded
against in engineering design. If we regard the geometrical considerations as part
of the calculative processes we are left with the following properties of a
material which control resistance to failure in practice.

Mode of failure Control

Buckling or jamming Elastic modulus
Yielding Yield stress

Crack propagation Fracture toughness

The ‘necking’ failure mode has been omitted, for reasons given earlier.

To optimise resistance to failure in conventional structural materials, where
the ratio of modulus to specific gravity is approximately constant, it is necessary
to develop both high yield stress and high toughness. The ideal balance can be
struck only with regard to a particular structure, and represents the point where
failures by gross yielding or crack propagation are equally unlikely to occur.
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STRESS CONCENTRATIONS

2.1 Introduction

Since the occurrence of failure by fast fracture is necessarily associated with the
presence of high local stresses and strains near stress concentrators, any realistic
measurement of a material’s fracture toughness must be fully appreciative of the
precise magnitudes and distributions of these stresses and strains. The full mathe-
matical stress analyses, for anything but the most simple geometries, are
extremely complex and it is the aim of this chapter and the succeeding one to
try to explain the principles of the calculations in a manner such that the
important results can be made acceptable to the non-specialist. Inevitably, this
leads to loss of rigour and those who wish to follow the subject in depth must
refer to more advanced texts.

2.2 Pictorial Representation — Stress Trajectories

The local enhancement of stress and strain near a sharp change in geometrical
cross-section, such as a fillet or notch, or ahead of the tip of a crack, is by no
means intuitively obvious. The phenomenon was, indeed, not generally
recognised by engineers until nearly the end of the nineteenth century. The most
plausible non-mathematical description of the stress—concentration effect is
given in terms of ‘lines of force’ or ‘stress trajectories’. We suppose, as indicated
in Figure 2.1, that we have a plate, containing a central elliptical hole, which is
subjected to a uniform tensile stress. Regard the stress as being transmitted from
one end of the plate to the other by means of lines of force (rather like magnetic
lines of force). At the uniformly stressed ends of the plate, the lines are spaced
uniformly (stress = force/unit area = force/spacing x plate thickness) and remain
at this spacing, provided that they traverse the plate well away from the ends of
the hole. The more central lines are severely distorted by the presence of the
hole (the stress field is said to be ‘perturbed’) and, because they are supposed to
behave like elastic strings and therefore try to minimise their lengths, they

12
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cluster together near the ends of the hole to give a decrease in the local spacing
and therefore an increase in the local stress (more lines of force in the same area).

The appeal of this model is increased if we regard the central hole as a sharp
crack and sketch the hypothetical local arrangenient of atoms around one of the
tips, as in Figure 2.2. Here, we may give some physical reality to the lines of
force by regarding them as the sequences of atomic bonds running from top to
bottom of the plate. It can then be seen that the transmission of force around

T Uniform
stress
a

X

v

Figure 2.1 Perturbation of lines of force by an elliptical hole in a plate

the crack tip entails heavy loading and hence large straining of the bond AB.
Smaller loads and strains will be carried by CD, but only at a position fairly
remote from the crack tip will a bond (e.g. PQ) be loaded by virtually the same
stress as that applied to the ends of the plate. It should be noted that bond AB
can extend to a length greater than CD only by creating some tensile strain (and
hence stress) along AC and BD. We are therefore led to suspect that the uniaxial
stressing of a plate which contains a crack produces, not only a high tensile
stress in the X, direction, but also a tensile stress in the X, direction. We shall
return to this point later.

The situation depicted in Figure 2.2 is intended only to act as a very approxi-
mate model. It shows unbalanced forces acting normal to the crack faces and
these must disappear in practice to give unloaded regions immediately above and
below the crack, as shown by the shaded regions in Figure 2.1. General tensions
from regions V and W will, however, load bonds AB, CD, etc., as described
above and we might expect that, in some way, much of the strain energy which
has been released by unloading the shaded regions is now stored in the highly
stressed region at the crack tip. Again, we shall examine the mathematical
features of this argument later.

The most beautiful visual method of demonstrating the presence of stress
concentrations is to make use of the stress birefringence properties of certain
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resins or plastics, such as perspex. Here, the passage of polarised light through

a stressed, notched piece produces coloured interference fringes. The detailed
analysis of the fringes to determine the magnitudes of the stresses relies, how-
ever, on even more complicated mathematics than that used for direct analytical
calculations, because the birefringence theory has also to be included! Further
analogies of stress distributions have been produced, utilising magnetic or
electrostatic field distributions, and arise from the similarity of the basic mathe-
matical equations for material behaviour.

Uniform stress

Figure 2.2 Schematic loading of atomic bonds near a crack tip

We now begin to examine the mathematical analysis of stress concentrations
and the first step is to define stress and strain and the relationships between
them.

2.3 Stress

The stress at a point O is formally defined in terms of the (positive) body force
acting across an infinitesimally small planar area passing through O. Since the
orientation of the area can be described by its unit normal vector, and the
force is also a vector, it is convenient to describe stress in terms of the compo-
nents of these two vectors parallel to suitable co-ordinate axes. In three dimen-
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sions, each vector will possess three components and so we expect stress to be
defined by nine terms.

In right-handed Cartesian co-ordinates, stress is defined in terms of the com-
ponents of the force acting across the faces of an infinitesimally small cube
situated at O, with these faces normal to the three axes, X, X, and X ; respec-
tively. The resultant components of stress are then shown as in Figure 2.3. Fach

X3
33
| 32
Tay //
923
%3
L7
app 22
0 X2
%

Pl

X

Figure 2.3 Stresses referred to Cartesian axes

stress component is defined by two subscripts. The first indicates the direction
of the outward-facing normal to the appropriate face of the cube. The second
indicates the direction of the particular component of force. For example, the
stress component 044, defined as hm % is a tensile stress acting in the X,
direction across the face whose outward facing normal also lies in the X, direction.
The components 0;1, 0,2, 033 are all tensile stresses; 041, 053, 014, 013, 031, O3, are
all shear stresses. The full state of stress (or stress fensor) at a point O is written
for convenience as 0y;; here ¢; represents nine components, by allowing both i
and j to take any of the values 1, 2 or 3 independently. If the stress components
are in equilibrium, it is apparent that certain pairs of shear stresses must have
the same magnitude (01, =021, 023 = 032, 03, = 0,3) to prevent any unbalanced
couple from acting on the cube.

It is often convenient to refer stress components to co-ordinate axes other
than Cartesian. In cylindrical polar co-ordinates, (z, 7 and @), for example, the
components are as shown in Figure 2.4. Here, the positive sense of 0 is given by
a clockwise rotation when sighting along the positive z direction. The compon-
ents 0,,, Ogg, 0., are tensile stresses; 0,4, 0,., g, Og,, 0,0, 0., are shear stresses.
In equilibrium, 0y, = 09, 0;, = 0,., 0, = 0,9 . Again, the shorthand form o;;
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Figure 2.4 Stresses referred to cylindrical co-ordinates

B = const.

a= const.

Figure 2.5 Definition of stresses in elliptical co-ordinates
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may be used to denote the stress at a point, where i and j now take independently
the values #, 8 or z.

A third co-ordinate system sometimes used is that of curvilinear co-ordinates
in which, in the plane x5 = 0, the point x,, x, is given by:

x; =ccoshacosf
X, =csinh asin

where ¢ is a constant.

Lines of constant «, with  varying from 0 to 2, are confocal ellipses; lines
of constant 3 are confocal hyperbolae. The two sets of curves intersect ortho-
gonally. The co-ordinate system is sketched in Figure 2.5 and has the advantage
that, by suitable choices of constant, either an ellipse may be made long and
narrow to represent an internal crack or a pair of hyperbolae may be
adjusted to take the geometrical form of external notches. A stress such as Uag
acts on a face whose normal is orthogonal to the tangent to the curve o = constant,
in the tangential direction.

2.4 Strain

Strain is produced by the displacement of points in a body relative to one
another, i.e. the total displacement of points in response to a stress system,

once rigid body translations or rotations have been eliminated. Suppose that a
point P, defined by Cartesian co-ordinates x; (x4, X,, x3), is displaced to a new
point P', given by x;, where x; = x; + u;. Then u;(u, uu3) is the displacement

of P and to be a strain must differ from one point to another. Hence u; is a func-
tion of x;. For small strains, linear behaviour is assumed and u; may be written
simply as u; = const. x;. If all displacements are linear functions of the initial
co-ordinates, we have X, x5, X3 =Xy + 1y, Xy +ty, x5 + Uy, where uu, and u;
are given by:

Uy =exy tepx; te3x;
Uy =ey X1 teax; tessXs (2.4.1)
Uz =e31X; T e332X, te33x;3
or, in shorthand form,
U; = eyX; (24.2)

where each term ej; is a constant of proportionality corresponding to a displace-
ment in the direction of axis X; of points on the axis X;. We can relate the values
of e;; to engineering tensile and shear strains by considering a two-dimensional
deformation system.
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Let point P(x;, x;) move to P'(x,’, x,"), where:
x,’=x1+u1 x2'2x2+u2
(24.3)
and Uy Ten X temx; Uy =ey1X; T ey,
Now consider the movement of a point on the X, axis: P(x,, 0). The initial

distance of the point from the fixed origin O is OP = x,. After deformation, the
co-ordinates of P’ are x,, x,, where:

s T e e l s
| 4.

'
Xy TXp Fuy =y x,
It is clear from the first equation that e, is a simple tensile strain:

_u, _increase in length

e e s, ERA |
e original length

The term €5, is related to the engineering shear strain v, but is not automatically
equated to 7, because it contains a rotational component.

The working definition of engineering shear strain, v, is that it is the change in
angle between two lines which are initially orthogonal (see Figure 2.6a). The

0 P X
(a) (b)

Figure 2.6 (a) Definition of shear strain (shear strain = u/l = v). (b) Definition of pure
shear (e,, = e,, = v/2 for infinitesimal strains)

total change in angle between two points initially situated on the X, and X, axes
is given by (e, + €;,) and a state of pure shear is defined when e, = €,31, the

positive sign being taken for a rotation of a point on a positive axis towards the
other positive axis. The situation in Figure 2.6b is then found. The total shear in

the material is v (imagine the rigid body rotation of OP round to OP' as a starting
point, so that ON is then sheared to OQ") and the pure shears, written now as

€12 = €, are therefore found to be /2. The formal definition of a pure shear
strain is then

1o L)
€ 2(axj+ = (2.4.5)
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and this also gives the correct form for tensile strains, when i =j. Equation 2.4.5
is then the definition of the strain tensor, €;;, which, by the way it is defined is a
symmetrical tensor (;; = €;;) like the stress tensor.

2.5 Principal Stresses and Strains

In three dimensions, the stress acting across a planar area of arbitrary orientation
passing through the point O may be written in terms of its components as o;;. It
is possible to determine three specific orientations for this plane such that no
shearing stresses act on it. These three planes are referred to as principal planes
and are found to be orthogonal to one another. The three vectors normal to the
planes form the principal axes and the three tensile stresses which act across the
planes are the principal stresses, written as 0,, 0, and 03 (single subscripts)
where it is conventional to regard o, as the algebraically largest and o3 as the
algebraically smallest principal stress. The stress o, is the largest tensile stress in
the body, produced by the applied stress system. The values of o, 0, and o3
may be found, by calculating the values of ¢ for which the determinant

(011 —0), 051,034
012,(022 = 0), 03, (2:5.1)
013,023,(033—0)

is equal to zero, where 044, 05, . . ., efc., are the nine components of stress
referred to Cartesian co-ordinates. The direction cosines /, ;15 of the principal
axes may be determined by substituting the known values of o (0,0, 03) into
the equations

l(oy,—0)+1,05,+ 1305, =0
Lo12+1(0,—0) + 1303, =0 (2.5.2)
lio13+1,0,3+13(033-0) =0
with the additional information that
P+B+B=1 (2.5.3)

The visualisation of the stress at a point is obviously simplified considerably if
stresses can be referred to principal axes. Various states of stress may be said to
exist, depending on the values of ¢,, 0, and o3. In general, the three principal
stresses are unequal, and the state of stress is said to be triaxial. If all three are
equal, it is Aydrostatic; if two are equal, and the third is non-zero, it is ¢ylindrical,
if two are zero, it is uniaxial; if one is zero, it is biaxial, or, more generally, a state
of plane stress. This last state is a situation commonly encountered in the loading
of very thin sheets, which do not develop any tensile stress through their
thickness.

The maximum, or principal, shearing stresses act on planes whose normals
bisect the (90”) angles between pairs of principal axes. Since 0, is the largest and
05 is the smallest principal stress, the maximum shear stress, 7max, acts on the
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two planes whose normals make angles of 45° to the 0, and o5 directions. The
magnitude of 7,,,, is given by:

g1 — 03

Toiag = —2—— (2.54)

The maximum principal shearing stress in a system is of great importance in
deciding at what applied stress yielding will be produced.

By analogy with stress, it is also possible to define a set of orthogonal
co-ordinate axes along which, or on planes normal to which, there are no shear
strains. For an isotropic body it may be shown that the principal axes of stress
and strain are identical, i.e. an element aligned along a principal stress axis under-
goes only simple extension or contraction in response to a tensile or compressive
principal stress. The formulation for the determination of principal strains and
the maximum shear strains follows that for stress, with the replacement of stress
components by the appropriate strain components.

It should be noted that, if the determinant in equation 2.5.1, is expanded as
a cubic equation in o, it will take the form:

6> Lo -Lo—-1,=0 (2.5.5)

where
Iy =011 Y030 + 033

- ) 2 2
Iy ==(011022 + 03301 +02,033) + 01, + 03, + 05,

» 2 2 2
I3 =0,105,033 % 012031023~ 011023 ~ 032031 — 033075 (2.5.6)

The quantities 7,, 7, and /3 remain unchanged, whatever the choice of
co-ordinate axes, and so are referred to as invariants of the stress system (or
tensor).

2.6 Stress—Strain Relationships in Elastic Solids

It is an empirically observed fact that the strain produced in a thin wire by the
application of a small uniaxial stress is directly proportional to the magnitude

of the applied stress. This observation, made initially by Hooke, describes linear
elastic behaviour (stress and strain are related by a linear equation) and provides
a definition for Young’s Modulus, £, as the elastic coefficient which relates stress
to strain:

o=Fe (2.6.1)

Alternatively, the coefficient (equal to 1/£) which relates strain to stress is
termed the elastic compliance of the system. Poisson’s ratio, v, for such an
unrestricted uniaxially loaded wire, is defined as the ratio of lateral contraction
to longitudinal extension, and has a value lying in the range 0.28—0.33 for most
metals.
The three-dimensional formulation of the relationships between stress and

strain for a given stress systern assumes that similar linear relationships hold for
the individual components of stress and strain. In the most general form, the six
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independent stress components must be related to the six independent strain
components by six linear equations, involving 36 coefficients:

011 = Cy1611 + Cia€pp + Ci3€33 + Cra€yn + Cisey3 + g3

022 =C21€11 + Can€20 + Crz€33 + Cagegy + Casepq +Cap€23

033 =C31€11 + C32€5; + C33€33 + 34613 + Cas56y3 + Cig6as 262)
012 = Ca1€11 + Caz€pp + Caz€33 + Cageyy + Caseqs +Cas€ys
023 =Cs1€11 + Cs2€95 + Cs3€33 + Csq€15 + Css€p3 + Csgels

031 =Cs1€11 * Co2625 + Co3€33 + Coq€1a + Cys€5 + Ces€23

or €11 =811011 512022 + 813033 514012 + 81503 5,023
€22 = 821011 + 8522025 + 823033 +5,40, + 8,505 + 826023
€33 = 831011 + 832055 833033 + 83401, + 53503 + 836023
€12 841011 +542022 + 543033 + 544015 + 845075 + S460,5 (2:6.3)
€23 =851011 + 852022 + 853033 +5540,2 +Ss50,3 + 856023

€31 =S861011 + 862022 + 863033 + 864015 + 850,35 + 866023

where C;4, etc., are elastic coefficients and S11. ete., are elastic compliances. An
important feature of any elastically deforming body is that it possesses a uniquely
defined strain-energy density W= W(e,,,)

€mn
W= W(Emn) :f U,'J' deij (264)
0

For the simple case of an elastically deforming uniaxial bar, the expression
reduces to the familiar form:

W :12 stress x strain per unit volume

The implication of the uniqueness of the strain energy density is that specific
relationships must exist between the coefficients: Sii = 8j1; Ci; = Gy, to maintain
a constant value for the integral of the product of stress and strain components.
For isotropic solids, it is possible to simplify the relationships further by making
use of the fact that the principal axes of stress and strain coincide, and that the
displacements must be symmetrical with respect to these axes. In terms of
principal axes, we may write, for example:

gy =(M+2u)e; + hey + ey
02 =Ae; + (M +2u)ey + Aey (2.6.5)
O3 =Ae; +Ae; + (M +2u)e;
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where X\ and u are known as Lamé’s constants. If the dilatation A=¢; t €, t €3
is introduced, equations 2.6.5 become simply

07 = ANA + 2ue,
0, = AN+ 2ue, (2.6.6)
03 = AA + 2ue;

The stress/strain relations referred to axes X; X, X3 become simply

011 =AA+ 2ue, 012 = MY12 = 2ME 1,
Uz2 = MA+ 2ue;, 033 = MY23 = 2M€a3 (2.6.7)
033 = MNA + 2ues; O3y = Y3y = 2H€q

It can be seen immediately that u is the shear modulus, which relates shear stress
to shear strain. The second of Lamés constants. A, is related to Young’s modulus,
E, by the expression:

M3A + 2p)
e 2.6.8
(At 2.55)
and to Poisson’s ratio, v, by:
A
e —— 2
v 30+ 0) (2.6.9)

by considering equations 2.6.7 applied to the case of simple uniaxial loading of
a thin wire specimen which is allowed to contract in an unrestricted manner as it
extends (0, = 03 = 0). By eliminating A from equations 2.6.8 and 2.6.9 above, it
is possible to derive a further commonly used relationship between the elastic
constants:
o R
H=30+p) (2.6.10)

Hence, » must be greater than —1. The relationship between A and u is given by:

= (2.6.11)

T |

Hence, v is less than 0.5.

For many solids undergoing elastic deformation, A = u, hence v = 0.25. For
metals which are deforming plastically, the volume remains essentially constant
because the deformation occurs by slip processes. The deformation is then said
to be incompressible, when v = 0.5.

It is equally possible to rearrange the equations to give strain in terms of
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stress. For example, the principal strains in a body subjected to principal stresses
0. 0y and U3 are

1
€, =E[gl "“V(Uz + 03)]

€ =é—,|:02 *V(U3+Ul)} (2.6.12)

1
€3 =E{03 —v(oy +02)j|

It is now possible to define a further state of stress, termed plane strain, in which
one of the principal strains is zero. A typical example of plane strain deforma-
tion occurs in the central region of a wide strip which is being rolled: here the
strip extends as its thickness is reduced, but its width remains virtually constant.
If we set ¢, equal to zero, we obtain, from equation 2.6.12 above

0, =p(0; +03) (2.6.13)

where v lies in the range 0.25—-0.33 for elastic deformation and is equal to 0.5 for
incompressible (plastic) deformation. Setting e, equal to zero merely enables us
to persist with the definition of o, as the largest and o3 as the smallest principal
stress.

2.7 Elastic Triaxiality

Given the general relationships between stress and strain, we are now in a posi-
tion to anticipate further the likely distribution of stress near a concentrator.
We examine the situation depicted in Figure 2. 7a, which shows a schematic dis-
tribution as deduced from the model in Section 2.2 of the o, (principal) tensile
stress ahead of a notch as a function of x, along the axis x; = 0. Unfortunately,
this choice of axes, which agrees with those generally used in papers on fracture
mechanics, demands that 0y, > 033 > 0,, in plane strain. It is hoped that this
change in nomenclature will not prove too confusing.

Imagine a set of elements: @, b, ¢, d,...,p.q, ..., etc., arranged along the
X, axis. The average stress, @,(a), acting on element a is substantially greater
than that acting on element b, and so the longitudinal strain €,,(a) would be
greater than e, (b) if the elements were deforming freely. However, in free
deformation, there would also be Poisson’s ratio contractions, €,,(a), €,,(b), . .,
etc. Since Xy, X5, X3 are the directions of the axes of principal stress, and
assuming plane strain deformation; 33 =0, 033 =v(0,; + 0,,); we may use

equations 2.6.12 to show that e;, would be equal to — —1%-) .€11 if the elements

(
were free from restraint in the X, direction. However, because ¢;,(a) > €;,(b), ...,
etc. it would then follow that €;,(2) > €,,(b) > €32(c), . . ., etc., and the a/b, bje
¢/d, . .., etc. interfaces would separate. To prevent this happening and to allow

’
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the material to deform as an elastic continuum, a tensile stress, ¢,,, must be
present, to hold the elements together. The form of this stress (see Figure 2.7b)
must be such that it is zero at the free surface (element ‘a’ feels no restraint from
the empty notch), that it increases steeply in response to the steep elastic stress

Stress
gy
(a)
-~ a
Stress
(b)
a

Figure 2.7 (2) Elastically stressed elements ahead of a norch. (b) Distribution of stresses
in plane strain o,, = v(a,, +a,,)

(and hence strain) gradient and that it falls to a low value at distances remote
from the notch where the strains acting on adjacent elements (e.g. ‘»’ and ‘g") are
virtually identical.

The production of the 0,, stress agrees with the conjectures based on a con-
sideration of the stretching of bonds near a crack tip (Figure 2.2) and we there-
fore expect this stress to be a feature of mathematical solutions.

The stress 033 is equal to » (¢, + 0,,) in plane strain and its distribution is
also shown schematically in Figure 2.7b. In plane stress, 033 is zero, and the
distribution of 055 is similar to that already discussed, although its magnitude
is smaller, because contraction can occur in the X3 direction. The plane strain
deformation therefore gives rise to a state of tensile triaxiality near a notch. At
one time this was thought to be an important feature in the production of
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brittle fracture of metals. Nowadays, however, pure elastic triaxiality effects

would be expected to affect only very brittle materials such as concrete, plasters
and glasses. It is important to realise that, in plane strain, 0,; > 033 > 0,,, and
S0 0,, is the smallest principal stress; in plane stress, 0, > 0,5 > 033 (= 0)
and 033 is the smallest stress. It will be shown later that this has a controlling
influence with regard to the form of plastic deformation in thin and thick pieces.
In thin pieces, 033, which is zero at the free surfaces, is virtually equal to zero
throughout the thickness; the maximum shear stress consequently lies on planes
at 45° to X; and X3 (through-the-thickness). Throughout most of the thickness
of a thick piece, €33 is virtually zero, and the yielding in the central regions is
confined to the X, X, plane (see Section 2.11).

The continuity of material during elastic deformation, which we have shown
to give rise to a stress 0;,,1s one of the major conditions imposed in the mathe-
matical theory of elasticity which is described below.

2.8 The Basis of the Theory of Elasticity

The two main principles on which the theory of elasticity is founded are first
that the stresses shall be in equilibrium and secondly that the deformations
produced by these stresses must be such that elastic continuity is preserved
throughout the body. The second requirement is known as the compatibility
condition. The equilibrium condition may be derived by consideration of

Figure 2.8 which shows three of the nine pairs of force components acting on an

X3
Ao 3
| oy + P dxs
X
o 3021 / ¢
B ot a4k
~
I 2 i By
%4 "_____—_J';’t‘—w_/—“_—"“u*ﬁdh
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=~ dx;
o — dx,
= O3
= X,
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Figure 2.8 Equilibrium of stresses. If forces are resolved in the X direction:

o ) 0
(o“ + g}u d.xl) dx,dx, —o,,dx,dx, + (011 + ax“ dx,) dx,dx, — g, dx,dx,
2

" a0, " 30y, " doy, =i
ax, ax, 9x,

1

ag
+ (031 + ‘axal dxa) dx,dx, —0,,dx, dx, =0,
3
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element of dimensions dx;dx,dx;. By considering all nine pairs of force com-

ponents, it may be seen that, for equilibrium, the following relationships must
be satisfied:

904, " doy, | 003

x4 0X5 0x3 =
8012 6022 8032
12 e -
ax,_ axZ i ax:.] g (281)
8013 8023 i 8033 =i

axl axl ax3

ignoring any body forces which may act on the element.

The operation of the compatibility condition is most clearly illustrated by
reference to a two-dimensional system. For infinitesimal strains, we may proceed
from the results of Section 2.4 to write:

O ]
L axl €22 a.XQ

€11
2613 = 2631 = Y12 = Y21

_dup duy
0x; 09X,

(282)

Differentiating €, twice by dx,: €., twice by dxy; and 2¢,, = v;, by dx; and
dx,, we obtain:

%1y ey, _ 0%y,
It 9x®  ax ox,

(2.8.3)

If the strains satisfy this equation, the continuity of the body is preserved. The
equation may be expressed in terms of stress by differentiating equations 2.6.7,
with all stresses of the type o3; put equal to zero, since we are considering only
two dimensions, and making the appropriate substitutions, to obtain:
A0y gy : %02, D%y,
x5

2
Pt e =l 40 ——ail";;z (2.8.4)
The solution of a problem in elasticity requires that expressions be found for
the stress components, which satisfy both equilibrium (equations 2.8.1) and
compatibility (equation 2.8.4) conditions and which give the boundary condi-
tions appropriate to the situation being considered. As in simple integration with
respect to one variable, the answer when differentiated must give the original
form, so the answer to an elasticity problem must satisty the appropriate original
equations. As for many standard integration solutions, the practising mathema-
tician has a knowledge of the types of functions which, when differentiated, are
likely to satisfy these equations. Any analytical expressions are likely to be
extremely complicated unless the geometrical form of the body can be described
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by simple mathematical functions. Even so, general solutions for three dimen-
sions are difficult to obtain, unless simplifications such as rotational symmetry
are admissible, and the main body of calculations has been carried out for
idealised plane states of stress: either plane stress (o3 = 0) or plane strain

(63 = 0)

2.9 Airy’s Stress Function

The problem is to find a suitable function ¢ in x, and x, which satisfies the
equilibrium and compatibility equations and which enables the stresses to be
related to the applied loads. Airy first demonstrated that such a function could
exist for two-dimensional deformation? and showed that the stresses could be
derived from it as follows:

9%
Ou1 = Bxf
a‘Z
iy =§f§— (2.9.1)
___0%
012 = 5y 0%

Direct substitution in equation 2.8.1, with stresses of the type o5; set equal to
zero shows that equilibrium is satisfied.
To satisfy compatibility (equation 2.8.4) further requires that

9% 3¢ i R
ax,* >3 et 7 e, =V =0 (29.2)

If the function satisfies the compatibility equation, the stresses are automatically
determined by equations 2.9.1 above, provided that the boundary conditions are
also satisfied. It is this further restriction that has rather limited the number of
analytical solutions for stresses in bodies of complicated shape. However, it is
also possible to solve such problems in two dimensions fairly readily by means of
finite element methods or finite difference equations, using numerical methods
such as relaxation. These are particularly suited to the use of computers, which
are now increasingly applied to the exact solution of elasticity problems in bodies
of the geometries actually used in service (see Sections 3.16, and 3.17).

To demonstrate the use of the analytical method, it may be profitable first to
consider the development of the solution for the stress distribution in a plate of
infinite dimensions, which contains a circular hole of radius a, when it is
subjected to a uniaxial stress 0. The deformation is assumed to occur in a plane
state of stress.
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It is convenient to work in cylindrical co-ordinates, where the equations for
equilibrium (cf. equations 2.8.1) in two dimensions (polar co-ordinates » and )
become:

90y, % I 90,9 T Orr — 0o

ar "7 df r Z

(29.3)
_1 % a&@ + 2 ,_grﬂ — 0
r of or F

assuming that there are no body forces. The compatibility equation becomes:

PR L 5 )( L1039 Li)z
VA(v?9) (ar 2+ YRRy Y A2 7 Br 4 302 g 294

The stresses 0,,, 05y and 0,5 may be obtained from a suitable stress function (o]
by means of the relationships:

©-

_1dg 1 3%

RS e 62
ai

Ugezﬁ (29.5)
.. B laaﬁ):Lﬁ_i@

w or\r a6/ »*050% rorad

The problem is solved by finding a stress function which satisfies the compat-
ibility condition and which also satisfies the boundary conditions for the outer
boundary and for the surface of the hole, which must be free from external
forces. For an infinite plate, the stress function which fits these conditions is:

¢= J—gr 7a—9—+—2'0)cos29 (2.9.6)

( 4 Lri 2 i

from which o,,, 099 and 0,4 may be determined by use of equations 2.9.5 above.
The maximum value of the tangential stress, Ogg » 1s obtained when 8 = /2 or

3m/2 and r = a, the radius of the hole. The variation of Ogg With r (= x,) when
0 =m/2 or 3n/2 is given by

3a
Ugg = U(l s 2 3 5;:4—) (297)

and this distribution is drawn schematically in Figure 2.9. We see that when
r = °, 0gg becomes equal to the uniform applied tensile stress, o; when r =g,
0gg = 30. The redistribution of the stress in the region of the hole has thus
occasioned the development of a tangential tensile stress of magnitude three
times that of the applied stress. The hole acts as a stress concentrator with an
elastic stress concentration factor (ESCF) of 3.
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It is important also to note that a radial tensile stress, 0,,, is developed in the
region near the hole, as was anticipated in Section 2.7. When 8 = 7/2 or 37/2,
0, 18 given by:
30/a®> a*
0. =?(;2- £ (2.9.8)
which is zero when r =a or e (normal to the free surface of the hole at r = g;
normal to the free boundary surface at r = =) and which has a maximum value of

(3)0 = (%) 9gpmaxy When r = +/Z a.The variation of g,, with r is shown also in
Figure 2.9.

Stress

Figure 2.9 Distribution of stress around a circular hole in an infinite plate, subjected to a
uniform stress, o (plane stress)

In plane stress, 0, , is zero: in plane strain, €,, is zero and so 0,, is given by:
02 V(orr + 065) (299)

In this last case, a stress state of triaxial tension is produced some little distance
below the surface of the hole. The general consequences of this on yielding
have been discussed earlier and will be taken up further in Section 2.11.

First, we will try to speculate on what the form of stress concentration
around holes of different geometry might be, in anticipation of the more detailed
analyses presented in Chapter 3.

2.10 Rough Estimate of Stress Concentration

The stress concentration at the edge of a circular hole may be derived using a
real stress function, whereas the functions used to derive results for elliptical
holes or sharp cracks usually contain both real and imaginary parts(see Chapter 3).
Since lack of physical reality may be felt by the introduction of imaginary
numbers, the aim of this section is to produce a rough, but plausible, comparison
between results deducible from real and complex functions. To do this, we com-
pare the maximum tensile stress calculated for an elliptical hole of semi-major
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axis @ and semi-minor axis b (see Section 3.5) with an estimate of the maximum
tensile stress developed ahead of the series of contiguous holes shown in

Figure 2.10a.

3 [
lf': Iza

!
< — — Average stress

-— g*

Figure 2.10 (a) Model o f sharp notch using series of holes. (b) Stress distribution
ahead of first hole

* %
Imagine a series of successive radii a*,g‘i‘,ﬁ—é, I o
An infinite series of these would extend a distance of 5¢*/3 from the origin
along the X, axis and their envelope would be a pointed notch of total included
*
angle approximately 75°. We may regard the second hole (radius 54—) as being

subjected to the non-uniform stress field of the first hole as shown in
Figure 2.10b. The average stress, 09, acting on the second hole is then given by

3
2 20 ¢ AN o
(see equation 2.9.7) which gives a result very close to @9y = 20. The peak tensile
stress, 011 (3), ahead of the second hole is then, approximately 0473y = 3.20. The
average stress acting on the third hole, @3, is 2%0, and the peak stress ahead of



STRESS CONCENTRATIONS 31
it is 013 4y = 3.2%0. In general, if we imagine # holes in the series, the peak stress
ahead of the nth hole is:

Oll(n) = 3.2”71 0

210
=15 2% 0 ( )

We now examine the results deduced for an ellipse: Ogg = 0(1 + 2\/%) where

p is the radius of the tip, and a is the major semi-axis, and compare them with
the figures given above, in Table 2.1 (see equation 3.5.9). Agreement is obviously
not completely perfect, but is sufficient to give general credibility to future
results.

Table 2.1
No. of holes Peak stress (1 + 2\/%)-—; a “p alp
1 30 . 3-0 a* a 1
2 60 5.90 (a* +a_2*) aT* 6
3 126 120 (a”‘+a—;+%*) 13;— 26

If n, the number of holes, is large, we approach the solution for a pointed

notch, where a@ > p, 2/% 2 1. Then we have, on the one hand,

011¢max) = 1.5.2" .0 (2.10:2)

and, from the formula for an elliptical hole:

[E(a*-i—g;ﬁ—%*-l—)
Gﬁﬁtz Ln O

a*/22n72

— ) J(%.z‘l“—?).a (2.10.3)

=13, 2

Despite the approximations, we can perhaps feel some confidence in the general
form of the results obtained using complex stress functions. The most important
result is that for the pointed notch, where:

a !
011 (max) = 2 v .0 (2.104)

We shall examine this in detail in Chapter 3, but first we will consider the
development of plasticity in a piece which contains a stress concentrator.
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2.11 Plastic Deformation at Stress Concentrators

When a notched piece is stressed elastically, it is possible to produce high stresses
near the notch and these may locally exceed the material’s yield stress to pro-
duce a small plastic zone or ‘enclave’. The stress distribution within this enclave
depends very much on whether the deformation is occurring in plane stress or in
plane strain.

In plane stress, the smallest principal stress is that through the thickness, 033
(see Section 2.7) and yielding occurs on planes at 45° to the X, and X 5 axes.
The Tresca criterion® for yielding tells us that yield occurs when the maximum
shear stress is equal to a critical constant value, Ty, and this gives:

q“*‘0'33(= O)ZETY:UY (211])
throughout the plastic zone, where 1y is the yield stress in shear and oy is the

uniaxial yield stress. Thus, the maximum stress in the plastic zone is equal to the
material’s uniaxial yield stress, see Figure 2.11a.
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Figure 2.11 Schematic elastic/plastic stress distribution near a notch. (a) in plane
stress (045 = 0); (b) in plane strain (e,, = 0)
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In plane strain the stress distribution is altered markedly. The smallest
principal stress is now 0,, (see Section 2.7) and the yield must consequently
spread in the X; X, plane, with:

U1y~ 03 =21y =0y

ie. 511=6Y+022 (2112)

For elastic loading, a4, increases from zero at the free surface of the notch and
it would therefore be expected that ¢,, (and 033) would also increase. In fact,
the rate of rise is much greater than would be expected from the elastic stress
distribution shown in Figure 2. 7h. This may be understood by further consider-
ing the deformation of elements lying along the X, axis, as in Figure 2.7a.

In normal elastic deformation, the stress g, is generated in order to main-

tain the continuity of elements ¢ and b, b and ¢, etc., which would otherwise be

3 : v
disrupted by the incompatible lateral contraction strains: €;5 = — 1= Gt e
—0.4e€;,, for v=0.3. However, if we suppose that elements @ and b, for example,

yield, even greater strains €,, are produced, because plastic deformation must

occur at constant volume (plastic deformation proceeds by slip processes, with
no volume dilatation). If €33 = 0 (plane strain) the lateral strain €;, must now
be equal to —€;; and so a much larger stress 0,5 is generated. This in turn entails
alarge oy, stress (equation 2.11.2). It is important to notice that the peak value
of 0,4 now occurs some distance below the notch, where 0,, has its maximum
value (Figure 2.11b).

The solving of problems involving both elastic and plastic deformation
around notches in plane strain becomes complicated, because both elastic and
plastic compatibility must be satisfied; stress must be related to elastic strain via
equations 2.6.7 and to the plastic strain increments (see Section 3.16).

[t is usual to see analytical solutions rather for plastic/rigid deformation,
where the elastic components are reduced to zero. A solution takes the form of
a slip-line field which comprises two sets of orthogonal slip-lines (lines of con-
stant shear stress, Ty, or, identically in isotropic material, lines of velocity dis-
continuities) which satisfy equilibrium, compatibility and boundary conditions.

For a circular hole, the slip-lines are logarithmic spirals and it is possible to
write 04, as a function of distance x measured from the edge of the hole, as:

au:ay[lﬂn(ufﬂ (2.11.3)

If we examine the expression for the radial stress, 0, = 05, near a circular hole,
whilst the deformation is elastic, we have (equation 2.9.8)

3 (a: o
Orp =022 :EU(F —FT) (2.9.8)
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The initial gradient, at » = a, is then:

d(0,) _30

P (2.11.4)

As the surface of the hole first yields, we may equate 30 to the yield stress oy .
Hence, for a very small yielded zone of length 6a we have:

Osq =0Y% (2.1L.5)

or, from equation 2.11.2,
Ullzgy"f'(}zz:UY(l"'%) (21}6)

Similarly, if x(= 6a) is very small, equation 2.11.3 reduces to

g1 =0y |:1+1n(1+%1):|=ay(1+§f) 2117

We therefore deduce that the increase of oy, for a very small plastic zone is
governed by the increase of the elastic value of 0,,.

As the zone grows bigger, the larger values of e,, for plastic/elastic deforma-
tion may be expected to increase the value of 0,5, and hence 0y, substantially
above that for purely elastic deformation. In the plastic enclave, €55 = —€;; in
the elastic case, €5, = —0.4€,,. As a rough estimate, we may therefore suppose
that the value of 0,, at » = +/2 a (equation 2.9.8) is increased from 30/8 to

30/8 x 1/0.4 = %. Equating 30 to oy as above, we have, approximately,

5
UII:UY+UY%:I'310Y (21[8)

The accurate slip-line field equation (2.11.3) with x = (\/2—1)a gives

01y = 0y(1 +1n1.414) = 1.350y. Again, these figures are used simply to demon-
strate that the physical picture is reasonably compatible with the mathematical
answer.

2.12 General Yield Loads

The introduction of slip-line fields to describe the form of the plastic zone

around a circular notch brings us to an appropriate point for describing how the
general yield (or limit) loads of notched or cracked specimens are calculated. For
a cross-section bounded by two semi-circular notches of radius a, as in Figure 2.12
the tensile yield load in plane strain is given simply by integrating equation 2.11.3
across the notched width of the piece, to obtain the expression:

3

Py =20y(W—a)B [1 + (Wia)J In [1 + (W;“)} [Z12.1)
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where B is the thickness, and 2W is the total width of the piece. The distributions
of 611 and 0,, are indicated (Figure 2.12). It can be seen that the maximum
tensile stress and maximum hydrostatic stress are found in the centre of the
specimen. Bridgman® has used this plane-strain distribution to predict the stress

2w

Stress

Figure 2.12 Distribution of longitudinal stress, o,,, and transverse stress, o,,, in an
externally notched bar (plane strain deformation)

distribution in a necked tensile specimen, using a work-hardened flow stress, 7,
rather than the yield stress in equation 2.12.1. The ratio of general yield load,
Pgy, to the load which would be required to yield a smooth specimen to the
dimensions of the notched cross-section is called the constraint factor, L:

L=Pgylog.2(W—-a)B (2125

For the geometry indicated in Figure 2.12, L has a value of about 1.3. High values
of L will be observed in practical test specimens only if the notches are suf-
ficiently deep. With shallow notches, it may become possible to yield the gross
cross-section (at a load oy 2W. B) before the constrained vielding can cross the
notched width (at a load Pgy). The critical ratio of notch depth to width a/W to
obtain fully constrained yielding in specimens containing exterior semi-circular
notches is calculated to be two in plane strain®.

The general yield load of a plane strain tensile specimen bounded by sharp
cracks rather than semi-circular notches is best approached by a model due to
Orowan®, which treats the configuration as the reverse of a ‘plastic punching’
process: see Figures 2.1 3a and 2.13b. In Figure 2.1 3a, the flow of material from
under the punch round to the free surfaces can be seen to be accomplished by
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sliding round the slip-lines. The theory of slip-lines tells us that the pressure is
related to the angle turned through by a line, e.g.

along an « line p — 27y 0 = const. (2:12.3)
At the free surface, # = 0 and the pressure is 27+ . Thus, in the centre, where
8 = /2, we obtain:

p=27Y(1+§) (2.12.4)

For the specimen in tension, we find that the general yield load, Pgy, is,
similarly:
PGY=2TY(I+%).2(W—Q).B (2.12.5)

On the Tresca yield criterion, oy = 27y, on the Mises criterion’, oy =+/3 . 7y

Hence Pgy =2.570y .2(W—a).B (Tresca)

, (2.12.6)
Pgy =2960y .2(W—a).B (Mises)

The constraint factor is often taken as 3. Again, the result holds only if the
cracks are sufficiently deep and, for this geometry in plane strain, the critical
ratio of a/W which must be exceeded has been calculated as 9:1. This very high
ratio is seldom achieved in practical testpieces.

8

e

(a) Flow of material

L

Figure 2.13 Orowan’s model for general yield in a cracked specimen. (a) The ‘'plastic
punch’;, (b) the Prandt! field
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It is important also to notice that, for this one configuration, the maximum
tensile stress, oy, in the centre of the specimen is uniformly equal to ~30v so
that the elevation, or ‘intensification’, of tensile stress is equal to the constraint
factor all the way across the cross-section. This is an exceptional situation: in all
other constrained situations (e.g. Figure 2.12), 0, varies across the section and
stress intensification and constraint are clearly separate phenomena. In loose
terms, constraint is the integrated effect of stress intensification across the cross-
section.

The differences are clearly illustrated in pure bending. Here, constraint is
referred to bending moments. The bending moment for general yield on the net
section (Figure 2.14a), is given simply by:

(W—a)/2
M= 25 21y By dy (where p is the height
0 above the neutral axis)
=7¢.B.(W—a)?2

=gy.B.(W—0)¥4 @125

in form equivalent to that quoted in equation 1.3.2, and provides a lower
bound solution for the notched case. An upper bound® may be obtained by calcu-
lating the rate of dissipating energy for the situation in Figure 2.14b where the

M
) M
Uniform
tension +
Uniform
W-a) gy
( y 1
Uniform tensile
stress 2 7y
1 ]
(a) e— B—
| I
M M

(b)

Figure 2.14 Lower and upper bounds for general yield load. (a) Lower bound stress
field; (b) upper bound velocity field
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ends of the notched bar are supposed to pivot around circular arcs of length 7 and
radius r at an angular velocity . Then, the rate of internal energy dissipation is
given by 27y /rwB and the rate of doing work by the applied couples is 2Mw. As
an upper bound, we therefore obtain: M = 7y¢/rB. In terms of the central angle
2a of the arcs, we set:

(W-a)®
M(upper bound) — TvB = cosec’a . o (2.12,8)

To find the minimum value, we set (dM/da) = 0, i.e. tan o = 2a. This is satisfied
when a = 66°50', so that the upper bound to M is given by:

M=0.697y.B. (W—a)* (2.12.9)

Rigid

(a)

Figure 2,15 (a) Plane strain slip-line field for the general yield of a notched bar
(6.4°< 6 <114.6"). AB and ACare rhe ‘plastic hinges’. (b) General yield
deformation pattern revealed by etching in Fry’s reagent (x6)
(after Knott and Cottrell'")
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We therefore have limits on the constraint factor:

I <L <1.38 (2.12.10)

The stress and velocity fields are made compatible by the choice of the approp-
riate slip-line field. Green’s upper-bound slip-line field®'° shown in Figure 2.15a
gives a value for L of 1.26 from the associated velocity field. Fry’s etching of
the yield zones shows good agreement with a field of this type'' (Figure 2.15b).
Lianis and Ford'? have shown that a similar result is obtained from a lower
bound stress field. The slip-line field shows that the bar rotates around the
central rigid region on two ‘plastic hinges’. The action is rather like that of a
double ball-and-socket joint or of the bending of an elbow. For included notch
angles greater than two radians, the central hinges vanish and the constraint
factor then varies in what is virtually a linear manner with angle to the limiting

s -~
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Figure 2.16 () Variation of constraint and stress intensification with included notch angle
in notch-bending, (b) Variation of critical depth ratio with notch angle (after Knott'*)

value of unity for an unnotched bar (an angle, 6 = 7), as shown in Figure 2.16a.
For comparison, the critical notch/specimen depth ratio is shown in Figure 2.16b.
It can be seen that deeper notches are required to maintain constrained yielding
when the constraint is high'®'*.

The maximum value of 0y, is found by extending the slip-lines around the
notch into the rigid region of Green’s field (Figure 2.15a, where the dotted lines
represent this extension). Then at general yield, we have at point X:

T 8
Ull(max)zzTY(l +E‘§) (2:.12.11)

cf. equations 2.12.3 and 2.12.4. This solution holds for all values of @ greater
than 6.4° and predicts a linear variation of a,; with 0, even in the range where L
is virtually independent of 0 (see Figure 2.16a). Constraint depends primarily
on the far-reaching yield (the ‘hinges’): stress intensification depends on the
local situation near the notch.

The general situation in three-point bending is similar, but, here, shear forces
are produced across the notched section. Also, the width of the indenter
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situated below the notch has an effect on constraint, because it affects the dis-
tribution of compression and shear stresses. The constraint factor for a Charpy
specimen (45c ‘V’-notch with 0.25 mm root radius; W= 10mm, B = 10 mm,
(W—g) = 8 mm, moment arm = 20 mm), has been calculated as 1.24 if the width
of the indenter is taken as 0.5 mm®™. An average constraint factor for acute
notches in three-point bending is about 1.22; the value of 013 gnax) at general
yield in a Charpy specimen is given by:

011 (max) = 1.94 . 27y (2:12:12)
rather than

Ull(max) = 218 . ZTY (21213)

as calculated for the deep 45° V-notch bar in pure bending, assuming Tresca’s

; ij = required to sustain constrained yielding
in three-point bending has been calculated as 1.22 for a Charpy (45° V-notch)
specimen. This contrasts with the value of 1.41 for pure bending'®*®. The lower
value is associated with a lower constraint value and with a lower value of 011 gnax)-

It is possible to devise plane strain slip-line fields for cracked specimens in
which the constraint factor is virtually unity. For example, the thick centre-
cracked specimen, shown in Figure 2.17, with the associated slip-line field, has a
general yield load given by:

criterion. The critical depth ratio

PGY=2fy.2(W_a)B (21214)

On our definition of constraint, L is unity. Only if one refers to the uniaxial
yield stress as the reference and uses Mises yield criterion does the specimen
appear to give any constraint. Then, L is 2/A/3.

Figure 2,17 General yield slip-line field for a centrally-cracked specimen in plane strain.
(Slip-lines are AC, AD, BE, BF)
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In plane stress, again, apparent constraint exists only if the uniaxial yield
stress is the reference. The plane stress slip-line field for acute notches in bending
is shown in Figure 2.18. On the Mises criterion, L is 1.072 for all acute notches;

1

v .
54944

Figure 2.18 Plane stress slip-line field for the general yield of @ notched bar (0°< 08 <141° 49
AB is a local neck, across which there is a discontinuity of the normal component of the
velocity along the neck (after Lianis and Ford'®)

the maximum value of 6y, is: 04y = 20y/n/3 = 27y. Using Tresca’s criterion, L is
unity and 01y (maxy is equal to oy . Similar values are obtained for L and 011 (max)
in plane stress tension. Because the constraint factor is virtually unity, identical
slip-line fields can be found for deep and shallow notches in plane stress.
Slip-line fields have also been devised for ‘shallow’ (less than the critical

ratio) notches in plane strain. Figure 2.19 shows a field for a shallow acute

W —

£59

Figure 2.19 Plane strain general yield slip-line field for a shallow-notched bar
(6.4° <6 < 114.6°) (after Ewing'?)

notch in bending'®; Tuble 2.2 gives the values of constraint factor and stress
intensification (Q = 011 (maxy/ 27y ; see following section) for shallow notches of
45° included angle. Agreement with the theory is shown by the experimental
values'* quoted in Table 2.2. The field for shallow-notched tension specimens!’
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is shown in Figure 2.20 and the appropriate values of constraint factor and
associated notch depth ratio are given in Table 2.3.

Limit loads are therefore well documented for most common testpiece
geometries. In deep, double-notched tension testpieces, it is found that

Table 2.2. CONSTRAINT AND STRESS INTENSIFICATION IN SHALLOW-
NOTCHED BARS IN BENDING

Notch depth ratio 1.43 1.23 111
Constraint factor L (theor) 1.26 1.21 1.14
Constraint factor L gxpy* 1.26 LA 1.08
Stress intensification Q(iheor) 2.18 2.08 1.70
Stress intensification Qexpy* 218 2.04 1.79

* The experimental values for shallow notches assume the theoretical
solution for deep notches.

O11¢max) = L. 0y. This is, however, a consequence of the slip-line field for this
type of testpiece. It is of importance to distinguish clearly between the general
elevation of applied load by the triaxial stresses (L) and the local effect near the
tip of the stress concentrator, which can raise the tensile stress, oy;, to a value
substantially greater than the yield stress in uniaxial tension. We shall define a

Table 2.3a CONSTRAINT FACTORS FOR SLIT NOTCHES (6 = 0)
AS A FUNCTION OF NOTCH DEPTH RATIO

W/(W—-a) 862 7.06 vk 4.69 4.34
I Hi5i] 2.39 2.29 2.05 1.98

(b) CRITICAL NOTCH DEPTH RATIOS W/(W-a) FOR DOUBLE-NOTCHED
TENSION SPECIMENS

Total notch angle (5) P oich constraint Tiwoay
0 2.57 8.62
20 2.40 7.08
40 2:22 5.79
60 2.05 4.70
80 1.87 3.79
100 1.70 3.02
120 1.52 2.38
140 1.35 1.84
160 1.17 1.38
180 1 i

parameter, Q, as the stress intensification: Q = 011 ¢max)/ 27y - In the following
section, we examine how O depends on the size of the plastic zone, before
general yield. Tresca’s yield criterion is assumed, so that 27y may be equated to
the uniaxial yield stress, oy .
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2.13 Stress Intensification

The increase of 011 (max) With extent of plastic zone, dy, ahead of a semi-circular
notch of radius a is given from equatjon 2.11.3 as

: d
011 (max) :G‘Y]:l +1n (1 *f)] (2.13.1)

The deformations producing this elevation of tensile stress were discussed in
Section 2.11.

For acute “V'-notches of the types used in fracture testpieces, it has not proved
possible to devise simple slip-line fields for local yield zones, but detailed studies
have been made for the 45° V-notch, containing a root radius of 0.25 mm: the

Figure 2,20 Lower-bound slip-line field Jor the general yield of a shallow-notched bar in
plane strain tension (after Ewing and Hill'"y

particular geometry used in Izod and Charpy specimens (see Section 1.7). A
simple approach'® starts by calculating the elastic stress concentration factor of the
notch, to determine the load at which yielding begins. The plastic zone is then
assumed to spread as the logarithmic spiral slip-line field from the notch root
radius. Eventually, as the applied load is increased, the extreme slip lines meet
the straight sides of the notch. Although the zone grows larger with further
increases in load, the angle turned through by the slip-lines remains constant, so
that there is no corresponding increase in the value of 011 (max)- The situation is
depicted in Figure 2.21a and 2.21b. The highest value of 011¢max) 18 of course
identical to that given by the general yield slip-line field. The discontinuous
nature of the graph of stress intensification [Q = 011¢max)/ Oy ] versus applied
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load/general yield load (P/Pgy ) seems rather unreasonable in terms of the physi-
cal model of incompatible deformations, which tends to indicate that o5, and
hence 04, should continue to increase with plastic zone size.

Detailed calculations have been made for a more realistic elastic/plastic
material for a rather similar specimen geometry, using finite element analysis, and
will be discussed in Section 3.18. In general, the curve agrees with that predicted

N
o
T

(=]
T

Stress intensification, @

: 0 1 T A
(a) 05 10
Applied load / general yield load, 7
(b)
Figure 2.21 Stress intensification in Charpy specimen. (a) Notch tip slip-line field;
(b) variation of Q with applied load (after Wilshaw, Rau and Tetelman'®)
using Tresca’s yield criterion

by the slip-line field method at low applied loads, but at higher loads, it shows a
continuing, although small, increase of 013 max) With applied load.

Similar results have also been obtained analytically for a tensile specimen con-
taining two deep external notches possessing hyperbolic profiles'”.

No analytical solution for the increase in O with extent of yielding has been
developed for sharp cracks in plane strain deformation. Results obtained, using
finite element techniques, are also discussed in Section 3.18.

We shall discover, in Chapter 7, that the magnitude of 011 gnax) has a critical
role to play in the occurrence of brittle cracking ahead of a stress concentrator.
For a given yield stress, 011 (max) is determined by the value of Q, which is, in
turn, a function of the amount of plastic deformation present in a testpiece. The
interrelation of local fracture events [reacting to 09 maxy] and macroscopic
ductility depends critically on the way in which Q increases with applied load.
The detailed computation of curves such as Figure 2.21b therefore represents a
vital step in this interrelation.

2.14 Conclusions

It has been shown how the development of elasticity theory, involving stress
equilibrium, compatibility and stress—strain relations, leads to a final equation
in terms of the second derivatives of the stresses o, and 0,,, in plane
deformation. Elastic problems are usually solved using an appropriate stress
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function, which must satisfy all boundary conditions. The derivation of the
solution for the stress distribution around a circular hole not only provides an
example of the method but also gives a useful starting-point, from which many
interesting semi-quantitative predictions may be made.

We have discussed situations in which some yielding has occurred, both to
show how general yield loads (limit loads) are calculated and to draw attention
to the most important ‘intensification’ of the tensile stress, 011 max) ahead of
the stress concentrator.

In the following chapter, we shall study the stress distributions near stress
concentrators of crack-like geometry.
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COMPLEX FUNCTIONS AND STRESSES AROUND CRACKS

3.1 Introduction

In essence, the stress function method of solving elasticity problems, described
in the previous chapter, has involved the finding of a suitable algebraic or
trigonometrical function of two variables (x;, x, or r, 8) which will satisfy the
compatibility equation v ?(v?¢) = 0 and from which stresses which satisfy the
boundary conditions can be obtained. To extend the method so that it can be
used for crack-like geometries, it is mathematically convenient to express the
stress function as a complex function of two variables, as described below.

3.2 Complex Variables

We make use of a complex number z, which may be expressed in Cartesian
co-ordinates x; and x, as

zZ=x; +ix, @21}

or, in polar co-ordinates, by z = reig, where i=+/-1 and x,, x, or r, 8 are real
numbers. An analytic function f(z) is one whose derivatives depend on z only,
being the same for all directions (of dz) at the point z. It has an indefinite
integral, defined as the function having f(z) as its derivative with respect to z,
and written [ f(z) dz. It is possible to regard f(z) as having partial derivatives
with respect to both x, and x,:

d . ) 02 _ i s 82 _ o
B g Wy, T B~ G
(3:2.2)
) e O ey
aTgf(‘Z) =f (z)—ax2 =if'(z)
If f(z) is written in the form

f(z) = ¢ +iB (3.2.3)
46
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where a and § are real functions of x, and x,, we have:

o) _ou , 06 .
Bxl ax, +laxg f(Z)

o) da 0 P
8x2 ax2 ax2
o ap .o
$ (axl i axl) 3x2 = 0x, o
Equating real and imaginary parts, remembering that o and § are real and that
i2 =—1, gives
d_%  da_ o
ax, ax, 0x5 0x, (53.5)

These are called the Cauchy—Riemann equations. We may eliminate § by
differentiating the first equation with respect to x,; the second with respect to
X, and adding. This gives:

0’a  d*a 0

o T her 0 or V- a=0 (3:27)
which is Laplace’s equation;V * is known as the Laplacian operator. A solution
to Laplace’s equation is called an harmonic function. We could also have
eliminated « from the Cauchy—Riemann equations to obtain:

I

aed P ap = VB0 (3.2.8)

Thus, both the real and imaginary parts of any analytic function (derivative
depending on z only) will separately provide solutions to Laplace’s equation.
The functions a and § are said to be conjugate harmonic functions.

Now, if { is any function of x,; and x,, we have, by differentiation:

8 . 0 _ 0%y 3%y oY
(axlz e axzz) (x1¥)=x, (ax 3 F 2) A i, (3.2.9)

X2

2

If  is harmonic, the term g ‘Z ;d;) is zero. Also, (8y//dx,) is an harmonic
: ox;®  oxy

function, because '

? 3\ [y 2y azw) )
(Bxl2 ! ax,” ) (axl) ox; (axl ¥ ox,?, =0 {8
So, if we apply the Laplacian operator V? =(9%/x,* + 8/0x,?) again to
equation 3.2.9, we obtain

2 - ' vy _
V2 v, )] = V2 (0+2 ax,) 0
9* 3 9 .
e ax 0x: ax;‘) Fupy=0 (G:2.11)

ie. Vi )= (
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This equation is identical to the compatibility equation (2.9.2) and so comparison
shows that x ;¥ may be used as a stress function, when y is harmonic. By
similar methods, it is possible to show that both x,y and (x,2 + x,*)¢ =1y can
also be used as stress functions, as, of course, can y itself.

In general, it can be shown that any stress function may be expressed in the
form

¢ =Re [(x; —ix3) ¥(2) + x(2)] (3.2.12)

where ‘Re’ means ‘real part of” and y(z) and x(z) are suitably chosen analytic
functions. Conversely, equation 3.2.12 gives a stress function (i.e. an admissible
solution for the compatibility equation) for any choice of ¥(z) and x(z). The
analytic functions Y(z) and x(z) are termed complex potentials and provide a
very convenient way of determining stresses and displacements from the
complex stress function.

3.3 Stresses and Displacements Determined from Complex
Potentials

It is necessary to define one further function of a complex variable. This is the
conjugate function (not to be confused with conjugate harmonic functions),
defined as follows. If f(z) is a complex function, it may be expressed as

f(z) = a + i, where both a and {8 are real. By the conjugate function, written
f(z) we mean the value taken by f(z), when i is replaced, wherever it occurs in
f(z), by —i. Thus,

if f(z) = a+iB, f(z2) = a—ip,
ie. if f{z)=¢g", f(2)=e =g ilxi—ix) = p-ix; o-x,

Note that f(Z) would be €% = ¢i(*1 = ) = glv, %,

It is apparent that f(z) + f(z) = 2a = 2 Re f(2). Similarly, we may rewrite
equation 3.2.12:

¢ =Re[(x; —ix;) ¥(z) + x(2)] =Re[Z2y(2) + x(2)] {3.3.1)
and write
2¢ = [2y(2) + zY(2) + x(2) + x(2)] {2.3:2)

If we obtain 3¢/dx,; and id¢/dx, by partial differentiation, add, and collect
terms, we have:

Safl % i;% =¥(@) +20'(2) +X'(2) (3.3.3)
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To obtain 6,4, 05, and 0,,, we differentiate again with respect to x; orx,
(041 = 8%¢/0x,%, etc., equation 2.9.1) add as necessary and produce:

0y + 033 =4 Re Y'(2)
022 =011 +2i01,=2[Z¢"(2) + X"(2)] (3.3.4)

Separation of the real and imaginary parts of this last equation enables

(022 — 01,) and 0, to be determined separately. It is therefore possible to
determine the stresses in a relatively straightforward manner from the complex
potentials which form the stress function. It is also possible to determine dis-
placements from these potentials. If the displacement in the x, direction is u,
and in the x, direction is u,, the relationships are

3=p
1+»

2u(u, +iuy) = ( )w(z) - z{'(Z) — X' (2) in plane stress (3.3.5)

2u(uy +iug) = (3 —4) Y(z) - zy'(z) — X' (Z) in plane strain  (3.3.6)
The individual values of %, and u, may be obtained by equating real and
imaginary parts.

We now examine how complex potentials are used to determine stress
distributions around stress concentrators of crack-like geometry, and consider
first the elliptical notch. Use is made of the curvilinear co-ordinate system
described earlier, in Section 2.3.

3.4 Curvilinear Co-ordinates

For a curvilinear co-ordinate system, we choose a complex variablep = a + i
where @ and § are co-ordinates in the curvilinear system. The relationship
between p and the variable z = x; +ix, in a Cartesian co-ordinate system is
given by

z=ccoshp (3.4.1)

where c is a constant. If the real and imaginary parts of each side are separated,
ie.

§ c i —a—i
Xy tixy =3 (e**if + e~ 71F)

¢ it = e
=5(e°‘cosﬁ+1e°’sm,6+e “cosf—ie™sinf)

= ¢ (cosh a cos § + i sinh a sin )
we obtain: x,=ccoshacosf, x,=csinhasinf (34.2)

by equating real and imaginary parts.
If we eliminate § we obtain:
Xt x|
cosh’ @ ' sinh® @

ct (3.4.3)
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For a constant value of e this equation represents an ellipse drawn in the

X, X, plane. Similarly, lines of constant § produce a series of confocal hyperbolae
which intersect the ellipses at right angles (see Figure 2.5). A stress 04p 1S defined
as acting on a face whose normal is orthogonal to the tangent to a curve & =
constant, in the direction of the normal to the curve § = constant. If the anti-
clockwise angle between x; and A, is 0 (Figure 3.1a) we have the equilibrium
shown in Figure 3.1b.

X

\ i
< \ Tangent to
P) - A N curve a=const.
const.
a const.

Figure 3.1 (a) Relationship of elliptical to Cartesian co-ordinates. (b) Relationship between
components of stress (see also Figure 2.5)
The force parallel to 7, is given by:
Oae AB=0,; ABcos® 8 + 05, ABsin® 8 + 20,, AB sin § cos 0

ie. Uga =011 OS2 0 + 03 sin® 8 + 204, sin 6 cos 0 (3.4.4)
Similarly it may be shown that:

Ogp = 011 8in* 0 + 033 cos? 0 —20,, sin 6 cos O (3.45)
Oap = (022 —0y;) sin 6 cos B + 0, (cos® 6 —sin? 0) o

These relationships simply provide a particular case of the general transforma-
tion of stress components, when referred to a new pair of orthogonal axes,
inclined at an angle 8 to OX; and 0OX;, in two-dimensional deformation.

If these expressions are written in terms of functions of 26, i.e.

cos? 8 =3 (1 + cos 20)

sin® @ =1 (1 —cos 26) (3.4.6)

2 sin @ cos 6 =sin 20
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we may add terms and re-write the expressions to give:

Uaa+0332011+022 (347)
0,5,8 ~ One + Zioaﬁ — (022 -0y + 21012)e2j9 o

remembering that €2 = cos 26 + 2i sin 20. The sum (0aa + 0g5) = (011 + 055) is,
in fact, the first invariant of the stress tensor (equation 2.5.6) in two dimensions.

The advantage of an expression in this form is that it is relatively easy to
relate ¢*1¢ to the derivatives of f(z) and f(z). We have

g _1'(z) _sinhp
2i6 _ Z e
P bz (5e18)

In terms of the complex potentials, the stresses are given by:
Oua * 03 = 2[9'(2) + $'(D)] =4 Re ¥'(2)
9~ Oaa + 2i0g = 2677 [7Y"(2) + X' (2)]

see equation 3.3.4. We can now examine the solution for the stress distribution
around an elliptical hole subjected to a uniform stress o.

€

(3.4.9)

3.5 The Elliptical Hole in a Uniformly Stressed Plate: the Inglis
Solution'

The hole is assumed to have semi-major axis @, semi-minor axis b, and to lie
in an infinite plate with its major axis normal to a uniform tensile stress o, as
indicated in Figure 3.2. For these semi-axes we may write

ccoshay =a, csinh oy =5

Figure 3.2 The elliptical hole in an infinite plate. (Note that the uniform stress, g,
is of the form o,,)
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and therefore obtain for the equation of the ellipse, using equation 3.4.3
2 2

Xy X

e 315

al b2 ( )
In the limit, as @y = 0, the ellipse becomes a crack of length 2¢ = 2¢. When
a = b, the ellipse becomes a circle.

A point goes once round the ellipse as § varies from 0 to 27, so the
continuity of stress and displacement demands that they be periodic also in 8
with period 27, so that they have the same value at 0 and at 27.

At infinity, suppose that 0,5, =0, 0,1 =03, =0, so that

4ReyY'(z) =0
22" + X" ()] =0

At the boundary of the hole a = &g, Oyq = 030 = 0.
Inglis" found complex potentials which satisfied these boundary conditions
and which were periodic in § with period 2w, as follows:

} at infinity (3.5.2)

4y(z) = oc[(1 + e2%0) sinh p — 2% cosh p]

4x(z) = —oc? |:(cosh 20y —cosh m)p + % e2% —cosh 2(p g s%ﬂ
(3.5.3)

Since 0, is zero at the surface of the hole, we may obtain ggg on the surface,
from equation 3.4.9 as
_sinh (2ap) — 1 + e2% cos (26)
%86 =a0) = osh (2a) — cos (28) B54)

The maximum values of ozz correspond to those at the ends of the major axis
where § = 0 (2m) or m. Here, cos (28) = 1 and we obtain for ggg, which is now
equal to o,, because the tangent to the ellipse is parallel to X,:

sinh (2ap) — 1+ e2%

%86=9 = %227 " cosh 2a) — | 5
Since ¢ = (a* — b?); from equations 3.4.3 and 3.5.1, we write:
2 + 2
sinh 2y =3‘%b-, cosh 2qp = £ 2 E
¢ e
and obtain, at the crack tip:
o _ a
Oppig=0) =022 =0 1+23 (3.5.6)

This increases without limit as the hole becomes longer and more slender;
and becomes identical to the result given in Section 2.9 for a circular hole, when
a=b: Uﬂﬁ = 3o0.
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Taking the ‘radius of curvature’ at the tip of the ellipse (i.e. the radius of
the circle which passes through the tip and two adjacent points) to be p, we
have, by definition:

2 (dx® +dxy?)?

£ (dx1d2x2 - d.x'zdle)z (357)
2
X1 Xa
where —+—==1
t’l'2 b2

as for equation 3.5.1.
If we let x, =a cos ¢, x, = b sin £ it is possible to substitute in equation 3.5.7
to obtain:

o? 24222 (a® sin® £ + b2 cos? £)? (3.5.8)

At the tip of the ellipse, x, = 0, x, = *gq, j.e. sint = 0, cos t = 1. We obtain, at
the tip p = b* /a and may finally substitute in equation 3.5.6 above to produce

the stress at the tip as
B =0 (1 +2 J%) (35.9)

Similar methods have been used by Neuber? to calculate stress concentrations
near a variety of internal and external notch profiles which approximate to the
elliptical or hyperbolic form. Such solutions, substantiated by results obtained
using photo-elastic models, provide valuable information for engineers who wish
to calculate permissible design stresses in pieces containing stress concentrators,
The information is used mainly to allow for effects of fillets or keyways in
shafts subjected to fatigue stresses and is tabulated in several handbooks, e.g.
Peterson®.

The application of equation 3.5.9 to fracture in brittle solids will be
discussed further in Section 4.3. Attention is also drawn to Section 2.1 0,
where the present result for an elliptical hole is compared with a rough estimate
of the stress concentration produced by a series of holes.

3.6 Stresses near a Crack: Westergaard’s Solution®*

The solution for the stresses near an elliptical hole was obtained by Inglis by
writing down the equations for stresses in terms of complex potentials; writing
further equations to specify limits in terms of boundary conditions; and then
using a knowledge of complex functions and their properties to find the
appropriate expression which satisfied all requirements.

The Westergaard treatment of stresses near a sharp crack?® is best
approached by examining the properties of a particular type of complex
function and seeing what sort of boundary conditions would be compatible
with these properties.
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Consider a function ¢(z), which is harmonic, and denote the first and
second derivatives of ¢(z), and the first and second integrals with respect to z
by ¢'(z), ¢"(2), ¢(z) and @(z) respectively. We are intending to devise some
expressions for stresses which satisfy the appropriate equations, and hence for a
stress function, ®, which satisfies the biharmonic equation 2.9.2. We then
examine the boundary conditions implied.

Let @ =Re ¢(2) + x, Im (z) (3.6.1)
e o (oD '
Then Opq = al—z :—a; (g) =Re ¢(z) + x5 Im ¢'(2)
_9d _ ;

011 =5 =Re ¢(z2) —x, Im ¢'(2) (3.6.2)

0x,
3P ;
Oy = Aot s =—x,; Re ¢'(z)

To obtain 8%d/dx,? it is convenient to make use of the Cauchy—Riemann
equations (3.2.6)

d(Re) _o(dm)  3(Im) _ __0(Re)
0x, ox, *  ax, ox, ’

with oE =

ox,
It may be shown that the stresses satisfy both equilibrium and compatibility
equations, e.g. from equation 2.8.1 in two-dimensional deformation,
(90/0x3 = 0) consider the first equation

D-{p_
(]

QU_II + ag_ll — 0
X1 9x,
We have
80'1; g d ' r "
= ==—[Re 6(2) ~x, Im §'(2)] = Re ¢'(z) — x, Im ¢'(2)
axl axl !
oo d ' 1 0 '
aTlf :5); [-x2 Re ¢'(2)] = —Re ¢'(2) +x2.6§1 [Im ¢’ ()]
_ 004y
ox,

in agreement with equation 2.8.1.
In plane strain, the displacements u; and u, are given by:
2uuy =(1 = 20) Re'g(2) —x, Im ¢(2)
2puz =2(1 =) Im'¢(2) - x, Re ¢(z2)

As a check, we may calculate the principal strain €,; = du, /dx, and show that it
conforms to the usual expression:

(3.6.3)

Ee\y =Ee; =0y, —v(0, + 033) (2.6.12)
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In plane strain,
€33=0, 033=v(0y; +0;,)
Eeyy =(1-v¥) oy, —v(1 +v) oy, (3.6.4)
By differentiating equation 3.6.3 with respect to X1, we have:
2ueq; =(1 —2») Re ¢(z) —x, Im ¢'(2)
=Feyy /1 +v) (from equation 2.6.10)
=(1-2) [Re ¢(z) ~x3 Im ¢'(2)] —» [Re ¢(2) + x, Im ¢/(z)]
=(1-v)0y, —v0,, (from equation 3.6.2)
Fe;y =(1-v) o, - »(1 + 1) 0,3, in agreement with equation 3.6.4.

In this way, we can deduce that equilibrium, compatibility and stress—strain
relationships are all satisfied by the stress function @ defined in equation 3.6.1.
What we must now examine are the boundary conditions implied by the
formulation and those which we may be able to set independently.

The main condition implied from the stress equation 3.6.2 is that when
x,=0,0,2 =0and 0,5, = 0y;. The displacements are then:

21 -1%)
E
(1—2v)(1 +v)
E

Im ¢(z)

Uy
(3.6.5)
Re ¢(z)

iy =

3.7 The Crack under Tension

We use the stress function first to examine the problem of a crack of length 2a
in an infinite body under an applied uniform biaxial tension 6,, = 0,, = ¢
(Figure 3.3). The model can later be modified to represent uniaxial tension,
with 05, =0, 0., = 0. We select as ¢(z) a suitable harmonic function such that
022, Whenx, =0, is zero forx; <* g and is 0 when x, tends to * infinity. We
expect the crack to exert a stress concentrating effect, so that 0, is greater than
o close to the crack tip. We have 0,, = Re ¢(z) + x, Im ¢'(z), from equation
3.6.2, or, when x, =0, 055 = Re ¢(z).

For 0,5, = 0 as x; = o, and to be greater than ¢ when |x,| is just greater
than la|, the simplest function would be of the form 0,, = o/(1 —a/x,)

7

or, to make it symmetrical for x,, 03, = G/{W —?lr)

However, we need also to specify that whenx, = 0and —a <x, < +a,
02, = 0. This can be achieved if the lunction ¢(z) becomes imaginary when
—a <x; < +a,since 0y, = Re ¢(z). The simplest form for a denominator to
give 03, = 0 as x; — = is (1 — a*/x7) and if this is put under a square root
sign, the function becomes imaginary (i.e. 05, = 0), when —a <x, <+a.

\
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Thus, when x, =0,

o
e - pr) e

as the simplest form, and we are led to investigate the complex function
(3.7.2)

O T

for the general solution. This is found to be compatible with all equations, and
satisfies the boundary conditions for the crack in the infinite plate.

Figure 3.3 Westergaard's model of a crack under biaxial tension in an infinite sheet.
(The crack is of length 2a)

The stress normal to the crack plane is given by equation 3.6.2 above and
the displacement, u,, in the x, direction, is given, from equation 3.6.5, by

2(1-1v)o
Uz (x,=0) :% Vi@ —x») (3.7.3)
which shows the shape of the crack to be elliptic:
2 2
He B 5
const.+ 1 a (3.7.4)

If equation 3.7.1 is written in terms of the distance ahead of the crack tip
r = (x —a), we obtain for the stress close to the tip (r/a < 1):

0y = ‘i/(izl?) G5

or, to the next degree of approximation:

_ofa+tr) il

By (1 —4; ) (3.7.6)
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Taking this equation as an accurate expression it is seen that, if r/fz = 0.02,
equation 3.7.5 underestimates the local stress by some 1.5% (see Section 5.10).

Similarly, if 654, 01, and o, are calculated from the full forms of
equation 3.6.2 it is possible to calculate the angular dependencies of the
stresses near the crack tip, by substituting the variable n = (z — q), rather than
simply r = (x, — ), and writing = re'’ . For example, from equation 3.6.2,
054 1s given by:

022 =Re ¢(2) +x, Im ¢'(2)

Writing n = z —a, where n/a < 1, the first term becomes:

Re ¢(z) = Re U;\/(;ei ) = U/\/(g_r)' cos%

and, with the relationship, x, = r sin 8, the second term becomes:

(z)=rsi 4 2 = 2 sinﬁcosgsingﬁ-
% lm¢(z)—rs1n61m§J[W} 7U~/(5-’). 3 3 3

Therefore, the angular dependency of the stress 0,, is given by:

_ ay 8 .0 . 30
022—UJ(E)-LOSE(1+SIHESIH§) e

011 =0 i .cosg 1 —singsinie) +
2, 2 2 s
B o S T
Ulz*UJ(zr)-51H20052COS 5 SE

(see references 5 and 6).

Again, these are the first terms in series expansions. As 8 tends to zero
(2 = zer0), 50 0,5 resumes the form of equation 3.7.5.

This solution pertains to a crack subjected to a uniform biaxial tensile
stress at infinity 0,, = 04, = 0, and produces biaxial stress at the crack tip:

022 = 01y when 8 = 0. The uniaxial case may be reproduced simply by
superimposing a pressure in the X, direction equal to —o, which is the
magnitude of @, at infinity. This superimposition does not affect the crack
tip values of 0,, and 0, given by equations 3.7.7.

It is, perhaps, unfortunate that the original Westergaard model put the
crack in the X, X5 plane with its length running along +x, and therefore
normal to x,. It has been retained here in this form to facilitate the under-
standing of the original papers. In the application of Westergaard’s results to
fracture mechanics, it is more usual to site the crack along * x,, normal
toxy, and to apply a uniform tensile stress o,; = 0, as shown in Figure 3.4a, as
drawn in previous sections (2.2, 2.7). The subscripts 1 and 2 in equations 3.7.1,

and, similarly,

@70
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3.7.7 and 3.7.3 are simply interchanged so that the crack tip displacement
(equation 3.7.3), becomes

2(1 - Vo
Ui(x, =0) :_—E’—)_ e =) (3.7.8)

This opening is in the X, direction, whence derives the definition of the
configuration as a Mode I Opening (Figure 3.4b). It is hoped that this simple
change of axes will not prove to be too confusing. The new axes, drawn in
Figure 3.4a, will be used throughout the rest of this book, apart from sections
in which the quoting of complex stress functions necessitates Westergaard’s
configuration to prevent confusion.

Pooma |

X
. il
EEI a5
_XZ I T ] XZ XZ
a 1 a 1
(a)

Figure 3.4 (a) Conventional choice o faxes used for fracture mechanics terminology (note
that X, and X, are interchanged by comparison with Figure 3.3). (b) Definition of Mode |
opening (displacement u, in the X, direction)

The Westergaard approach may also be applied to cracks in shear, as
described in the following section.

3.8 The Crack in Shear

We consider a crack of length 24 subjected to a shear stress 0,; =7 as referred
to the axes in Figure 3.3. A suitable stress function for this situation is given by

@y = —x; Re an(z) (3.8.1)

where ¢y;(z) is a function of z which is chosen to satisfy the boundary
conditions. Differentiation of &y to yield oy, , 0y, and Oy using equations
(2.9.1) now gives:

0117 21Im ¢y (2) +x, Re ¢y (z)
022 =—x, Re ¢'y; (2) (3.8.2)

021 =012 =Re ¢y (2) — x, Im ¢’y (2)
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Again, we note that, along the line x, = 0, ¢,, vanishes and that o, can be
made to vanish within the crack if ¢y (z) is imaginary when —a <x; <+a.
We are led to choose the function

V(1 -d¥)

and find that, close to the crack tip,

031 = 'i/(i) (3.8.4)

o (3.8.3)

X
0'|2 f iy g
| 1
'Xz | | X
| a a | 2
1 I
A e
] XZ
a Iy
u;  (Mode I

Shear)

Figure 3.5 Definition of Mode II shear (displacement u, in X, direction)

With the change of axes given in Figure 3.4 this situation is referred to as
Mode II Shear, because the crack is given a shearing displacement u,, by an
applied stress 0, , (see Figure 3.5).

3.9 Antiplane Strain

An alternative mode of shearing a crack is possible if the crack has length 2a
in the X, direction, lies in the X; X3 plane, and is sheared by a stress 0,3 =g
in the X5 direction (see Figure 3.3). This situation is called antiplane strain.
Displacements occur only in the X5 direction, which simplifies matters sub-
stantially, since «; and u, may be set as zero in equation 2.8.2. Equations 2.6.7
then reduce to

S 0 g b

> 0" . o (3.9.1)
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The equilibrium equations become, simply:

80'13 i 8023 =)

0x, o0x,

and so we obtain:

82u3 azu3 2

—+ =V*%u; =0

ax,_z ax22 4

Choosing
1
U3 =; Im ¢y (2)

gives 013=Im¢'y; (2); 0,3=Re ¢ 11 (2)

(39.2)

(3.9.3)

(3.9.4)

for the shear stresses. At infinity, 0,5 = g; within the crack, 0,3 = 0. We choose

the function

¢'m (2) =mg—hg)h

(3.9.5)

and again obtain, near the crack tip, a form for the local stress 023 =q V(a/2r).
This situation is referred to as Mode III Antiplane Shear. With the conventional
change of axes, the shear stress is g, 5, rather than 023 (see Figure 3.6).

Mode I Antiplane

X

® o § o™
’ Mode I

Ys
i | X2
: a a !
@) @ (&) @
3= 9

Figure 3.6 Definition of Mode III antiplane shear (displacement u, in direction X ,)
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3.10 The Stress Intensity Factor

If one examines the expressions for the stress o, (with the change of axes
described in Section 3.7) close to the tip of a crack, one has, from Westergaard,
by altering equation 3.7.6

_ olatr) r
O11¢x, =0) = V(2ar) (] a7 t.o. ) (3.7.6)
or, from equation 3.7.7
" ‘a 0 T
011 UA/(E-).CC)Si (1 + sin 7 sin > )+ . (31.7)

It should be emphasised that these are the initial terms in series forms. When,
and only when, r < @, we may write

011¢x, =0) = Ci/(:;j)z Tg;) (3.10.1)

where K is a factor, given by K' = ov/a, and originally termed the stress intensity
factor™®. More usually, the Stress Intensity Factor is defined as K = o\/(ma) and
equation 3.10.1 then becomes
U“—fﬂK (3.10.2)
V(@2 o
The units of K are MN m %2 (or ksi +/in).

The advantage in writing the stress close to the crack tip in terms of a single
parameter K arises from the fact that the 1/5/(2m7) dependency is followed,
whatever the applied stress system. Compare the forms of the crack tip stresses
in Modes I, Il and III situations given in the three previous sections. In Mode 1,
combinations of applied stresses, tension, torsion, point loading, etc., each give
rise to their own specific contributions to o;,, and the resultant may be
calculated simply by adding the individual stress intensities. Thus, in Figure 3.7

RESIRE

1 I
I J
| a a I
| i
| 1

|- |-

Figure 3.7 Crack loaded by uniform tension (o,, = o at infinity) and point loading
Poatx, =0,x,=0)
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a configuration is shown in which the cracked plate is loaded by a uniform
tensile stress, 0, and a point wedging force, P, atx, =0, x, = 0. If ¢ gives rise to a
Stress 014y = K4/~/(27r) and P to a stress Oi1epy = p/\/(’_)ﬂr), the stress o4, is
given by 01, = (K, + K,)/+/(2mr).

The form of K, is of course different from that of K ;. For point loading,
the appropriate Westergaard stress function® is given by:

Fa

sl 310
mz(2% —a?)r i)

¢(z) =

where Pis the load per unit thickness, and x, and x, are defined as in Figure 3.3.
With reference to Figure 3.7, when x, is zero, 0, is given by [Westergaard’s
022 = Re ¢(2) when x, = 0, see equation 3.6.2].

Pa

= — 3.104
4 sz(xzz_az)? ¢ )
Taking x, =a +r, where r €a, we may obtain:

P 1 K,
= =) = 3.10.5
014 m™/a /\/(2") V(2mr) ( )

P

ie. Ko —— — 3.10.6
1€ D \/(?Tﬂ) ( )

Since P is the load per unit thickness, the dimensions of K, are identical to those
of K.

The forms for K have been calculated for a number of loading configurations’
and some of the more common expressions are listed in Table 3.1. For
specimens of finite dimensions, it is often the practice to regard the solution as
that for an infinite plate, modified by an algebraic or trigonometric function
which is chosen to make the appropriate surface forces zero. Thus, for a
central crack of length 2a in a plate of width W, we find that®:

K=o [w tan (—%)T (3.10.7)

as compared with K = ov/(ma) for the central crack in an infinite plate. If
equation 3.10.7 is expanded, we have:

K=oWt [(’;‘j)+ (gr; ) } (3.10.8)

kov(na)( 3;}2*--')%

= g+/(ma) ( 6;; i ) (3.10.9)

Thus, for the infinite solid, where a/W =0, K = o+/(ma). For an edge crack of
length @ in a semi-infinite plate, K is given by 1.12 o+/(ma). The factor 1.12
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arises because stresses normal to the free surface must be put equal to zero
and this affects the form of the stress function. The general methods for
modifying stress functions in this way are termed ‘Boundary Collocation’,
and will be discussed further in Section 3.15.

The K parameter itself sometimes produces confusion, particularly
because its dimensions of stress v/ length are not commonly encountered in
other physical formulae. It should be emphasised that it is a factor which
characterises the intensity of the stress field ahead of a crack. For any length
of crack or combination of forces applied to the body, it is known that the
local stress will diminish as the inverse of the square root of distance, and K
gives the precise magnitude of the stress by embracing in one convenient form
both the crack geometry and the net contribution of the applied forces.

For the purposes of analogy, we may compare the stress intensity factor
with field intensities encountered in magnetostatics or electromagnetism, but
there is one major difference in the form of definition. If, for example, we have
a short bar magnet of length 2/ and pole strength m (see Figure 3.8) we know
that the force exerted on a unit pole situated at a point P on the extended axis
of the magnet and at a distance r from its centre is given by:

=2.2ml.1

F
3

and that this is defined as the intensity, H, of the field at P. Note that the fact
that the force becomes infinite as r approaches zero (as it would for the inverse
square attraction of a single pole) does not give cause for concern, because we
know that, in practical terms, we shall always be concerned with events some
distance from the pole. In detail, the limiting distance below which any such
formula cannot hold will be about the size of a few magnetic dipoles. Similarly,
equation 3.10.2 tells us all we need to know about stresses near the crack tip
and must be replaced by atomic force laws for distances less than a few atomic
bond lengths.

Pole strength, m

Unit pole

Figure 3.8 Force due to bar magnet (analogy between stress intensity and magnetic moment)
= i m___4ml
r-0"@+D*" r

The difference in definition between stress intensity K and magnetic field
intensity H results from the fact that the 1/+/r distance term is excluded when
defining K, but the 1/F* distance term is included when defining H. Neither
procedure is, however, fundamentally different in principle from the other.
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If we take the magnetic moment, M, as an ‘intensity’ analogous to stress
intensity, we see certain similarities. For the case above, M is given by M = 2 ml,
showing that the ‘intensity’ can be altered by the independent variation of
both pole strength and magnetic length. Different combinations of m and /
may give the same value of M and hence of magnetic field; similarly, different
combinations of ¢ and a can produce the same value of X and hence of crack
tip stresses. Further analogies may be sought in the differing relationships
between field and magnetic moment found for different geometrical configura-
tions and this point may, perhaps, be made even more clearly by considering
the magnetic fields produced by currents flowing in straight wires as compared
with solenoids.

These analogies have been emphasised because it is important to make the
concept of stress intensity generally acceptable, Magnetic fields tend to be
familiar, and so parameters associated with them are felt to be respectable,
particularly, because they have been shown to provide convenient quantities
for calculating the net effects of magnetic forces: Once the K concept has been
accepted, it can be shown that it is equally useful in calculating the effects of
applied mechanical stresses.

3.11 Plasticity in Cracked Pieces

Up to now, we have treated only the elastic deformation of bodies which contain
sharp cracks. Indeed, until fairly recently, the problems of fracture in cracked
pieces could be related only to solutions for stress systems which were elastic
or fully plastic. Analytical solutions which treat mixed elastic/plastic stress
fields have generally been obtained only for plane stress or antiplane strain
configurations and numerical methods have to be employed for plane strain.
The most physically reasonable plane strain solution to be derived is one which
takes account of the changes in crack tip geometry as the plastic ‘enclave’
adjacent to the crack tip increases in size (see Section 3.18).

The next sections describe briefly the features of particularly relevant
examples of mixed elastic/plastic stress analysis in cracked pieces.

3.12 The Equivalent Elastic Crack

The effect of a small amount of plastic yielding on the stresses and displace-
ments ahead of a sharp crack may be estimated crudely as follows®. Consider
the elastic stress distribution in plane stress as shown in Figure 3.9a and how it
is altered by an amount of yielding (Figure 3.9b) which is small in comparison
both with the crack length and with the dimensions of the body in which it is
contained. The plastic zone is supposed to extend a (small) distance, dvy, ahead
of the crack tip (x, =a) and, within this zone, the tensile stress 0, , is equal to
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the uniaxial yield stress, oy (plane stress, no work-hardening). The problem is to
estimate the size of dy for a given applied stress, o, or stress intensity
K = o\/(ma).

As a first, lower, estimate, we could say that the zone extended to the point,
ry, at which the elastic stress, 0y, was equal to the yield stress, oy (Figure 3.9¢).
However, it is immediately apparent that this will be very much an underestimate,

A
i K
%l \% * Yaen Sl TR
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N\
~
\‘\
s i | 0
e (A 1 ! F
= gk aox AL .
a I a R
(a) (b)
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%11 : \ %1 “zme)
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e S
Y y!
(c) (d)

Figure 3.9 Local yielding at a crack tip. (a) Elastic stress distribution. (b) Formation of
plastic zone. (c) First estimation of plastic zone size. (d) ‘Notional’ elastic crack

because the stress depicted by the shaded area between the lines 04, = 0y,

011 = K/+/(27r) and the stress ordinate is available to produce further yielding.
It is convenient to calculate the magnitudes of these stresses. At ry, the fotal
area under the curve o,; = K/z/(2n7) is given by

Tl e T
Jo V(2mr) d",/.,.r-K"Y (3.12.1)

and,atr=ry, 0y, =K\ (2mry) =0y,

. K*
ie. ‘ L (3.12.2)
Thus /% Kr%{ =J%.ay V(2rry) r%{,

=20yry (3.12.3)
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Now the area below the line 6,, = oy up tor =ry is obviously oyFy and so
the shaded area must also be equal to oy Fy. It has been conventional to
suppose, as a first approximation, that the plastic zone extends a distance

dY zer =K2/?TUY2 (3124)

ahead of the crack.

Use has been made, for purposes of stress analysis, of a concept of a
‘notional’ elastic crack, the stress distribution ahead of which is equivalent
to that of the configuration of a real crack and plastic zone at moderately
large distances. The notional crack tip is supposed to be located at the point
Fy, and the new elastic stress distribution is then given by

011 =K*\/(2nr), where K*=ov/[n(a +ry)] (3.12.5)

The situation is drawn in Figure 3.9d. It is possible also to associate an
opening at the original crack tip with this notional crack, as described in the
following section.

3.13 The Spread of Plasticity from a Crack: the Dugdale Solution'®

A more accurate relationship between applied stress, crack length and extent
of plasticity in plane stress may be derived by making use of Westergaard’s
stress functions® ', The solution was first derived by Dugdale'®, although
he used somewhat different mathematical techniques and only referred to the
Westergaard method in passing. It is, however, more convenient for our
purposes, since we have already discussed the appropriate functions in
Sections 3.7 and 3.10.

We imagine a situation in which a crack of length 2a is subject to a
tensile stress g. Let the plasticity spread from the ends of the crack for a
further distance |c —a| at each end as in Figure 3.10. If we now consider the
elastic stress distribution immediately ahead of the plastic zone, we can derive

IR

Continuous loading by yield
stress over region
a<lx,l<c

r | l H ;—’2

%y
- —

T

Figure 3.10 Spread of plasticity from a crack: Dugdale’s model, based on Westergaard’s
stress functions
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the relationship between o, @ and c as follows. First, we take the distribution
produced when a crack of length 2¢ is loaded by a pair of point forces

o() x dt x unit thickness, where x, = ¢ and |¢| <|c|. It will be recalled that
the Westergaard function for a single such force, P, at x, = 0 gives (by reference
to equation 3.10.4).

e A0
X2 \/(3‘22 —g")
For a pair of forces, 0 df, at x, = %¢, this takes the form
o, 200 X Ae® 1)
T (2 V(X —¢?)

We now take the complete loading between @ and ¢ as arising from a complete
set of forces oy . df integrated between a and c. Considering the region
immediately ahead of the plastic zone, we take x, =c¢ +r, where r <c. Then
equation 3.13.1 gives for a pair of forces oydz

. =2‘;—Y~/(§)\ﬁ (3.13.2)

: _20y dt
ie. K i \/c————n\/(cz_rz) (3.13.3)

011

(3.13.1)

For a set of splitting forces, we integrate between 7 =a and ¢ = ¢, to obtain:

e )
=——/ccos " |— 3.134
T Vecos™ (3 (3.134)
This then gives the stress intensity for point loading equivalent to yield loads
across the plastic zone.

To obtain the same stress intensity for an elastic crack of length 2¢ we
would have to apply a stress o such that

K = o+/(mc) (3.13.5)

The relationship between 0, a and ¢ may now be obtained by equating 3.13.4
and 3.13.5.

a+/(mc) =—2\%5 Ve cos™! (%) (3.13.6)
Hence (%—) = cos (-27:7—0Y\) (2.13.7)

From this, we can see clearly that, as ¢ = oy, the value of (¢/c) > 0, i.e.
¢ — o0 and yielding spreads across the infinite plate. As (0/oy) becomes small,
$O

(£)+1_”° e (3.13.8)

o
Q
'<N
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using the cosine expansion, and if we denote the spread of plasticity by
dy =(c—a)

a dv)7! d
we have (m) = (I +7Y) = (1 *G—Y + - ) (3.13.9)

by the binomial expansion. Hence, at very low applied stress levels,

m?0° e 7K ?
8oy: 8oy?

dy = (3.13.10)

This may be compared with the value dy = 2ry =K ?*/moy? obtained
previously in equation 3.12.4. Given the forms of the Westergaard stress
functions appropriate to the yield loads across the plastic zones and to the
applied stress acting on a crack of length 2¢, it is possible to calculate the value
of the displacement, u,, at the ends of the real crack, x, = 4. The detailed
derivation is somewhat complicated and is given in Burdekin and Stone'®. This
displacement will feature largely in our later consideration of fracture criteria
(see Chapter 6). It is called the Crack Opening Displacement and is usually
denoted by the symbol, 8.

Then, § is given by:

8 0y o
iy a n!:sec (ZUY)] (3.13.11)
At very low stresses, this may be simplified to give
_otma _ K?
5 = (3.13.12)
or using 4.5.6 G=0yb (3:13.13)
o} K?
§=—X. 2 3.13.14
or E W2H0Y2 ( )

If we return to the crude model of the ‘notional’ crack (Figure 3.9) which
has its crack tip in the centre of the real plastic zone, we arrive at a similar
answer for &, by considering that the zone is circular and that § is given by the
yield strain, oy/E, spread over a ‘gauge length’ given by the circumference of
the zone, 2nry (see Wells!?).

In Mode III (antiplane strain) deformation, the appropriate form for the
spread of plasticity is

a _ g
o COS(2TY) (3.13.15)

where g and 7y are the applied and yield stresses in shear. The (shear) displace-
ment, 43, at the crack tip is given by

=—2X g 1 ae
Lllg a n SEC( (31316)
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This result agrees exactly with that described in the following section, which
was derived originally for the same Mode 111 deformation.

3.14 The Bilby—Cottrell-Swinden (BCS) Model'?

An alternative method"® for calculating the sizes of plastic zones and displace-
ments in Mode III deformation is of interest, firstly, because it provided the
initial analytical stimulus for focusing attention on crack tip displacements
and, secondly, because the method has been used widely to develop solutions
for problems involving more than one crack, and for others involving the
presence of free surfaces.

Theyieldedzone and crack are modelled asarrays of dislocations (Figure 3.11).In
Mode III deformation, the dislocations are of screw character and are distributed
along the x, axis, so that each dislocation, if discrete, would have a line vector

*n X, 3=

& ® 1 ® ®

&—O—D€ | i i X
q‘ ‘ a a } *‘ %
r c i c i
& O 1 O O
-1,-3 g1
()
‘X,
"_"'612 =T
| Lo Lol 3 [ i 2 B
& i e e 0 | i % |
fm— ! ! 2
~— a 1
To,-2 e
1 c
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Figure 3.11 Representation of vielded zones by arrays of dislocations
(a) Mode III antiplane shear (a,5 = q). (b) Mode I shear (o,,=1)

!I'=13 and a Burger’s vector b = b5. To accommodate the displacement gradient,
from the high value, §(a), at the crack tip, to the low value at the plastic/elastic
interface, the dislocation array must take the form of an ‘inverse’ pile-up, with
the dislocations closely spaced near the crack tip and widely spaced at the far
extent of the yield zone. In the model, the dislocations are not treated as
discrete but the theory of continuous distributions of dislocations is applied.
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The applied shear stress at infinity, 0,3 is equated to ¢ as in Section 3.9.
The resistance to motion of a dislocation is taken to be 7; (<g) in the region
—a <x, <+a(7; is zero for a freely-slipping crack) and 7y in the yield zones, i.e.

=R X sl and < %o < o

There are taken to be f(x;) . dx, dislocations, each of Burger’s vector b >0, in
the distance dx,. Then, for equilibrium over the total region 2¢, along the x,
axis, in which the dislocations are distributed, we sum the net repulsive forces
on each screw dislocation. At a point x,, the shear stress due to the dislocations
at x, is given by:

ub f(x5) dx
== oA 2 3.14.1
M3 ey —x5) ¢ )
Hence, for equilibrium
’ d.x’
T 121 L (3.14.2)

o s, (2 = x3)
where P(x,) is the resultant external shear stress, 0,3, at x,. The value of
P(x,) is given one discrete value, P = ¢ —7;, within the crack (Jx| <a) and
another, P = g — 7y within the plastic zone (¢ < |x| <c¢). The solution of

equation 3.14.2 for these conditions leads to an expression for plastic zone
size as:

a g
—=cC - 3.14.3
N cos (2TY) ¢ )
and for the relative sliding displacement at the crack tip, S(a), as

S(a) = %‘*1 21l |:Sec (2’%)] (3.14.4)

This result is identical to that obtained in the previous section (equation 3.13.6).
If we regard the dislocations in the BCS model as edge dislocations with Burger’s
vectors b, producing displacements in the x, direction, Figure 3.11b, we modify
equation 3.14.1 by inserting a factor of (1 —») in the denominator and derive:

un(a)=4—TzT(”Z;y)ain |:sec (;TTY” (3.14.5)

or, from equation 2.6.10, putting u = E/2 (1 + v)

e / \
Uy (a) ZLS—T%?——V——)& In [sec (%ﬂ (3.14.6)
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in plane strain Mode 11 shear. In plane stress Mode I tension, the Burgers vectors
are chosen to produce displacements in the x, direction and the crack tip
displacement is given by:

u; (ﬂ:%‘ia In |:sec (;TC:{):\

exactly as before (equation 3.13.11).

The spread of plasticity in plane strain tension is a far more difficult
problem to treat, because allowance must be made for the effects of
constraint as the yielded zone becomes larger. The basic principles underlying
the numerical solutions of such problems will be described in Sections 3.16
and 3.17. Alternative stress function methods of determining elastic stress
distributions will be described in the following section, to indicate briefly how
general boundary conditions may be satisfied.

3.15 Polynomial Stress Functions: Boundary Conditions

An alternative technique for solving the basic elasticity equation (2.9.2):
v 2(y2®) = 0; is to make use of stress functions which are written as polynomial
series, rather than as single algebraic functions of the type employed by
Westergaard. Application of this method directly to calculate stress distributions
around cracks was made initially by Williams'*- '*.

The method starts from the point that the term V2® must be harmonic
(see Section 3.2) since VZ(V2®) = 0. We are therefore led to look for Laplace-
type solutions for V.*®. The biharmonic equation may be satisfied if & is
expressed in terms of two harmonic functions, f and g (i.e.V2f=0,V3g=0)
through an equation of the type:

d=rif+g (3.15.1)

where * =x,? + x,2. Essentially, f and g are expressed as simple polynomial
functions of the complex variable: z = x; +ix, = ret?. To conform with
Williams’s co-ordinate system, we take x; from the crack tip, x, normal to the
crack and @ as the angle rotating anticlockwise from —x , towards —x, . The
open end of the crack is at x = —x, (see Figure 3.12). The harmonic functions f
and g are chosen as the real parts of two polynomial series. Simply raising z to
a power, say (A — 1), gives:

f=2ResP V=T Ra [(re!)P M
f=2r* D cos(A—1)8 (3.15.2)

Because we have chosen a function ® = r*f + g, it is appropriate to choose for
g a polynomial which has r raised to the power (A + 1). This then gives the
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coefficient of 0 in the cosine term and we expect to see, for the total stress
function, @, something of the form:

=2 V4, cos (\—1)0 + B, cos (A + 1)8]
=3/ 1oy (3.15.3)
where values of 4,, By, etc., have to be determined, according to the boundary
conditions. Williams, in fact, uses a stress function, given by
@ =Zr™ D b, sin (A + 1)0 + by cos (A + 1) + by sin (A= 1) + by cos (A — 1)0]
R o (7)) (3.15.4)
which is derived using generally similar principles. If we take the standard

expressions for two-dimensional stresses in polar co-ordinates (equation 2.9.5)
we have:

O O L S T
b =i e b O E () + A + DFE))
2
e L;rf’ =MD+ 1DE©)] (3.15.5)

=r ATV AR 9)]

X,=rsin

|
_ \‘; Crack
= | Z
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X= -Xg

Figure 3.12 Co-ordinate system employed by Williams (see rext)

For crack edges which are free from any imposed stresses, we obtain the
conditions that ogyg (stress normal to the crack face) =0 when 8 = 0 or 27, and
that o, (shear stress on the crack face) =0 when 0 =0 or 27. From the
equations above, this implies that F(0) = F(2r) = F(0) = F'(2m) = 0=There
are four unknown constants b;(b, by, b3, b4) in Williams’ expression for
F(#) and the boundary conditions give four equations. For a solution to exist,
the determinant of the coefficients of b; in the four equations must vanish.
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In general, for a V-shaped notch of angle e, this equating of the determinant
to zero yields the ‘eigen equation’

sin A =*Xsina (3.15.6)

where A must be greater than zero (to allow for the continuity of displacements).
For a crack, the eigen equation is particularly simple, i.e.

sin (27A) =0 (3.15.7)

requiring that A = n/2, where # is a positive integer. Putting in the condition that
F(0) = 0 gives b, = —ba, and that F'(0) = 0 gives b;(A + 1) =—b3(A — 1), so that
we may write for the total stress function ®, with A = nf2:

¢=Er(%+1) {b [sm(2 )8* +§sm( +1)8}
be |:cos (%— 1)5 - (%‘I’ 1)9]} (3.15.8)

where the summation is implied for all values of 7. The values of the constants
by and b, may vary for the different values of n: we shall denote the ‘by’s by a,
and the ‘b,’s by b,,, where the subscripts refer to the particular » value. Thus:

2 sl sl e 30 ) 36
<b(n=1)=r=[a1[~sm§+—§sm2}+b1[cosifc0s?:|}

Dn=2 =r2{b2[l —cos 26]} (3.15.9)

by substitution of the appropriate figure for # in equation 3.15.8. We may then
determine the stress, 0,,., from equation 3.15.5.
It is more usual to refer the stresses to the bisector angle, k, given by:

k=0-m (3.15.10)

(see Figure 3.12). Making this substitution, we obtain for the stress function:

_ 3 | 3k ik s K
<1>(m()—r I:al(— coszﬁgcos 2) *-’51(‘ 51;15—5;117)]

Fhart [l —cos2k] ¥ s . (3.15.11})
and for the stress o,

! 3
Tretniie) = 3 I_[ah(*s COS%‘ + cos EK) & bl(WS Sin%+ 1 si 32}( ):l
F2

+4b, cos’k +. .. (3.15.12)

The stresses, 0, and 0., may be determined similarly.
We now consider the term b, 7*[1 — cos 2k] in equation 3.15.11. Writing this
in Cartesian form, we have, for this component of the stress function:

®n=2y = bar*[1 — cos 2k] = 2b,7? sin’k = 2b,x,° (3.15.13)
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because x, is given by 7 sin k (see Figure 3.12). Now, we may derive the stresses,
referred to Cartesian axes, by use of equations 2.9.1, i.e.
0P _0%d e
9x, dx;0x,

On = 2 Uzzfaxz, U2 =
1

and obtain, for this component of the stress function:
J11 =4b2, Ta9 :O, 01220 (31514)

For edge cracks, 0y, is usually zero at x; =—x, (Figure 3.12), so that b, is zero,
and it is seen that the radial stress then has the characteristic inverse square root

dependency: o,, «r I Ifloadings are superimposed at the boundary x = —x,, the
second term contributes to the crack tip stress field and suitable choice of the
constant b, leads to a method of representing the effects of these loadings, not
on K, which characterises the first term in the series, but on the crack tip stress
distribution.

If the symmetrical solution (b; = 0) is examined, O, i given by:

a
o,,;ﬂ—(ﬁs cos%+ cos%{) (3.15.15)
4r? /

and, if the stress state is referred to Cartesian co-ordinates, we have, for the
stress across the cracking plane:

a ( . 3
Oa9 :**,1- cos%(l+sm%sin 5’() (3.15.16)

~
]

Comparison of this with Westergaard’s results (equation 3.7.7) gives for the relation-
ship with stress intensity:

K1 =—V(2ma, (3.15.17)

Calculation of the principal tensile stress gives:
02:7971 cosi(lfrsinﬁ)=orl (3.15.18)

yi 2 2

which shows that the maximum principal stress occurs, not across the line of
crack extension, but at +60° to it. The direction of the maximum principal stress
is in the X, direction. The maximum shear stresses occur at £90° and the maxi-
mum octahedral stress at + 70°, It is therefore expected that vield zones should
spread out at some + 70—90° to the line of crack extension, rather than at + 45°
as they would in rigid/plastic material. Figure 3.13 shows that the real-life com-
promise is that the zones form angles of about 60—65°.

The advantage of the polynomial stress function method is that it allows the
addition of loadings on the boundaries of the crack or specimen. Westergaard’s
method is restricted to the particular situation of stresses along the line of the
crack and cannot treat non-uniform loadings on the specimen boundary. In
Williams’ stress function further terms can be included in the polynomial expres-
sion to allow for the extra stresses, e.g. the constant b, in equations 3.15.11 and
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3.15.12 can be adjusted suitably if 04, is non-zero on the line x; = —x,. One
disadvantage of Williams’” method is that it is not very suitable for dealing with
internal cracks. It has been used (e.g. by Gross et al.'®) to derive stress

intensity factors for geometries, such as the single-edge-cracked tensile specimen,
where free surfaces are not infinitely removed from the crack tip region (see
Section 3.10). Here, appropriate constants in the polynomial expansion were

Figure 3.15 Slip deformation ahead of a sharp crack stressed in tension. The crack opening is
accommodated by plastic flow at approximately 60" to the line of crack extension. (Note the
shear displacements shown by the grid lines) (x150)

obtained, as indicated above, by matching the stress distribution given by the
function to the imposed boundary conditions (e.g. uniform stress, zero tensile
stress normal to a free surface, etc.). The technique is known as ‘boundary
collocation’. The single-edge-cracked specimen required collocation at some
twenty boundary points, but the fact that the functions are polynomials permits
the use of computer routines.

Williams” method may be stated in general terms by saying that polynomial
forms for the stress function, &, arise when @ is expressed in terms of complex
potentials (e.g. equation 3.3.1) ¥ (z) and x (z), which are written as polynomial
series:

;p(z):lpo+wlz+gb222 S L

3.15.19
X(2) =X t XaZ ¥ NaZ® ¥ .. P 2" . )

and in which the unknown constants J; and x; can be determined by matching
stresses at discrete points on the boundary. Suitable modification of the relation-
ship between @, ¥ and x enables internal crack problems to be treated. Analysis
of the convergence of the various series chosen has not always been carried out
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rigorously and accuracy is usually assumed if the addition of more terms to the
series does not produce any marked change in the results. Comparison with
similar geometrical configurations is often used as a test of validity.

A further powerful method of incorporating the effects of free surfaces is to
use polynomial functions in combination with mapping techniques. In mapping,
the complex variable, z, corresponding to the crack geometry, is expressed as a
function of a further complex variable, £, which corresponds to the geometry of
a unit circle or a half-plane, in an infinite body. A neat illustration of the method
is given by Paris and Sih”, in considering the situation of a single concentrated
force, I, applied at arbitrary inclination to a crack surface. To represent the
tension and shear fields at the crack tip due to the force, they employ a complex
stress intensity factor: K = K} —1Ky; and by deriving the stresses 04; and 0,5
formally from the full complex form of the Westergaard stress function, using
the variable n = (z — z;), rather than the real distance variable r = (x, — ), (as in
the derivation of equation 3.7.7 from 3.7.2) they are able to write:

2

Oy * Ogp = Re|: 5 K} (3.15.20)
(mm)

From 3.3.4, we have: 0y, + 05, = 4Re [¥(2)] where ¢'(z) is the derivative of

the appropriate harmonic function; in the present case, that corresponding to

point loading (cf. 3.10.3). It is then possible to write:

=

K=K — k=200 lim (z—2, ) ¥'(2) (30521
i

where (z — z,) is the variable 7.
The mapping is accomplished by a functional relationship of the form:
z = w(£) whence equation 3.15.21 becomes:

K =2(2m)* Jdm [w(®) ~w(E)]* %,% (3.15.22)

The mapping of a crack of length 2« into a circular hole of unit radius is given by:

z=w(®) =2 (¢ +;ﬁ) (3.1523)

and, for this mapping, equation 3.15.22 becomes:

2ol

K:2(§) ¥'(D) (3.15.24)

When the appropriate stress function (equivalent to the form of equation 3.10.3
for the mapping &-plane) is found for ¥(¥), K; and K;; may be obtained directly
from equation 3.15.24 by separation of the real and imaginary parts. The very
important result that derives from this mapping procedure is that the effects on
K7 or Ky of any imposed tensile or shear stress put on the boundary of a crack

in the infinite solid can be calculated. In a general situation, the mapping function
(e.g. equation 3.15.23 above) may not be of simple form: it is, however, possible
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to express the function w(£) as a polynomial, or even as a ratio of polynomials,
and thence to obtain the stress function (from which the crack tip stresses are
calculated) also in a polynomial form.

A final method of assessing the effects of free surfaces or loaded boundaries
relies on the modelling of the crack singularities in terms of a continuous distri-
bution of dislocations. In simple cases, the stress field outside the crack is com-
pletely elastic and the dislocations are distributed within the crack itself. A
singular integral equation of the form given in 3.14.2 applies: if we wish to
mode! a crack of length 2a subjected to a tensile stress o,;, we must choose
cdge dislocations, modify the term outside the integral by 1/(1 —v), integrate
between —a and +a, and substitute oy, for P(x,). If the displacements are to be
single-valued, the total Burger’s vector around a circuit enveloping the whole
crack must be zero. If boundaries are present, superposition may be used:
singularities are represented by dislocation configurations and non-singular stress
distributions by the techniques described previously, functions being chosen to
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Figure 3.14 Effects of free surfaces on elastic/plastic stress distribution in antiplane strain.
() Infinite array of cracks in antiplane strain: crack lengths 2a; lengths of cracks + plastic
zones 2¢(c = a + dvy). Spread of yield given by:
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(b) This situarion can be used, in antiplane strain, ro model the presence of free surfaces at
the crack centres and + W from the centres

reduce to zero the stresses produced on free surfaces by singularity stress fields.
In more complicated models, the effects of surfaces on elastic/plastic stress and
strain fields may be calculated by the dislocation distribution method. Smith'™ |
particularly, has published results on a variety of crack configurations. That for
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an infinite array of collinear cracks, which may be used to represent free surfaces
is shown in Figure 3.14.

il

3.16 Numerical Methods

The use of numerical methods to assist in the determination of stress distribu-
tions in notched or cracked pieces may be placed in three categories. The first
was described in the previous section: where polynomial functions are used, it is
obviously important to evolve good numerical techniques to evaluate the func-
tions rapidly.

The second use of numerical techniques involves finite difference equations'.
Here, if we have a function which is defined, not in analytic form, but by a
series of values corresponding to regularly-spaced values of the appropriate
variable, we can approximate differentials by finite differences, e.g. if the spacing
along the x direction is ¢, and the values of the function at Xa:X1:X,, etc., are
Fo, Fy, Fy, ..., etc., we have:

’9{") il e 'dj) Fi—F,
\dx/0 4 dx )y d

TE) AffdE) R B 28R,

(df 0 Vd[‘dx g (dxu pE (3.16.1)

If Fis a function of two variables, x, and X3, we may evaluate the partial deriva-
tives of /" with respect to x; and x, independently in a similar manner.
The Laplace equation is given by:

_0*d 3%

P = + =
v ax12 a)(fgz

(3.16.2)

and so, if @ is a function of x,, and x,, having values Py oatx; =0,x; =0; Py o
atx; = 1,x:=0; By, atx; =0,x, = 1, etc., we may approximate the v 2
operator at x; = 0, x, = 0 by the finite difference equation:

Do+ Py, +D_, o, +P, _, — 4D
N 2gee TL0 0 T2 lc.}oT,,,&_‘_*_O, =0 (3.16.3)

assuming that the spacing of points in the x, and x, directions is identical. A
method of solution of Laplace’s equation for the stress distribution in a body
therefore involves the ‘guessing’ of values for the stress function < at each of
the nodes of a square grid into which the body is subdivided. The individual
values of @ at each node are then altered until the Laplace equation, as for node
x; =0, x2 = 0 above, is satisfied for each node and, simultaneously, all boundary
conditions are satisfied. At the boundaries, of course, the stresses 011, 022, 02
(011 = 3% ®/dx,?, etc., see equations 2.9.1), must be resolved parallel and ortho-
gonal to the surface normal to calculate the surface forces.

It is possible to extend the finite difference equations to cater for the solu-
tion of the biharmonic equation v*(v2®) = 0. The expression for V"C[)O,O at
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x1 =0, x, = 01is rather complicated, but if we denote the sum of the values of
nodes symmetrically disposed about 0,0 by Z (e.g. 24P, o would represent the
first four terms in the numerator of equation 3.16.3), we may write:

1
v 4‘I’o,o ='d_a(z4q)2,o — 824Dy 0+ 24Py +20Pg,) (3.16.4)

i af V“d)o,o is found to be, say, 1 rather than zero, a change in —1 on V“CI)O,O
to reduce it to zero would produce ‘residual’ effects on the value of ®: at x, =0,
X, =00f—20;at x; =%1,x,=0and at x; =0, x, =1 of + 8, and so on. These
changes then obviously affect the value of V*® calculated at x; = 1, x, =0 and
at each of the other nodes contained in the V*® formula. The method has been
used to calculate stress distributions in notched pieces by calculating consistent
values of @ in this way at each nodal point and deriving the appropriate values of
stress from each value of stress function. The method is quite useful for the
Laplace or Poisson equation (V2@ = constant) but converges rather slowly for
the purposes of determining stress functions. Special techniques have to be used
at the boundaries of stress concentrators, because the grid size is so large

(x, =—2d to x; =+2d,x, =—2d to x, = +2d) that values could otherwise not
be calculated within 24 of the surface.

The method provided, however, the first elastic-plastic (as opposed to rigid-
plastic, see Section 2.13) solutions for stress distributions around stress
concentrators®. The elastic stress distribution conforms to the biharmonic
equation. The plastic strains are equivoluminal (Poisson’s ratio is 0.5) and the
main assumption made is that the incremental principal shear strains are propor-
tional to the magnitude and instantaneous directions of the principal shear
stresses,

ie. Ay i Ayt Ays =T 173174 (3.16.5)

or, in equivalent manner:
(Aey—Aez) i (Aes—Aey) : (Aey — Aey)=(0,—03) 1 (03—0)) : (0;,—0,)  (3.16.6)

where A’s represent incremental quantities.
Mises’ yield criterion is employed,
Le. (01 =02)* + (02— 03)* + (03— 0,)* = 67y° (3.16.7)

where 7y is the shear yield stress.
If we write:

(Ae; — Aej) = (Aes — Aey) : (Ae; — Ae,y) :_34.
(02 —03) (03 —0,) (01 —03) QAA (3.16.8)

where AX represents an increment in the parameter A, we may deduce that:

20e; — Aey — Aes = $AN(20, — 0, —03) (3.16.9)

and from this: Ae, = AN[o; —3(0, +63)] (3.16.10)
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The effective value of “Young’s modulus’ is thus 1/A. Poisson’s ratio is }72 The
total strain, € is then given by summing the elastic (see equations 2.6.12) and
plastic components, i.e. for an incremental total strain

Ae = :?[Ao‘ —v(Ao, + Aoy)] + Ar[o, —%(02 +a3)]  (3.16.11)

In terms of applied stress, 0y, 022, €tc., rather than principal stresses, Mises’
criterion becomes: in plane stress,

0'1]2 — 011049, t 0222 + 30122 -<-.3T%( (3.1612)

in plane strain, assuming that Poisson’s ratio is 0.5 in the elastic as well as in the
plastic region:

(01— 022)* +4d0y,° <4T% (3.16.13)

These conditions hold in the plastic region; vV *® = 0 holds in the elastic region. In
plane strain, problems arise regarding the value of Poisson’s ratio and the value of
033; the substitutions:

033 = v(0y; + 022) in the elastic parts of the expressions for A€y and A€,
and 033 = 12(0“ + 0,,) in the plastic parts, have been made, giving, in the plastic
enclave:

1+w
Aeyy =T[(1 =)Aoy, —vA0,,] +%A7\(011 —0,,) (3.16.14)

& ke = 100
D °hy, = 125
<D b, = 135

91-“:2= lq-02)2¢h2-0'3)2+(03-01|2 |
=20} I

Taisiy Oy I

Figure 3.15 Development of plastic zones in precracked specimens in plane stress
(elastic/plastic behaviour, after Stimpson and Eaton®")
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The finite difference equations are set up as follows. For the elastic deforma-
tion, we have: V*® = 0. For the plastic deformation, using Mises’ criterion:

2 2 2
(041 —022)* +403 < 47y
we write

Pp= (011 = 022)" + 40y —dry (3.16.15)
o a’.’. aZ ) 2 aij 2 3
= [(ax22 ox (I?:| + 4(8}:1 axz) 414 (3.16.16)

Thus, in solving a particular problem, we must select values of @ such that

V*® = 0in all the elastically-stressed regions and that ®, = 0 in the plastic region.
The partial differentials are determined from finite differences as before.
Displacements must be obtained from strains, as given by equations of the form

in 3.16.14 above. The method has been applied to determine elastic/plastic
distributions in notched and cracked parts in plane strain and in plane stress; the
predicted form® of the yield zone in a cracked specimen in plane stress is shown
in Figure 3.15.

3.17 The Finite Element Method

In recent years, techniques based on finite difference equations have been largely
superseded by finite element methods (see e.g. Dugdale and Ruiz??). The main
principle involved in these methods is that the body, which we have hitherto
regarded as a continuum, obeying certain types of stress-strain relationships, is
considered as being replaced by a structural framework of elements, which are
usually triangular or trapezoidal in shape for problems concerned with two-
dimensional deformation. The framework forms a complete lattice, whose
external form corresponds to that of the continuous body. The stress distribu-
tion throughout the body is calculated by considering the equilibrium of forces
at the joining points, or nodes, of the lattice: the strain distribution is calculated
in terms of the displacements suffered by these nodes.

In a conventional framework, we would normally consider the forces and
displacements at the end of each beam, truss or strut. In general two-dimensional
deformation, each end is subjected to net resolved forces in two orthogonal
directions, and to a net bending moment. If the axes are X, X, and the beam
lies parallel to one of these, we may write the conditions at end I of the beam in
terms of a column vector, e.g.

F'=| F,! (3.17.1)
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The corresponding displacements and rotation may be written as another column
vector,

ul= | u,! (3.17.2)

It is assumed that, in general, each component of force is linearly proportional to
each component displacement, so that a set of linear equations between £ and u
is produced. This is usually written in matrix form, e.g.

a by ¢ Uy ayuy tbyuy ey
Nu=ja, by co||us| =asuy +byu, +cyu, (3.17.3)
as b3 C3 w azwt b3b)+€30)

A full analysis of the equilibrium of forces and the relationships between forces
and displacements may readily be made for the components at each end of the
member to give:

FU = Nyp '+ Nyu!

3.17.4
FH=N21;L:I+NMMII ( )

_F! N]] N12 HI
S lenlT e aal Ly = Nu (3.17.5)

where F' and u are now six-component column vectors and N isa 6 x 6 matrix, com-
posed of terms involving combinations of Young’s modulus and the length, cross-
sectional area and moment of inertia of the member. Some terms are zero.

This 6 x 6 matrix is known as the stiffness matrix (an analogy is to be found
with the elastic coefficients in equations 2.6.2). The relationship between F
and # may have to be further modified by a transformation matrix, if the beam
does not lie initially along X, or X, and if the column vectors are referred to
the new co-ordinates X," and X, In a general framework, a member links two
nodes. At each node, it will be possible to relate the net resolved nodal forces to
nodal displacements through simultaneous linear equations of the form:

(F) = [stiffness matrix] (u) (3.17.6)

If two nodes, 7 and j, are connected by a single member (where i is equivalent to
end I'and to end II), the contribution of the member to the total si:ffness
matrix is to add a term [N, ;] ;; to the element situated on row {, column 7;

[Ny 2]; to row i, column j; [N3, ] to row j column i and [N,,];; to row j,
column j. A similar contribution is obtained from each component member of
the framework.
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The method for solving framework problems is divided into three stages:

(1) determining the stiffness matrix for an elementary member;

(2) assembling the members to form a complete framework, and determin-
ing the complete stiffness matrix;

(3) using the matrix to calculate unknown forces and displacements from
known values at loading points and free surfaces.

For the triangular elements into which a continuous body may be divided,
the total stress acting over the element is resolved as force components acting
through the corners. Strains are represented by the displacements of the corners.
Elements must deform so that the edges remain straight, although they may be
rotated, displaced or changed in length. The general displacement of a point P
within an element may be related to its position relative to the corners, i, j, k,
and to the displacements of these corners: uy’ u,’, etc. The strains at P may then
be found, using standard relationships (equation 2.4.5). If the strain column
vector is

e=|€e @ia77)
P}

and the corner displacement column vector is:

_u," =
s
uy’
fi= i (3.17.8)
e
_uzk-
we may write:
e=Bu (3.17.9)
where B is the 3 x 6 matrix:
(xf~el) 0 (x2*—x4) 0 (xsi—x,) 0
B= ‘13 0 (x]kfxlf) 0 (xli_xlk) 0 (xlj_xli) (3.17.10)
(" =21 e =% (i=x) &F—x)) (ef—x) (ei-x)
Ajsgivenby  (xle,m b, F ooty - (e 2 000F + xR )

e e el ; e :
and x,"x," x; /x5’ x1%x," are the co-ordinates of corners i, j and k respectively.
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Stress is written as the column vector:

§=| 0 (3.17.11)

and the elastic stress—strain relationships (equations 2.6.7) are written in matrix
form as:

S =De (3.17.12)
where, for a cubic material,
= gt iy
E i
D= (l_j) v 10 in plane stress (3.17.13)
1—»
Sl
1 v/(1-») 0
Bl
= 1 +( 5 '1)2 v/(1 —») 1 0 in plane strain
(1+v) v) 0 1—-2v
2(1-») (3.17.14)

Note that the final term in the column vector for e has been taken as 2¢,,

(i.e. the engineering shear v, rather than the pure shear /2, see Section 2.4).
The internal stresses in an element are related to the forces acting on the

corners by equating the work done by both systems, and the stiffness matrix for

a single element is found to be:

N = (B D B) x (area of triangle) x thickness (3.17.15)

where B and D are defined by equations 3.17.10 and 3.17.13 or 3.17.14 and B'
is the transpose of B (i.e. the matrix B, with columns and rows interchanged).
The forces on the corners of the elements are then related to their displacements
through the equation:

F=Nu (3.17.16)

where F and u are columns of six elements and N is a 6 x 6 matrix. Given the
co-ordinates of i, j and k, Young’s modulus and Poisson’s ratio, it is possible to
calculate N directly given computer facilities to handle the linear equations.
The complete stiffness matrix is then assembled as for the open, structural
framework. The contribution of a triangular element [, J, K, to the stiffness
matrix consists, by analogy with the framework, of adding the term [Nys] 1 x
to row 7, column J., etc., where [N;;] is a 2 x 2 matrix. Many terms in the
total stiffness matrix turn out to be zero. The solution of a problem involves
the determination of unknown forces and displacements from known values on
the boundaries of the body. Once these have been calculated, the strains and
stresses may be determined from equations 3.17.9 and 3.17.12. The procedure
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followed is to find displacements which are compatible and which also minimise
the total potential energy of the system.

We proceed to examine two important stress distributions calculated by
finite element methods.

3.18 Plane Strain Stress Distributions in Notched and Cracked
Specimens

Finite Element Methods (FEM) are being increasingly applied to a wide variety
of elastic and elastic/plastic stressing problems, and one recent analysis has
treated the elastic/plastic stress distribution (with linear work-hardening in the
plastic region) in a notched bar subjected to pure bending in plane strain. The
mesh was made particularly fine near the root of the notch, so that the local
stress distribution could be examined in detail.
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Figure 3.16 Finite element analysis of stress below a deep notch in pure bending. (a) Varia-
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The distribution of the maximum principal stress 0,;, expressed as a
multiple of the uniaxial yield stress o, is shown as a function of the distance
below the notch for several different applied loads in Figure 3.16a. At low loads,
the distribution is similar to that predicted by slip-line field theory (see
Section 2.13), but the effect of the substantial amounts of work-hardening at
higher loads is to raise the whole level of the curve. It is important to realise
that at these high loads, the maximum value of o, occurs well behind the

011 (max)

plastic/elastic interface. Values of stress intensification, Q =— are plotted

v.load in Figure 3.16b. Again, the results are broadly similar to those given by
slip-line field analyses, but show no sharp discontinuities. The mesh size is con-
sidered adequate, because refinement of the mesh gives no difference in the
values of Q.

The method also enables notch root strain to be calculated as a function of
applied load. The effective gauge length of the notch, over which the strain is
constant, is found to be about 1.2 times the notch root radius. At about half the
general yield load, the root strain is about 1.5%; at three-quarters, it is about
2.5%, and, at general yield, it is about 7%. These results agree well with carlier
experimental values of notch strains*.

The strain gradient below the notch is also calculable. For general yield load-
ing, this decreases in an almost linear fashion from 7% at the notch root to
some 1.5% at a distance equal to one root radius below the notch surface.

The plane strain stress distribution in a locally yielded zone around a crack
must be calculated with extreme care, having in mind some physical model of
the likely crack tip deformation field. The most appealing results are those due
to Rice and Johnson?® who, whilst drawing on finite element analyses for
quantitative detail, ensure physical reality by devising a solution which is com-
patible, in the limit of a rigid/perfectly plastic material, with a local Prandtl
slip-line field around the crack tip (see Section 2.12). The point is made particu-
larly with regard to choice of the shape of the finite element.

If a Prandt! field is assumed for the limiting case, we can examine the
situation drawn in Figure 3.17a. Here, in regions A and B, the stresses are con-
stant because the slip lines are straight. The tension in region B is given by:

011 = 27y (1 + 7/2) (see equation 2.12.4) and it is clear that no intense strain
concentration occurs as the crack tip is approached from directly ahead

(i.e. moving from a positive position on the X, axis towards zero). In region C,
however, the slip-lines form a fan which is centred on the crack tip: the shear
strain, 7, , acting on faces normal to the radial lines in this fan region, becomes
infinite as the crack tip is approached along a radial line:

R(0)
¥

~ Yo (3.18.1)
where 7, is the initial yield strain and R(#) is an as yet undetermined function
of 0. The point is that different shear strain contributions to the crack tip dis-
placement are made for different directions of approach to the crack tip, so that
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a discrete opening displacement is predicted. Rice and Rosengren®® had previously
produced a dominant singularity solution for a power-law hardening material,
which gives the maximum value of R(8) as:

K 2
Boun =000 (—) (3.18.2)

Oy
where K and oy have their usual meanings of stress intensity and yield stress (the
‘plane stress plastic zone radius’ ry is about 0.4 (K/oy)?* for comparison). The
characteristic crack opening displacement is then

Oy K?
5::2-5me.m=0-715U I (3.18.3)
Y™ (cf. equation 3.13.12)
Ty
(1*-3-23-«35)7,,
(2em) 7,
Region B
ABL R "'XZ
ITTY
(1+ ),

(b)

d=195

Figure 3.17 Local plane strain plastic fields around a crack tip. (a) Prandtl field in region of
crack tip. (b) Modification of slip-line field due to crack-tip blunting (cf. Figure 2.21)

Rice makes the point that conventional numerical methods (finite differences
or finite elements) have not been able to provide the required accuracy near the
crack tip singularity. Boundary conditions near the crack tip are difficult to
satisfy, particularly for the large finite difference grid required for the biharmonic
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equation (Section 3.16), but most analyses have, in fact, placed a single node at
the crack tip, so that the displacement variations known to exist there were
unable to be calculated. A modified four-sided finite element, bounded by lines
r=const., @ = const., and therefore very suitable for the fan region, was
developed and produced results giving the required 1/r singularity in shear strain.
Two of the nodes of the element at the crack tip were situated at the same
physical point but permitted different displacements, dependent on the radial
path of approach.

The results then give:

Ropax = 0.155(K/0y)? (3.18.4)

5 =27 2L R . 0425 5 3.18.5
. E max ~ - UYE ( r Aok )
The computer results reveal that R, is in fact, very similar to the extent of the
plastic zone, which was calculated to extend a distance 0.175 (K/oy)? along a
line inclined at & = 70°32' to X, (cf. 3.15.18 et seq.), and a distance 0.032

(K/ay)* along X, (assuming » = 0.3). A more recent result™ gives

KZZ

3.18.6
s (3.18.6)

5,=0.49

The stress distribution ahead of the crack, based on a power-law hardening
material, would give rise to singularities at the crack tip (as for a linear elastic
material), were it not for the blunting of the crack tip occasioned by its
characteristic opening displacement. Supposing that the tip blunts to a semi-
circle of diameter &,, the slip-line field shown in Figure 3.17b results. There is
no longer a focusing of radial slip-lines at the tip and the stress distribution
becomes similar locally to that for a circular notch (Figure 2.21). For a non-
hardening material, o,; increases from a value of oy (Tresca’s criterion) or
1.15 oy (Mises’ criterion, as used by Rice) to the maximum value of approxi-
mately 30y at the fullest extent of the logarithmic spiral (d = 1.98,).

For hardening materials, the situation is drawn in Figures 3.18a and b. Farther
than about 26, from the crack tip, the stress distribution is given by the curve for
the dominant singularity: this would become singular at the tip if the associated
crack openingand blunting were ignored. It should be noted that the distance quoted
above, for the spread of yield along the X, axis (at A), i.e. 0.032 (K/oy)?, is still
an order of magnitude greater than the region influenced by the crack tip blunt-
ing. The maximum stress therefore occurs well behind the plastic/elastic interface
in the X, direction. This does not conflict with the results given in Figure 3.16
for the stress distribution in the notched bar. It is clear that, the higher the work-
hardening exponent and the smaller the crack tip displacement (governed by
oy /E), the closer will this position be to the crack tip. In most cases, the maxi-
mum extent of the plastic zone, at some 70° to X, is over fifty times greater
than the region affected by crack tip blunting.

The stress distributions ahead of a crack in plane strain, as shown in Figure 3.18,
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therefore bear similarities to notched bar results, allow for hardening and provide
plausible slip-line field analogies for non-hardening material. Detailed modifica-
tions may have to be made, but the general pattern seems to be the most convinc-
ing yet produced.

3.19 Conclusions

This chapter has described a variety of methods for determining stress distribu-
tions around sharp stress concentrators or cracks. The analytical solutions all
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involve the use of complex variables in one form or another. For the major
features of crack tip stress fields, Westergaard’s single stress functions are usually
adequate, but, for more complicated situations, such as those pertaining to
practical testpiece geometries, polynomial.stress functions or mapping functions
may have to be used. Alternatively, dislocation arrays may be used to model
crack singularities. Finite difference equations have been generally superseded
by finite element methods: computers are then essential to handle the large
numbers of simultaneous linear equations represented by the stiffness matrix.
Dislocation methods or superposition of stress functions can model elastic/plastic
deformation in Mode I plane stress or Modes II (shear) or III (antiplane strain),
but Mode I plane strain or work-hardening materials necessitate numerical
methods. Recently, credible stress distributions in plane strain deformation have
been presented for notched and for cracked pieces. The general situation is
therefore an optimistic one.

Solutions have, however, been confined primarily to the limiting two-
dimensional conditions of plane stress or plane strain. Many important practical
situations involve three-dimensional deformation which cannot be modelled in
terms of radial symmetry: for example, problems concerned with cracks in plates
of moderate thickness and with ‘part-through’ thumbnail cracks. An analytical
solution has been obtained for the elastic stress distribution around a circular
hole in an infinite plate of arbitrary thickness?’, the plane strain solution for
which was discussed in Section 2.11. This plane strain solution is obviously
inappropriate for a plate of finite thickness, because it does not predict that the
stress 033 1s zero on the top and bottom surfaces of the plate: x3 = £ B/2. The
problem is solved generally by determining three polynomial stress functions.
Choice of these is dependent on satisfaction of boundary conditions, symmetry
requirements, the need to produce a finite total strain energy, and some anticipa-
tion of the general form of 033 (i.e. taking a maximum value at x5 = 0 and
becoming zero at +B/2). The calculated variations of the maximum tensile stress,
o1y for a plate loaded by a tensile stress, g, at infinity and for the correspond-
ing stress, 033 are shown in Figure 3.19a and 3.195. 1t can be seen that the
elastic value of o, varies little with thickness, but that the variation of 033 is
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substantial, obtaining its plane strain value first when the ratio of plate thickness
to hole radius is about 4.

A solution has been produced for the stress intensity ahead of a semi-
elliptical crack in a plate of finite thickness?®. Here, each part-through cracked
section is treated as a line spring and the total spring constant of the piece (or its
reciprocal, the compliance: see Section 4.4) is calculated by integrating the
effect of each section through the width of the crack. The stress intensity may
then be calculated by a virtual work argument (Section 4.5). In no case is the
stress intensity as high as it would be if the crack had its maximum length
throughout its width, but cracks which are wide and short compared with the
plate thickness, approximate most closely to the crack of uniform length. The
method of solution, however, is again essentially based on theories of two-
dimensional deformation.

If three-dimensional solutions are sought, it is necessary to determine three
stress functions, as for the problem of the circular hole in the plate of finite
thickness. Neuber? has shown how the three stress functions may be applied to
stress concentrators of hyperbolic or elliptical geometry and, recently, an
attempt has been made to solve the three-dimensional crack problem, by deter-
mining the elastic stress distribution around a quarter-infinite crack in a half
space?®. A point of interest here is that, if o;; is expressed in terms of the spheri-
cal co-ordinates r, 6, x by an equation of the form:

0;; = const. r00,%) (3.19.1)

it is found that the exponent A, which has the characteristic value 0.5 in all two-
dimensional deformation modes, takes values depending on Poisson’s ratio. f'or
Poisson’s ratio = 0.3, the exponent has a value of 0.61, thus replacing the
familiar inverse square root singularity by the form:

oy = comnst. 7OV £,1.(8, X), ete. (3.19.2)

It is apparent that full three-dimensional analyses may substantially modify con-
clusions obtained from two-dimensional analyses.

If three-dimensional elastic solutions are rare, there is an even greater lack of
knowledge concerning three-dimensional stress distributions in situations where
there is a locally yielded zone ahead of a crack tip. As we shall see later, in
Chapter 5, a knowledge of how the through-thickness stress, 033, varies with
testpiece thickness is of great importance in explaining modes of deformation
and fracture. An argument developed in Section 5.7 is concerned with stress-
states, in test specimens, which can be classed neither as plane stress nor plane
strain.

There is, therefore, still a need to produce good, three-dimensional elastic and
elastic/plastic stress analyses. In principle, the finite element method (Section 3.17)
can be extended directly to cope with such problems, although the necessary
computing effort is vastly increased. Lacking such three-dimensional analyses, the
present theory of fracture mechanics is based largely on the limiting states of
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plane stress or plane strain. We now proceed to follow the development of this
theory and to examine the extent to which it can be used to explain experimental
results.
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Four

LINEAR ELASTIC FRACTURE MECHANICS

4.1 Introduction

The preceding two chapters have described the mathematical techniques by
which the stress distributions near blunt stress concentrators or sharp cracks
may be determined. These techniques have a two-fold purpose. First, for a
structure of complicated geometry, they enable calculations to be made of the
local stress in any particular region. Secondly, they can be used to determine the
localised stresses around any crack-like defect in the structure, with the aim of
relating the weakening effect of the defect on the material’s resistance to
fracture directly to the atomistic mechanisms by which the material ahead of
the defect breaks. Although this final aim has been achieved for only a few

very special situations, it is found in practice that fracture occurs at well-defined
critical levels of stress intensity around a defect. The present chapter describes
how crack-like defects reduce a material’s fracture strength and how failure stress
may be related to crack geometry through measurements of critical levels of
stress intensity.

4.2 Ideal Fracture Strength

The tensile strength of an ideal crystalline body is the stress which must be
applied to cause it to fracture across a particular crysiallographic plane. We
consider a cubic lattice of spacing, b, subjected to a tensile stress g, as shown
in Figure 4.1. To calculate the stress required to cause fracture across the
plane XX, we suppose that o is the sum of the forces, F, acting between pairs
of atoms, such as CC', on either side of the fracture plane, per unit area. To a
first approximation, we may suppose that the value of /' required to cause
fracture is identical to that needed to separate an isolated pair of atoms such
as C—C". The calculation is approximate, because it ignores any interaction,
that may exist between atom C and other atoms, such as A’, B, D', B", C",
D", etc. However, it serves to estimate the order of magnitude of fracture
strength.

94
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If we consider a pair of atoms such as C and C', we can draw a curve to
represent their energy of interaction as a function of distance of separation b.
Such curves differ in detail, depending on the types of bonding associated with
a particular material, but, for metals, they are generally of the form shown in
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Figure 4.2a. The resultant energy, U, exhibits a minimum at the equilibrium
lattice spacing b . The total amount of energy which must be supplied to
separate the two atoms to infinity is given by Uy. This ‘work to fracture’ in a
crystalline solid is often equated to twice the surface tension, 7, of unit area
of a free surface of the appropriate fracture plane of the solid, because the
work done has provided enough energy to create two surfaces, each of energy
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Figure 4.3 Atomic stress—strain curve :

7. Estimates of U, can therefore be made by extrapolating results obtained on
the surface tensions of liquid droplets or by solid-state measurements made in
‘zero-creep experiments.

The force required to separate the atoms may be derived directly by
differentiating the energy—distance curve with respect to distance to give,

U

g

(4.2.1)
The resultant force—displacement curve is shown in Figure 4.2b.

The force is zero at the equilibrium spacing b = b and attains its maximum
at the point of inflection of the energy—distance curve. The initial slope of the
force—displacement curve represents the stiffness of the atomic spring and is
related directly to Young’s modulus. This modulus therefore depends on the
form of the energy—distance curve and so general relationships between modulus
and type of atomic bonding may be readily deduced.

If we let (b —bg) be equal to x, we may write strain directly as x/b,. We
equate the stress, 0, to F/by*. The atomic stress—strain curve is therefore as
shown in Figure 4.3. The initial slope of this curve is Young’s modulus. To



LINEAR ELASTIC FRACTURE MECHANICS 97
determine the value of 0., ., the stress—displacement curve is usually approxi-
mated to that of half a sine wave, so that the relationship between o and x is
given by:

SN
O = Opyax SiN ( 2777) (4.2.2)

where A is the wavelength, i.e. when x = N4, 0 = 0, The total area under
this curve represents the work supplied when the plane is fractured and so we
can equate this work to +U, = +2.

\ A2
%T omax[—cos (%” =2y (4.2.3)

0

For very small displacements, we have

i
bo

(4.2.4)

ty

0 = Omax “WX7

and, substituting for A in equation 4.2.3 we have

2
C[max‘bo
—max? 2] =2
e e

Hence, we derive as an expression for the ideal fracture strength,

By :\/(1;—3) (4.2.5)

The above expression was derived simply by considering the energies of inter-
action between pairs of atoms across the fracture plane. It is possible to derive
similar expressions for fracture stress, by considering the interaction energies
between a given atom, say, C, in Figure 4.1 and its nearest, second-nearest,
third-nearest, etc., neighbours and differentiating these to determine more
accurate forms of atomic force—displacement curves. The calculations become
very complicated and are suited to computer techniques. The interaction
energies have been expressed as Morse potentials’ of the form

Uiprisppy= Dol g 0] (4.2.6)

where s is the reciprocal of the ‘range’ of the interatomic forces, and is hence
dependent on the type of bonding. In other cases?, the interatomic forces have
been given as functions of the form:

F = const. [(%)m = (Z—D)n i| 4.2.7)

where m and n are again dependent on the type of bonding. The exponent m is
representative of the repulsive forces: for closed electron shells, 7 can be as
high as 12. The value of n depends on the attractive forces: for ionic bonding,

n = 2; for Van der Waal’s bonding, n = 7. Often, the true interionic potentials are
not known and it is then necessary to write pseudo-potential functions of the
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form given in equation 4.2.6 and to evaluate the various constants by calculating
values of parameters such as the elastic constants (equations 2.6.2) or the
coefficient of thermal expansion and comparing them with experimental values.
The pseudo-potential may then be used to calculate the atomic stress—strain
curve. The net conclusion of these results is that the fracture stress is of the
order of £/10. This value may be estimated from equation 4.2.5, using the
information that 7 is of the order of 0.01 £b, for many materials®.

Equation 4.2.5 makes no predictions as to the strain associated with fracture,
because the atoms have to be separated to infinity before they show no inter-
action energy. In practical terms, however, we may regard separation as having
occurred once the force maximum has been attained. A rough estimate of this
strain may be made by assuming that the stress—displacement curve (Figure 4.3)
is triangular rather than sinusoidal, whence 0y,,, =+/(2E/b,) and the strain at
Omax 18 X/bo = Oax/E =/(27/Eby). Substituting y = 0.01 Eb, as above, we
have x/b, = 0.14. In fact, the strain to fracture for most materials lies roughly
in the range 0.2 (for very stiff materials) to 0.4 (for rubbery materials).

4.3 Griffith Cracks

The theoretical fracture strength of a solid is of the order of £/10, but the
strengths of crystals and glasses found in practice tend to be lower than this
value by some two orders of magnitude. Griffith* first suggested reasons for this
discrepancy between predicted and actual values and it is by developing his
arguments that the present methods of measuring a material’s fracture tough-
ness have evolved. Griffith supposed that a macroscopically homogeneous test
sample might contain small defects which enabled the stress to be concentrated
sufficiently for the ideal fracture stress to be attained in small localised regions
of the sample.

As a first step towards deciding what the fracture stress of a sample contain-
ing such a defect might be, we could imagine the defect as being elliptical in
shape, with major axis 2a. Then, if this were lying normal to the applied stress,
o, the concentrated value of stress at the ends of the ellipse would be, from the
Inglis solution (equation 3.5.9)

a
a,]=0(1+2\/;)

where p is the radius of the tip of the ellipse. If the defect were crack-like, we
could take as a value for p the lattice spacing bo. Then, since 24/(a/bo) > 1 we

would obtain:
011=2\/(i)a (4.3.1)
\bo

and we could set, as a fracture criterion, 0y = 0,4 as in equation 4.2.5,

ie. 20 \/(%0)= / (%%) (4.3.2)



LINEAR ELASTIC FRACTURE MECHANICS 99

o :/(%) (4.3.3)

It can be seen immediately that, if we put y = 0.01 Eb, as before, a defect length
2z of 5000 by, say | um, is sufficient to lower the fracture strength by two
orders of magnitude. We shall return to a consideration of the sizes of defects
shortly, but it is appropriate first to point out the difficulties associated with
the result obtained in equation 4.3.3. The Inglis solution for the stresses around
an elliptical hole was derived strictly on the basis of linear elasticity and yet we
predict from this result a crack-tip stress which we know to be well outside the
realms of linear elastic behaviour. The left-hand side of equation 4.3.2 derives
from linear elasticity: the right-hand side from a sinusoidal stress—strain curve.
The left-hand side relates to the macroscopic applied stress: the right-hand side
to the atomic force—displacement laws.

The main achievement of Griffith in providing a basis for the fracture
strengths of bodies containing cracks was his realisation that it was possible to
derive a thermodynamic criterion for fracture by considering the total change
in energy of a cracked body as the crack length was increased. Only if the total
energy decreased would the crack extend spontaneously under the applied
stress. The value of the energetic approach is that, by considering energy changes
in the body as a whole, it is possible to de-focus attention from the very highly
strained region immediately surrounding the crack tip and yet derive a useful
expression for the fracture stress. This general approach is followed in all later
sections, but, at present, it is of interest briefly to trace the course of Griffith’s
own analysis.

The situation is simply as shown in Figure 4.4 where a crack of length 24 is
situated in an infinite body and lies normal to the applied tensile stress, o. We

e

At fracture 0 = gy, hence:

S

Figure 4.4 Griffith’s crack: geometrical configuration

now consider the changes in energy which occur if the crack is extended by
an infinitesimal amount. It is obvious, first, that new crack surfaces are
created and since the stresses and displacements immediately ahead of the
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infinitesimally extended crack tip are to all intents and purposes identical to
those ahead of the initial crack tip, the energy increase during crack extension
is simply the ‘work to fracture’, 2+, multiplied by the area of the new crack
surfaces produced.

The other energy terms are best dealt with by supposing that it were
possible to produce a macroscopic load—displacement curve for the cracked
body for the two half-crack lengths, @, and (a + 84). The resultant curves for
clastic loading would then appear schematically as in Figure 4.5, Essentially,
the body containing the longer crack is a weaker spring. Then under fixed-grip
(i.e. fixed displacement= u, fixed) loading, an increase in crack length from

’EI,"_

~oU

Load,P

Displacement, u

Figure 4.5 Elastic loading curves for crack lengths a and (a + §a)

ato (a + 6a) results in a decrease in stored elastic strain energy in the body,

from 5P tog P2u1 , because the same displacement with a weaker spring
1mp11es less load and hence less strain energy stored. Under fixed grip conditions,
crack extension therefore produces a release of stored elastic energy%(Pl =y
in addition to the increase in surface energy.

Under constant loading conditions (P = P, = constant) the situation is slightly
more complicated. Here, the weaker spring effect produces more displacement
for a given load and so the strain energy stored for a crack of length (a + 5a) is
greater (gPl u5 ) than it is for a crack of length a (2 Pyuy ). The vitally important
point, however, is that, during this increase of stored strain energy, the applied
load has moved a distance (u, —u; ) and so work, of magnitude Py (1, —u,)
has been done by the applied force on the system. The total change in potential
energy is therefore a decrease of magnitude Py (1, —u,) —%Pl (uy —uy) =
lPl (tt; —u ). This magnitude is conveniently represented by the shaded area in
Figure 4.5 [triangle of base (1, —u, ) and vertical height P, | .

Thus, under fixed grip conditions there is a decrease in strain energy of
magnitude 712 (P, —P;)u, [area OPy (u, P2 in Figure 4.5] as the crack extends
froma to (a + 5a); under constant load, there is a decrease in potential energy
of magnitude %Pl (15 —u,) [the area OP, (u,)P1 () In the figure]. If we define
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(P, —P;) as 6P and (uy —u,) as Su, we are able to show that, as §& = 0, the net
energy release is the same for both situations. We write:

strain energy release (fixed grips) = —-1511. 5P (434
potential energy release (constant load) = —Pdu + L Psu
=—LPsu (4.3.5)
Now, the relationship between « and P is given by:
u=CP (4.3.6)

where Cis a constant for a given crack length, called the compliance of the
system, by analogy with equation 2.6.3. As the change in crack length, 8a, tends
to zero, we may treat Cas identical for crack lengths ¢ and (¢ + 6a) and write,
from equation 4.3.6

Su=CsP (4.3.7)

Using equation 4.3.6, equation 4.3 4 becomes:
—LusP=-Lcpsp (4.3.8)

Using equation 4.3.7, equation 4.3.5 becomes:
~LPsu=-Lcpsp (4.3.9)

Alternatively, it may be shown geometrically that the sh;}‘ded areas OP, , P>
and 0P, yPriuy) tend to the same value as the angle P, OP, tends to zero,
(let uy OP, =0, Py OP, =580 and draw £1¢4)Q perpendicular to OP, Py, ,

A most important statement follows from this result. For an infinitesimally
small amount of crack extension, the decrease in stored elastic energy of a
cracked body under fixed grip conditions is identical to the decrease in
potential energy under conditions of constant loading® .

Griffith recognised that the driving force for crack extension was the
difference between the energy which could be released if the crack were
extended and that needed to create new surfaces. His method for calculating
energy release was rather complicated because he was considering energy changes
in the body as a whole and therefore had to integrate the product of stress and
strain over the whole infinite plate. We shall investigate a more straightforward
method of calculation in the next section, but it may prove useful first to give
an approximate solution for the problem, by considering two half-crack lengths
a and (z + da) under fixed-grip conditions as in Figure 4.6. We suppose that the
applied stress is ¢ and employ again the concept of stress-lines (Section 2.2).

The stress-free regions above and below the crack are supposed to be roughly
triangular in shape and to extend to a height 82. Then, for a length a, the strain
energy release per unit thickness is given in plane stress by% stress x strain x area,

1 4]

: s B e 2
fie. U 305 Ba (4.3.10)
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or, for an increase da

02
U=~ gada (43.11)

In plane strain, the tensile strain associated with a tensile stress o is o(1 — P?)/E
(see Section 2.6) and so the change in energy with crack length, 83U/da, becomes:

ay el -1Y)
% = —'?———Ba (4.3.] 2)
Griffith’s accurate methods for calculation give:
__ Y o*ug . v
U= 3 E 2t il plane stress (4.3.13)
1 0*nmd® 5 R T !
U= 3 (1—=v*) g (1 —»*) in plane strain ~ (4.3.14)

By our previous arguments these values of 8U/da also represent the decrease in
potential energy when a crack extends by an infinitesimal amount da under
constant load.

. o
Figure 4.6 Model for approximate calculation of strain energy release rate (see also Figure 2.1)

The Griffith criterion for fracturing a body containing a crack of half length
a may be visualised, as in Figure 4. 7a, by drawing the way in which energy
changes with crack length. In plane stress, for example, the total energy, W, is
given by

'1_ o’na®
D

W=U+S=— +2va (4.3.15)
The maximum in the total energy curve is given by 9dW/da =0

ie. ==y (4.3.16)
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This situation is depicted in Figure 4. 7b, where the intersection of the line
—(8U/da) = o*ma/E with that of 27 is shown. The positive value of the slope
(0U/0a) is conventionally defined as the strain energy release rate (with respect

+ { Surface energy
S5=2ya
|
>
o T
= !
= | \ Crack length, a
| Total energy
| w
|
|
( )‘ : Potential energy
a _ ol rgl
| U=-1 e
|
|
|
: Potential energy release rate:
/ G = [B_U
da
o i Surface energy/Unit extension:
0_ | b
0w
@ |
o [
o= !
(b) |
a* Crack length, a

Figure 4.7 (a) Variation of energy with crack length. (b) Variation of energy rates with
crack length. (a*is the critical Griffith crack length)
to crack length) and is given the symbol G: more logically, it should be defined
as the potential energy release rate to cater for crack extension under constant
load. Tt should be noted that G has been defined for unit thickness.
For a given crack length a, the Griffith fracture stress is given, by equation
4.3.16, as:

_ 2E’y:| :

Op = \/I:E (in plane stress) (4.3.17)
2 2Ey ' :

op = \/,:ﬂ_(l——;T)TfJ(m plane strain) (4.3.18)

These expressions show similarities in form to that given in equation 4.3.3,
which was derived using the Inglis solution. The rationale of the Griffith
approach is, however, very different in that it is concerned with changes in
energy as a crack grows and can hence ignore the details of the fracture
process at the crack tip. This thermodynamic approach must be emphasised.
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Because it considers only the initial and final states and is not concerned with
the details of fracturing over the length da, it represents only a necessary
condition for fracture, which may or may not be sufficient. The Griffith
approach could treat the change in energy involved with the extension of a
rather blunt elliptical hole and conclude that the total energy of the system
would decrease, yet the hole would not extend if there were not sufficient
stress concentrated at its end to attain the local fracture stress.

Nevertheless, the Griffith theory swiftly achieved popularity and has since
provided the basis for newer methods through the critical concept of treating
fracture in terms of the change of energy remote from the immediate atomic
environment of the crack tip.

The theory was proved initially by experiments on glass rods containing
defects of various lengths®. The details of these experiments might not warrant
too much further investigation, but the general role of defects in decreasing
fracture strength was clearly proved as was the inverse square root relationship
between crack length and fracture stress. Besides the values of vy obtained for
glass, more recent experiments on brittle refractory metals® and on basal-plane
cleavage of zinc, containing long initial cracks”, provide good support for the
Griffith theory in its original form when applied to materials which fracture in
the classical, virtually elastic manner. Such materials are those where, by nature
of their structure, much plastic flow is unlikely to occur before fracture.
Typical examples would be:

(a) glasses, where no slip planes are present;

o { zinc (basal-plane cleavage) and it is much easier to fracture by
pulling the close-packed planes apart
than to slip on other planes;

mica and other layer silicates } these structures are very anisotropic

diamond; tungsten and other } very high lattice resistance to dis-
refractory metals location movement (high Peierl’s
Nabarro force).
The Griffith theory does not explain the fracture strength of pure non-pre-
cracked, crystals of metals such as zinc or iron. The cleavage strength of iron at
77 K is about 750 MN m ™2, i.e. approx. £/300. Taking

E ﬁ\/(g 0.01 Ezbo)
00 % 3" &

2a=1200by = 0.3 um

© |

we have:

An inherent defect, even as small as 0.3 um, will not be present in a zone-refined
crystal, but the case is more convincing for zinc where the critical defect size
can be as great as several millimetres. Experiments have been performed, using
zinc crystals which were smaller than, or comparable with, this critical defect
size and yet which fractured at the low stress level®. In these pure crystals, it
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was necessary to produce crack nuclei and intense local stress concentrations by
dislocation interactions and the fracture stress was related to the yield stress
(mechanism control) rather than to Griffith’s thermodynamic criterion.

Discrepancies also arise when attempts are made to use the Griffith theory
in its original form to explain the fracture strengths of more ductile materials
which contain cracks. This is the real aim of fracture theory because these are
the muterials commonly used in structural engineering, where fracture is a
problem. The Griffith principle of relating crack extension to the change in
energy of regions relatively remote from the crack tip is followed in all the
methods of determining fracture toughness, but the changes in energy are
derived differently. Two types of approach are used: one experimental; one
theoretical.

4.4 Compliance Methods

If we refer back to the schematic load—extension curves drawn in Figure 4.5
for an infinite body containing cracks of length @ and (2 + §a) respectively, an
experimental method for determining the strain (or potential) energy release
rate, 7, suggests itself immediately. That the energy release for an increase in -
crack length §a is given simply by GBSa :% PSu where B is the thickness of the
plate. It is obviously somewhat difficult to measure this (shaded area) quantity
directly as 62 = 0, but it is relatively easy to rearrange terms to provide more
easily measurable parameters.

In general, we may write:

4=CP (4.4.1)

where Cis the reciprocal of the slope of the load-deflection curve ata
particular value of crack length, a, and, by direct analogy with stress—strain
relationships (equation 2.6.3) is known as the compliance of the system. Then,
for constant loading, GBSa =% P?5C or, in the limit as §a = 0

o= ;—}ﬂ (aa%) /B (4.4.2)

The problem then resolves itself into determining the compliance of the
specimen as a function of crack length and measuring the gradient of the
resultant curve at the appropriate initial crack length (see [igures 4.84 and
4.8b)°. The method is clearly most useful for relatively small test specimens
which can have precise measurements made on them in the laboratory, Under
constant load, it is important to measure the movement of the loading points:
in three-point-bend specimens, for example, the magnitude of the bending
moment arm would not enter into any experimental calibration of a particular
geometry. It would be included only if a theoretical compliance calibration, of
application to different sized testpieces for example, were being developed. It is
usually convenient and more sensitive practically to measure displacements close
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to the crack: the elastic strains in the rest of the specimen must then be
determined before the ‘compliance displacement’ can be used to calculate G.

In a small piece, the compliance method often provides the most direct method of
allowing for free surfaces, and additional stress concentrators. It is important,

P
Compliance = "
= 3
- \ce = W/6 Boundary collocation, using
B e 2 4. / polynomial stress functions
u=CP E 25} = (see Section 315)
u 1
=3 poee
= (2 = b KU
2 d " a’| @ ; Experimental compliance
5 g Blaist o A / measurements
= T - - W /
a -
E = 10 Thickness
=] ; ] =8
Q Crack length in < sk
/Iesl specimen 5

i L I f I
0 01 02 03 04 05

Crack lengih,a
ERpeid Relative crack length, a/w

Figure 4.8 Compliance measurements. (a) Principle of measurement. (b) The compliance
of an eccentrically-loaded SEN tension specimen (after Lubahn®)

however, in the experimental calibration, to make allowance for effects such as
plastic yielding near the loading points.

It is also apparent that the compliance method cannot be used for the
large structures to which toughness measurements will be applied. Here,
one must rely on theoretical methods for calculating the energy release as a
crack advances: it is important also to ensure that these theoretical methods give
good agreement with compliance measurements when both are dealing with
test specimens, so that confidence in their application to the large pieces can be
generated.

4.5 The Stress Intensity Approach’®

The problem is to calculate the energy release when a crack of length a is
extended to a length (a + 8a). Under constant loading, the release of

potential energy is equal to the release of strain energy under fixed grips as

§a — 0. Rather than follow Griffith’s methods, we concentrate on a crack tip
region which is small compared with the body as a whole but sufficiently large
with respect to atomic dimensions for us to be reasonably happy with the
application of linear elasticity theory. The physical situation is shown in
Figure 4.9 where the stress distribution ahead of a crack of length  and the
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displacement distribution within a crack of length (@ + 8a) are both shown.
From Westergaard’s solutions with change of axes (Section 3.7) we have:

ox :
=ﬁ (cf. equation 3.7.1)

a
U=t u

and, in plane strain,
uyy =2(1 - vz)-g- [(z + &a)? —xf]% (cf. equation 3.7.8)

or, by writing r = (x, —a)

N o(m) K
i V2 N(@2mr) (3.10.2)
uyy =2(1 —vz)g\/@a) (6a — 1) (4.5.1)

We may evaluate the change in energy in the body as a whole by calculating
the work done by the surface forces acting across the length 6a when the crack
is closed from length (z + 6a) to length 2'®. This virtual work principle is often
t t

| Displacement
\
|
|

I Ty u

)
SR SN
_%_/4,,,_---"'1 %

A l
i
|
I
Figure 4.9 Calculation of G from work done by crack tip stress field

of great use in problems involving energy: another very good example is seen in
the calculation of the strain energy of an edge dislocation”. The energy change
may then be expressed as:

ba
G5a:[ Oy dr (452)
<0

where the thickness is taken as unity. If, for example, both 0, and u,,; were
independent of r, we would simply recognise the integral as o . . 5z where
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o x 5a x 1 (unit thickness) would be a constant force doing work by moving
through a constant displacement. Physical situations in which both o and u are
constant will be considered later (Sections 5.4 and 6.2). As it is, we have, from
the Westergaard solutions (3.7.5 and 4.5.1)

2 ba o 3
Goa =2(1 —»?) 9;" j (‘5" ’)2 dr (4.5.3)
0 ¥

Making the substitution r = a sinw, this integral may be readily evaluated to
give:
o’ma
G5zt=—E— (1 —v*)ba (4.5.4)
If, from equation 3.10.2, we now make the standard substitution K = 0v/(ma)
we have: in plane strain

¢ =-“§ (1-2%) (4.5.5)

and, by an identical argument, in plane stress:

K2

GE

(4.5.6)
where K is the standard stress intensity, calculated by the techniques of elastic
stress analysis described in Chapter 3. A useful way of remembering the result
(and for this purpose only), is to recall that, if K is proportional to stress and
(K/E) or (K/E)(1 —v*) is proportional to strain, then the strain (or potential)
energy release rate is proportional to ‘stress x strain’, i.e., to K(K/E) or
K(K/EY(1 —v?).

Equations 4.5.5 and 4.5.6 are of very general application. It will be
recalled that, whatever the macroscopic geometry of the piece in which a
crack is contained, the stress singularity around the crack tip can always be
represented in the form o = K/\/(2mr), where K takes a value appropriate to
the geometry and stress system. Similarly, the displacement singularity may be
expressed uniquely in terms of K. Whatever the macroscopic geometry or
applied stress system, application of the Colonetti theorem to calculate the
work done in crack closure shows that the total change in energy in the body
as a whole can be expressed directly in terms of the individual stress intensities
which characterise the nature of the singularities in the crack tip stress- and
displacement-fields. For example, suppose that a crack of half-length a,
situated in an infinite body, were subjected to a tensile stress (Mode 1 opening),
to a shear stress (Mode Il sliding) and to an antiplane shear stress (Mode IIT).
The local crack tip stresses which could do work would be 0, (Mode I), the
shear 0, (Mode IT) and the shear 0,3 (Mode I11). These would be characterised
by the stress intensity parameters Ky, Ky and Ky respectively. Work would
be done only when these stresses moved in appropriate directions and the
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expression for the strain energy (or the equivalent potential energy) release rate
per unit thickness would be

1 ba
G = lim _“[ (011U11 T 012Uy + Oy31y3) dr (4.5.7)
sa—0 5(1»0

Evaluating the integral as before, and assuming plane strain conditions for
Modes I and II, we have:
EG=(1-v)K2+(1—v)KE +(1 +v) Kiy (4.5.8)
or, in plane stress for Modes I and II:
EG=K£ +K4+(1 + ) K% (4.5.9)

Similarly, for a crack opened by uniform tension (K singularity) and also by
wedging forces (K, singularity) we would obtain, for plane strain deformation:

B =(K &+ K1 —o%) (4.5.10)
and for plane stress deformation:
EG=K{ + K2, (4.5.11)

The power of this method of determining energy release rates lies in the fact
that they are expressed directly in terms of standard values of stress intensity,
which are now available and tabulated for a wide variety of geometries and
stress systems. The application to large structures is particularly important
because, in these, it is obviously impossible to make anything in the nature of
an experimental compliance calibration to determine G.

Griffith’s original concept of energy changes is well illustrated by this
method. No mention of fracture has been made in the interrelation of K and G.
What we calculate, and express as G . da or (K*/E). da is the energy per unit
thickness which would be released if the crack were to move forward by an
amount dz. Whether or not this is sufficient to cause catastrophic crack
propagation depends on whether or not it reaches a critical magnitude. On the
Griffith theory for perfectly elastic fractures, it would have to exceed the work
needed to separate the two surfaces, 2.

As before, the Griffith criterion, in plane strain, would be written:

ki
Gcm.da=%”(1 —v*) de =2y da (4.5.12)
for unit thickness, i.e. by substituting K = 0/(nz) and giving the value of ¢ at
fracture the symbol o, we obtain:

o~/

as before (equation 4.3.18). We shall now consider situations where the critical
value of G is substantially greater than 2.
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4.6 Quasi-brittle Fracture

Although the Griffith theory in its original form was considered to provide a
good explanation for the fracture strengths of very brittle materials, it was
realised that modifications to the theory would have to be made if it were
going to be equally successful in explaining the fracture strengths of the more
ductile materials commonly used in structural engineering. Experiments on the
fracture at room temperature of large, thin sheets of aluminium containing
central cracks gave cause for-optimism, that the theory could be of application,
because it was found that the fracture stress was again of the form:

o =\/(E ;T(;onst.) 4.6.1)

The constant was, however, found to be very much greater than the surface
energy of the material'?,

These results led Orowan'? and Irwin'? independently to suggest that the
energy release in the specimens was to a large extent dissipated by producing
plastic flow around the crack tip, so that the critical value at fracture was
apparently much greater than 2-y. However, it appearcd that the amount of
plastic work in the crack tip region which preceded unstable crack propagation
was independent of the initial crack length and was hence as characteristic a
measure of the material’s resistance to fracture as would be its surface energy
if it were breaking in a completely elastic manner. The important point was that
the amount of plastic flow at instability was very much smaller in extent than
either the crack length or the width of the sheet, so that, as far as the macro-
scopic energy release rate was concerned, methods of linear elasticity could
still be used to relate crack tip events to the applied stress. If, for example, we
referred back to the loading curves shown in Figure 4.5, it is reasonable to.
suppose that a small amount of crack tip plasticity will not alter significantly the
slopes either for crack length @ or (2 + 62) and so the relationship between G
and applied load still holds. We shall examine shortly how the relationship
between G and K is modified by rather larger amounts of crack tip plasticity.

Orowan re-wrote the Griffith relationship to give

o \/ [EQZMLP)} (4.62)

where yp represented the energy expended in the plastic work necessary to
produce unstable crack propagation. Since it was found experimentally that
(yp + 27) was very much greater than 27, equation 4.6.2 could be rewritten

e 22

and values of yp could then be determined directly from the fracture stresses
of specimens containing cracks of known lengths.
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Irwin’s approach was similar, but he took more pains to justify the use of
a linear elastic approach to relate fracture stress to crack length, even though
crack-tip plasticity was preceding fracture. His results were expressed in terms
of the critical value of strain (or potential) energy release rate at which
unstable propagation occurred. This value, G,,;;, provided a convenient
parameter to include all supplementary energy-dissipating terms, such as
plastic flow, which could in turn produce heat or sound, in addition to the
work required to fracture the lattice. The constancy of G,,4,, and hence its
use as a measure of a material’s resistance to fracture, will be found to depend
critically on experimental testing conditions, but, for situations where small
amounts of local plastic flow precede crack extension, which we shall call
‘quast-brittle’ behaviour, the critical value can always be related to the failure
stress by linear elastic methods. Irwin’s parameter, G,,;,, became known as a
material’s ‘fracture toughness’, although this term is now generally reserved for
the associated value of stress intensity, K., as defined through equations 4.5.5
or 4.5.6. The development of fracture mechanics testing since Irwin’s initial
work has been to define experimental conditions under which reproducible
toughness measurements, which have relevance to service application, can be
measured in laboratory tests. The practical details of this development are
discussed in the following chapter.

It is worth examining first how the linear elastic stress analysis may be
modified slightly to provide rather more accuracy when a small plastic zone is
present before the crack extends in an unstable manner. Use is made of the
‘notional’, or equivalent, elastic crack, described in Section 3.12. Here, in plane
stress, the presence of a plastic zone of total extent 2ry = K* /woé produces
crack of half-length (@ + ry). The failure stress is then given by:

op = / %ﬂ (4.6.4)

or, in terms of the critical stress intensity:

Kerit = 0p V[ma(l + 0%/20%) | (4.6.6)

For fractures well below yield (o < 0v), the correction factor is negligible,
but equation 4.6.6, shows that the simple relationship,

Keoviy = 0 V(72) (4.6.7)

(see equation 3.10.2) underestimates the fracture toughness by about 4% when
(op/oy) =0.4; by 8.5% when (op/0oy) = 0.6; and by 15% when (og/oy) =0.8.
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A similar conclusion is reached if the fracture stress is related to the plastic
zone size calculated, using the Dugdale model, equation 3.13.7. Here, we
obtained:

where 2ry is the total extent of plasticity ahead of the crack. By expanding
the secant term, we obtain:

o \—-1
”2%:(1“302 +) (4.6.8)
o*rta
Y = 166% (469)

If this value is now used to calculate the size of the equivalent elastic crack, we

have
oknla
Kopie = 0p / l}a (1 + 120‘3 )} (4.6.10)

The errors between equations 4.6.7 and 4.6.10 are slightly larger than those
found previously, using equation 4.6.6. We find underestimates of 4.5% when
(og/0y) =0.4; of 10% when (0g/0y) = 0.6; and of 20% when (op/oy) = 0.8,

The general conclusion for plane stress is that equation 4.6.7 may be used if
(op/oy) <about 0.4, but that equation 4.6.6 or, better, 4.6.10 should be used if
(or/0y) > 0.4. This limits errors to about 5% when using equation 4.6.7.

The further terms in the expansion of equation 3.13.7 (see equation 4.6.8)
become important for (op/0y) > 0.8 and even equation 4.6.10 does not give a
good representation of the failure criterion. It is possible to substitute more
accurate values for ry (from equation 3.13.7) into the equivalent elastic
crack formula 4.6.4 and hence to obtain relationships between K., and o
up to general yield. However, the validity of the equivalent elastic crack
concept becomes questionable at high values of (o/oy) and such relationships
should be treated with extreme caution. This point is discussed further in
Section 5.11.

4.7 Conclusions

This chapter has shown how the principles of fracture toughness testing have
been developed from the original Griffith analysis. Unstable crack propagation
occurs when the rate of release of strain energy (fixed grips) or potential energy
(constant load) exceeds a critical value, which is equal to the surface energy for
ideally elastic fractures. In practice, structural metals fracture under ‘quasi-
brittle’ conditions and exhibit critical values of toughness, which are composed
predominantly of the plastic work around the crack tip which precedes
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instability. The constancy of such toughness values in different testpiece
geometries and under different conditions of test temperature and strain rate
can be established only by experiment or by a full understanding of the factors
which control the amount of plastic flow preceding instability. The following
chapter describes how experimental techniques have been developed to enable
consistent values of toughness to be measured and the micro-mechanisms of
fracture at a crack tip are discussed in Chapters 7 and 8, to show how these may
sometimes be used to predict the point of instability.
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FRACTURE TOUGHNESS TESTING IN PRACTICE

5.1 Introduction

The theory of fracture toughness testing, as described in the previous chapter,
leads logically to the types of experiments used to determine critical values of
strain energy release rate or stress intensity. Precracked specimens of standard
geometry are loaded until they break and then, if the fractures are macro-
scopically brittle, the fracture loads can be used to calculate the toughness
directly, using a set of standard tables for the compliance of the specimen.
This procedure has now reached a state where it can be used in standard
specifications (B.S. Draft for Development No. 3; ASTM Tentative Method

E 39970 T) as described in Section 5.9 et seq. To understand exactly what
measurements are made in practice and why precise limitations are put on
specimen dimensions to give ‘valid’ results, it is instructive to review the
development of fracture toughness testing from the first experiments carried
out by Irwin.

5.2 Testing of Thin Sheet

Irwin’s experiments were devised to test his theory of fast fracture, in which
the failure stress of an infinite body containing a central crack of length 2a is

given by
e [;Gcrit )
Op _,\/(_'ﬁa_, (521)

in plane stress, where G, is the critical value of the strain energy release rate at
fracture. The equivalent expression in terms of stress intensity is (equation 4.6.7):

Kcrit =0f \/(m)
To simulate this situation as closely as possible, he chose to test large,
centrally-cracked thin sheets of aluminium’. Irwin allowed for the fact that the
114
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stress-free boundaries were not at infinity by employing a relationship between
stress intensity and applied stress of the form:

el

where W is the total width of the specimen (see equation 3.10.7). It can be
seen that, when (¢/W) is very small, the function in the square brackets tends
to the form v/(ma), as for an infinite body.

Irwin was then able to obtain the results shown in Figure 5.1, which indicate
quite clearly that o is inversely proportional to v/a. The value of G, calculated
from the results is of the order of 130 kJ m™2, i.e. about five orders of magnitude

i fot
.
%700" \\\ 11-:—-»— ZG;W:D-QS
Z 600 i v 74
:E’OOZ—X-—-—K =
o 00 N 2 ot
L 4001 el g
1] F
5 300F A
§2(}D—
+ 100
2 1
0 50 100 150 200

Crack length, 2@ (mm)

Figure 5.1 Net-section stress at instability v. crack length for 7075 Alloy (Al-Zn—Mg) — T6.
Face supports used to prevent buckling: plate thickness constant (0.8 mm)
(after Irwin, Kies and Smith')

greater than the surface energy of aluminium. The neglect of the surface energy
term in deriving equation 4.6.3 from equation 4.6.2 is therefore justified. The
whole analysis rests, of course, on the assumption that the behaviour is essentially
elastic and so the specimen’s dimensions must be much larger than the extent of
plasticity which precedes fracture. The relationship illustrated by Figure 5.1
showed that Irwin’s treatment was correct in its essentials and led to an

arousal of interest, particularly from the aircraft and aerospace industries, in

the possibility of design against fracture using fracture mechanics techniques.
Experiments were carried out on aluminium alloys, titanium alloys, maraging
steels and other high-strength steels, mainly using specimens in the form of
centrally-cracked thin sheets. One critical set of experiments will be discussed

in detail in the following sections, because the conclusions reached have had a
major effect on the specification of procedure and geometrical limits in modern
testing practice.
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5.3 The Variation of Fracture Toughness with Thickness

These experiments® were carried out, using an age-hardened aluminium alloy
(7075-T6), to investigate the way in which toughness might be affected by
the thickness of specimen tested. The results®>?, indicated in Figure 5.2, show
that a large variation in toughness is produced and substantial doubt therefore
appears to be cast on the possibility of measuring a single parameter which is
capable of measuring a material’s resistance to fast fracture in a way which can
be applied universally in practice.

To understand the form of the toughness curve in Figure 5.2a, it is convenient
to examine three regions: A, B, and C as indicated; and to take into account
also the fracture profiles and the form of the stress—displacement curves
obtained for each region as indicated in Figure 5.2b, A, B and C. The fractures
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Figure 5.2 (a) Variation of roughness with thickness for 7075 Alloy (Al—Zn—Mg) — T6.
(h) Fracture profiles and stress—displacement curves typical of regions A, B and C

are classified as ‘slant’ or ‘square’, depending on whether the macroscopic
fracture surface is at 45 to the tensile axis or normal to it. The second curve
in figure 5. 2q indicates how the proportion of square fracture varies with
specimen thickness. It is apparent that, up to the maximum of the toughness
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curve (region A) the fractures are completely slant, in thick specimens (region C)
they are almost completely square, and, for specimens of intermediate thickness,
they are of ‘mixed-mode’.

5.4 Fracture in Thin Sheet

We consider first the state of affairs in region A (Figures 5.2a and 5.2b). Here,
the specimens are very thin and tend to show increasing toughness with thick-
ness. The load—displacement curve is linear up to fracture and the fracture is
100% slant. This behaviour can be explained as follows™ °. In thin pieces, the
stress in the thickness direction tends to zero and the stress-state is essentially
that of plane stress. The specimen can be thought of as two free surfaces: in
fact, it undergoes deformation (buckling) which relieves any stress produced in
the thickness direction. From a previous argument (Section 2.11) we recognise
that the yield criterion is 011 — 033(= ¢y = 27y and that yielding occurs on
through-thickness planes at 45° to the X, and X5 axes. Extension of the
specimen therefore occurs by sliding which is not contained in the X, X, plane.
Since the crack extends normal to X, in any given X, X, plane, the crack tip
must move forward by an antiplane strain (Ky;;) mechanism. It can do this

only because, in any practical testing configuration, some buckling and twisting
allows the specimen’s halves above and below the fracture plane to be displaced
laterally. It is not clear that this Ky mode can occur if the specimen faces are
constrained in such a way that they cannot so slide and the extent to which they
can slide may be relevant when relating toughness values obtained on thin sheet
specimens to failure in, say, a pressurised, thin-walled, precracked tube. Results
obtained by Irwin, Kies and Smith' showed that the toughness of 0.8 mm thick
specimens was increased by a factor of two when buckling was restrained.

In a representative model of this type of fracture, the movement of the
surfaces ahead of the crack tip is indicated in Figure 5.3a and the sliding move-
ment is supposed to be achieved by the movement of a number of screw disloca-
tions on the 45° plane in the appropriate X, direction. As can be seen from the
small inset diagram, each screw dislocation (MN) produces a relative shift of the
top and bottom halves of magnitude b, where b is the Burger’s vector of the
dislocation. The total number of dislocations, 7, in the plastic zone is therefore
given simply by n =+/2 B/b where /2B is the relative displacement across the
45° plane required to give complete separation by a sliding-off mechanism. This
situation of an ‘inverse pile-up’ of dislocations constituting the plastic zone in
anti-plane strain deformation is exactly that treated by Bilby ef al. (equation
3.14.4), who give the relationship between sliding displacement, S, and applied

stress as:
S =ﬁaln [sec (,’lq—ﬂ
o Ty

where g and 7y are shear stresses.
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As a criterion for crack extension, we put § =+/2 B and then, for low

stresses, obtain,
: 2
g =J(2“TY \/_-B) (5.4.1)

ma

or, writing in terms of tensile stress (0 = 2q, oy = 21y ) and Young’s modulus

[£=2u(1 +p)].
o~ d ooy 4y

This criterion for first crack extension is also the criterion for total instability,
because the number of dislocations, and hence the plastic zone size, is constant
for a specimen of constant thickness. As ‘¢’ increases in equation 5.4.2, the
stress needed to cause further increase falls, yet the stress available, at least in a
‘soft’ (load-controlled) system, increases because the same load is borne by a
smaller specimen cross-sectional area. The crack therefore propagates at an
accelerating rate once it has begun to extend. This behaviour has been classed
as ‘cumulative’, because the contribution of each dislocation accumulates until
catastrophe occurs®. The load—displacement curve (Figure 5, 2z) is (macro-
scopically) linear up to the failure point, in agreement with this model for fracture.

Shear produced by
one dislocation MN

{

Local buckling and
—— Kqr mode separation
at the crack tip

(a) (b)

Figure 5.3 (a) Kyyp mode of separation in thin sheet. In practice, some crack opening will
he associated with this shear and the dislocations will be part screw, part edge. (b) Asym-
metric neck formation ahead of crack tip
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If one compares equation 5.4.2 with the conventional relationship between
failure stress, crack length and toughness (equation 5.2.1) it becomes possible
to write the critical strain energy release rate as

_23/20yB

Gcrit _W

=208 (54.3)
i.e. the crack tip stress field, which reduces to oy in the yielded region, does
work by moving through a constant displacement. This definition of G4,
predicts a very steep linear increase with thickness, which is generally held
adequately to represent the experimental results in region A of Figure 5.2. 1f
these were plotted in terms of K., rather than G,,;;, the relationship would,
of course, be parabolic in this region.

The model may not be correct in detail, because the antiplane separation
may be preceded by necking and thinning of the sheet near the crack tip
(Figure 5.3b)7. 1t is not clear whether or not the crack tip actually advances
by any fracture mode before the antiplane mode can occur. The important
point is that fully unstable fracture can occur by a wholly ductile fracture
mechanism, once a critical crack tip displacement has been attained, because
the plastic zone size at the point of instability needed to extend the crack is
very much smaller than the width of the sheet. The material itself is fully
ductile, but the particular assemblage of thin sheet, a long pre-existing crack
and a soft loading system can produce a fracture that is brittle in engineering
terms (see Section 1.6).

5.5 Plane Strain Fracture

We consider next the fracture behaviour of very thick specimens, as in region C
of Figure 5.2. Here, total instability occurs at loads corresponding to a
virtually constant toughness value and the fracture appearance is almost
completely square, with very small proportions of slant (‘shear lips’) at the
edges. We assume that the central region of a thick test piece deforms under
approximately plane strain conditions. Then, the strain, ey3, is zero and,

when yielding occurs around a crack tip, high constraints are set up, and a
triaxial stress state is developed (Section 2.11).

This stress state enhances the initiation of fracture, whether stress-controlled
or strain-controlled. It is easy to see that the high value of the maximum tensile
stress below the notch, 0,1, may promote any cracking mechanisms to which
the material is prone. Alternatively, if crack extension occurs when the strain
in the region immediately ahead of the crack tip achieves a critical value, an
effect of triaxial stress can arise through changes that it may make on the strain
gradient in this region. For a given crack opening displacement, the plastic zone
size in plane stress (specimen edges) is much larger than in plane strain
(specimen mid-thickness) because yielding spreads under a shear stress component
which incorporates the full value of the local tensile stress [0, rather than
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(¢y1 — 022): see Section 2,11 and Figure 5.4]. The strain distribution within
this larger zone is correspondingly more diffuse, because the change in plastic
displacement from the crack tip opening to zero at the plastic/elastic interface
is accommodated in a much larger area. In plane strain, the strain gradient
immediately ahead of the crack tip is steep; strain is more concentrated in that
region; and crack extension is easier to achieve.

X4

Edge: Centre:
plane stress  plane strain

Figure 5.4 Plastic zone ahead of crack in a plate of finite thickness. At the edges of the
B ; ; 5
plate (x3 -+ 7}) the stress state is close to plane stress. In the centre of a sufficiently

thick plate (x,— 0) the stress state approximates to plane strain

It has been postulated that crack advancement by simple plane strain plastic
flow, as indicated in Figure 5.5, does not lead to a fracture that is unstable or
brittle in the engineering sense®. The plastic flow required to produce an
increment in growth is modelled as two inverse dislocation pile-ups at 45° to
the tensile axis. A further increment demands the formation of two more
pile-ups of identical length. These can be created only by raising the applied
stress. Even if the rate of decrease of cross-section is sufficient to produce the
necessary increase in stress, the yield rapidly becomes far-reaching and the piece
yields generally before it breaks in half. Certainly, the fractures in region C
(Figure 5.2) occur so far below general yield that a displacement criterion of
this sort appears to be inapplicable. However, other models for ductile fracture
extension, based on the assumption of visco-elastic behaviour, predict plane-
strain instability. Such instability is, of course, also produced by cracking
mechanisms. Detailed discussion of plane strain fracture modes will be left
until Chapters 7 and 8. At this stage, it is immaterial whether the mode is stress-
or strain-controlled provided that it propagates in an unstable manner at a low
applied stress.
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In region C, the specimens are thick, so that virtually all the load-bearing
cross-section deforms in plane strain. Fracture propagates in the centre under
constant critical crack tip conditions and any differences in the behaviour of
the edges of the specimen are insignificant in determining failure conditions
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Figure 5.5 Non-cumulative ductile fracture by simple plastic extension. The fracture
cannot become unstable before general yield

for the specimen as a whole. The load is observed to rise in a linear manner
until a critical (low) value is reached, when catastrophic failure occurs.

5.6 The Intermediate Range?

In region B, the fracture behaviour is more complicated. The specimen is
neither so thin that failure occurs by the sliding-off mechanism observed in
region A, nor so thick that it fails by an almost completely ‘plane-strain’
square fracture. Instead, its thickness is such that the central and edge regions
are of comparable size. The sequence of events is then as follows, as indicated
by the load-displacement trace in Figure 5.2b. The load on a cracked specimen
is raised to a value, B, (corresponding to the stress 0y, in Figure 5.2b), at which
some square fracture can form in the centre of the testpiece’s thickness. In a
very thick testpiece, such fracture would spread catastrophically because it
would occupy a large proportion of the thickness, but, in the intermediate
range, so much of the load is borne by the side-ligaments of the cross-section
that total instability does not occur at the load P,. The load—displacement
curve may show a sudden extension for constant, or even decreasing, load if the
square fracture tunnels ahead rapidly. This is known as a ‘pop-in’. If the square
fracture does not advance so rapidly, its presence will be detected only by a
change in the compliance of the testpiece. The crack is longer; so the load—
deflection curve exhibits a decreased slope (see Figure 4.5). Both effects are
indicated in Figure 5.2b.
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As the load is raised above P, the central square fracture tunnels into the
centre of the testpiece and perhaps also spreads slightly in the through-thickness,
X3, direction. The side ligaments can be sheared apart when sufficient displace-
ment at the crack tip is attained and the total crack advances in a composite
fashion: the square fracture tunnelling ahead and dragging the slant (shear lips)
with it.

It is critically important to realise that, as the crack grows under increasing
load, the plastic zone ahead of the crack tip grows bigger and is therefore more
easily able to relax the through-thickness stress 0313. Less of the thickness there-
fore deforms in plane strain and the proportion of square fracture decreases. The
criteria for final instability in this intermediate range have not been fully
established, but the behaviour must run something as follows. At the thin end
of the range, the initial square fracture occupies only a small proportion of the
thickness cross-section; as it tunnels forward, the plastic zone size becomes large
with respect to plate thickness; the through-thickness stress, o535, is relaxed; and
final instability is achieved at a load, Pp, which is sufficiently large to operate a
sliding mechanism for separation, analogous to that observed in region A. The
sequence of events is illustrated in Figure 5.6 and is quite consistent, both with

L

i

Starter notch + fatigue crack

Square fracture

Slant fracture

X2

Fracture profiles, viewed
along- X;

Figure 5.6 Development of slant fracture in region B
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the fracture appearance of broken specimens and with the observed load—
displacement records. The fracture load is lower than that for a thinner
specimen, because the testpiece, at instability, contains a longer crack.

At the thick end of the intermediate range, the side ligaments bear a much
smaller proportion of the total load applied to the specimen and so final
instability follows the initiation ‘pop-in” more rapidly, provided that the test
is carried out under load control (a ‘soft’ system). The fracture profile at
instability is now a mixture of slant and sguare. Under displacement control,
arapid *pop-in’ can cause the load to relax.

The behaviour observed in this intermediate range gives rise to doubts
concerning the application of the Griffith—Irwin relationship as such to
characterise the failure criterion. If final instability is produced by a sliding
mechanism, the extent of the square fracture preceding instability depends in a
rather complicated manner on both the crack length and on the thickness of
the piece. Krafft, Sullivan and Boyle® observed that the increment of square
growth depended only on thickness and was sensibly independent of initial
crack length. The failure stresses that they observed for cracked aluminium
panels of different sizes could not be reconciled using Griffith—Irwin methods
because a growth increment of given magnitude perturbed the net stress field in
a small specimen more strongly than in a large specimen. Their treatment of this
situation is discussed in Section 5.8. We now summarise the effects of thickness
and discuss their relevance to toughness testing in general.

5.7 Conclusions on Thickness Effects

In regions B and C, it can be seen that the fracture behaviour of a testpiece is
best regarded as that of a laminate. The central part deforms under conditions
close to those of plane strain deformation: the side faces can support no stress
normal to the free surface and deform in plane stress. High tensile stresses and
a concentrated strain gradient are present ahead of the crack tip in the centre:
on the sides the stresses are much lower and the strain is spread over a larger
plastic zone. ‘Plane strain’ “pop-ins’ are produced in the centre at a critical value
of stress intensity: whether the fracture of the testpiece as a whole proceeds
catastrophically at this stress or at a higher value depends on the proportion

of the cross-section occupied by the shear lips.

The peak of the toughness curve occurs at a thickness of approx. 2 mm. For
thicker specimens, an increasing proportion of square fracture is produced, and
the total fracture toughness drops. To provide an upper bound for the curve
which shows how the proportion of square fracture varies with thickness, we
assume that the shear lips are of constant size (i.e. 2 x 1 mm) in specimens of
all thicknesses. Strictly, this situation applies only to the initiation of the central
square fracture at a constant value of Gyy. The curve shown in Figure 5.10
{(p.129) can then be constructed and is found to agree remarkably well with that
found experimentally, particularly for thick specimens. Some differences arise
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because the thinner specimens break at substantially higher loads so that the
size of the plastic zone, and hence of the shear lips, at fracture is not constant.
The next assumption to be examined is that the ‘pop-ins” are occurring
under plane strain conditions. If this were fully substantiated for a particular
alloy, it would be possible to make measurements of the stress intensity needed
to produce square fracture in specimens much thinner than are needed to
produce the limiting value of G, ;. The assumption rests first on the constancy
of the widths of the shear lips at the initiation of square fracture, implying that
the increase of 033 from zero at the free side surfaces to the plane strain value
in the centre of the piece occurs over a constant distance, and secondly on
behaviour of the ‘laminate’, such that both ‘plane strain’ and “plane stress’
fractures occur under uniquely defined conditions. There is, unfortunately, no
guarantee that a square fracture is characteristic of plane strain over all its
thickness. In mild steel, macroscopically square fractures have been shown to
occur at loads which decrease with increasing thickness until constancy is
achieved, when plane strain conditions are met (see Section 7.5). The fear is
that, in the aluminium alloys, a square “pop-in’ may occur in relatively thin sheet
at a critical stress intensity greater than the limiting value, so that the toughness
of the material for true plane strain conditions is overestimated®.
It is interesting to try to predict the extent of relaxation of the stress o5

and to compare this with the observed sizes of shear lips. At the plane strain Gy
value of 20 kJ m™? (see Figure 5.2a) the radius of the plane stress plastic zone
would be:

_ EG_

Y T 0y
_IxIxzox10”
~ 2mx25x10'°

(5.7.1)

m

taking appropriate values for £ (70 GN m™?) and ¢y (500 MN m™?) for the alloy.
We obtain:
ry =%x 107 m=1mm (5.723

If the 033 stress is assumed to relax over a distance equal to the radius of the
plastic zone, the agreement between the calculated size (1 mm) of a single shear
lip at the plane strain fracture toughness level and the critical specimen thickness
(2 mm) at which square fracture is first observed is excellent. The ‘pop-in’
procedure for plane strain toughness determination is thus apparently well
substantiated.

However, the only indication of plane strain is the occurrence of square
fracture, and the argument is fallacious if such fracture can occur under non-
plane-strain conditions. The ‘pop-in” value may then be too high. Suppose, for
example, that 033 was relaxed over a distance of 2ry (the total length of the
plastic zone) from the side face. Then, square, but non-plane-strain, fracture
would occur in specimens whose thickness lay between 2 mm and 4 mm, and
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the ‘pop-ins’ would occur at progressively decreasing nominal stresses with
increasing thickness.

There is a case to be made for the non-plane-strain square fracture in
terms of an assumed three-dimensional stress distribution. If we examine the

X
—J_>Xz
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Stress

dy = Distance

Plane strain
033="1; (o3y+3)
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/\ Iy
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Figure 5.7 Schematic variation of stresses in plastic zone with thickness. a,, falls to a value
which is supposed to lie in the range 0.2—0.6 av on the free surface. Triangles DEC and
B, FC are similar: hence

B,C B,F

CD  DE
Triangles B, DB, and B,CB, are similar; hence

BB, CD DE

variation of stresses in the plastic zone as a function of thickness, we could
obtain something of the form of Figure 5.7.

It can be seen that there is a region, between B, and B, , in which the
hydrostatic component, and hence ¢, , is less than in plane strain, yet 0,, is
still the smallest principal stress and so, on Tresca’s criterion, yielding still
occurs in the X; X, plane on slip lines at 45° to the X, and X, axesasin
plane strain. The reduction of o;, means, however, that processes such as
brittle cracking (see Chapter 7) are less favoured and a greater load must be
applied to fracture such a region. A toughness calculated from the onset of
square fracture in specimens of thicknesses lying between (B_38-; + B, B3)
and (B_3B_, + B, B3) can therefore be unduly optimistic.
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We attempt roughly to estimate the magnitude of B, B, as follows, for the
situation given in Figure 5.7 where we have given 0,, a typical plane strain
value of 1.5 oy and 6, a value of 2.5 oy. From the geometry of the similar
triangles, we see that the the ratio 8, B3: B, B, is equal to the ratio B;F : DE,
i.e. to the ratio of the value of 0,, on the side faces to (033 — 0,7) in the centre.
This latter value is equal to 0.5 0y . An estimate of the appropriate figure for
04, on the side faces is not easy to obtain, but upper and lower limits, taken as
0.2 0y and 0.6 oy, give a range for the ratio B,B5 : B, B, of 0.4—1.2.

Within the obvious errors of our estimate, we see that the thickness over which
we might expect to obtain square, but non-plane-strain, fracture is comparable
with that in which through-thickness yielding ought to predominate. As a
rough guide, we suppose that the thickness at which plane strain fracture first
occurs in a specimen is twice that at which some square fracture is first
observed. This seems to correlate with a total thickness equal to twice the total
extent of the plane stress plastic zone at fracture.

No direct evidence of the point appears to exist, but it is perhaps instructive
to compare the critical thickness for the onset of fully plane strain fracture,

15 mm, and associated shear lip thickness, 2 mm, giving 13/15 = 85% square
fracture, with the figure of 70% cleavage facets needed to sustain fully brittle
fracture in mild steel®. Cottrell® has explained this latter figure in terms of
constrained Orowan yielding (Section 2.12) between cleavage microcracks. If
033 were relaxed over a distance of twice the shear lip thickness, a figure of
11/15 = 73% would be obtained for the proportion of plane strain fracture,
in closer agreement with the steel results.

In thick specimens, the total toughness is controlled by that of the square
fracture. So much load is transferred to the shear lip regions when the central
fracture starts that they fracture catastrophically and final instability is
coincident with ‘pop-in’. This is the situation that gives constant toughness
for all large thicknesses and is that sought in the techniques of plane strain
fracture toughness testing which form the British and American standards, as
described in subsequent sections,

The total fracture toughness of a specimen in the intermediate range is
composed of significant contributions from both the slant and square compo-
nents. Estimation of the subsequent toughness is not simple, because, as the
crack tip advances under constant load, the strain energy release rate increases,
so that more driving force for accelerating fracture is available, yet the plastic
zone size, and hence the area that will fracture by high energy shearing, also
increases, so that more work needs to be done to cause failure. The precise
balance between these two factors determines the onset of total instability.

5.8 The R-curve Analysis

The problem of fractures in the intermediate range will be discussed before the
standard plane strain methods are described, because due allowance for both
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square and slant modes lies at the heart of the proper understanding of the
fracture of cracked pieces. The approach followed in this section is a version of
that given by Krafft, Sullivan and Boyle* who attempted to make quantitative
estimates of the increase in resistance to fracture as a crack grows, by means of
‘resistance-curves’ or ‘R-curves’ derived as follows.
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Figure 5.8 Schematic diagram, showing increase of crack-growth resistance and shear lip

width with absolute crack extension in 3.1 mm thick 7075 sheet. The extrapolation of

shear-lip width to zero for very small crack extension is incompatible with the results

quoted in Figure 5.2, which suggest an extrapolation to 2 mm (after Krafft, Sullivan and
Boyle?)

Figure 5.8 is taken from Krafft, Sullivan and Boyle, and shows both the
increasing resistance to crack growth and the increasing thicknesses of shear
lips as cracks propagate from initial sharp notches in 3.1 mm (0.125 in) thick
plates of the aluminium alloy on which previous discussion has been based.

In the early stages, the resistance curve bears a close relationship to the
increasing depth of shear lip. Krafft, Sullivan and Boyle suggest that the
continuing increase in resistance once full thickness shear has been attained
is associated with change in shear angle, but it has more probably arisen from
testing machine relaxations in these particular experiments, since Figure 5.2
shows that instability can be produced at a G,y = R value of about 100 kJ m™
in direct loading tests carried out on the same thickness.

Krafft’s analysis proceeds simply by assuming that the shear lips are at 45°
and that the plastic zone bounded by these two 45° lines and those symmetri-
cally disposed at 45° across the crack plane is subjected to a uniform “plastic
work density’ (dW,/d V") which is supposed to be constant (Figure 5.9). Then,
if the two shear lips together occupy a fraction SB of the cross-section, the
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thickness of a shear lip’s ‘plastic volume’ is BS/2. For a given increase in crack
length da, the total plastic volume of both shear lips is
(BS BS BAS?
2% (7 s )d =
BES?
5 -da. The work done in producing

wnit area of square fracture is assumed also to be constant and is denoted by
(dW,/dA).

da (5.8.1)

and the plastic work done is thus (dW,/dV)

r——/\————-'_—‘_—/'_*‘—'—
S (4]
\\ l
g2 {
. { B3 Area(1-S)Bda |
450 s e
% 4
e . “

B da

Figure 5.9 Krafft's model for the calculation of crack-growth resistance (after Krafft,
Sullivan and Boyle*)

Then for a given increase in length da, we have for the work done:

‘AW, AW\ B*S?
W={—= + |2 582
d (dA)Bda (dV) 5 (5:82)

in the original Krafft derivation, or, treating the shear lip fracture as part of the
‘plastic work density’:

dw, . AW\ B2S?
dw = |—= —S)dat (—2 8.
( ) B(1 —5)da (dV) 5 da (5.8.3)

Dividing through by the incremental area, Bda, we have (for unit thickness):

dw _ (dw, ‘dW,\ BS®
R=G=—= 22} (1-85)+ (—= 5.84
da (dA)( ) (\dV) g 84

Krafft ez al fitted their experimental data to this expression [ignoring the
(1 =5) factor in the first term] to obtain values for (dW,/dA4) and (dW,/dV)
and showed agreement for both 3 mm (0.125 in) and 4.5 mm (0.1875 in) thick
sheet. The value of (dW,/dA) was found to be about 13.5 kJ m™? and
(dW,/dV) about 145 kJ m™.

The critical point in the fitting of such a relationship appears to rest simply
on the use of the square of the fraction of shear lips. Assuming that the initial
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shear lips have a constant thickness of 2 mm, we take a value of 20 kJ m~? for
(dW/dA) for the square fracture and 200 kJ m™ for an ‘effective (dW/d V)
for shear lip fracture (the lower limiting value for thick specimens and the
peak G,y value for 2 mm specimens respectively). Then the toughness values
in the intermediate range can be shown to be well represented by the
expression:

Gerit = 20052 +20(1 - 8) (5.8.5)

where S is the initia/ fractional proportion of shear lips, as calculated by

assuming that the shear lips are 2 mm thick. Values of the parameters are given
in Table 5.1 and the fit is indicated in Figure 5.10.
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Figure 5.10 Calculations of percentage square fracture and toughness (see Table 3.1)
—+—+~ Y% square fracture 100(1 — 8) calculated assuming constant thickness shear lips,

T

where B is in mm. —x—x—xX Ggyyy caleulated from the formula
: 2 :
Geyit = 20087 + 20(1 — §) where S is the proportion of slant fracture = 5 and Gy IS in

kJ m™2 The figures 200 and 20 represent the upper and lower limiting toughnesses
respectively. — — — — experimental results from Figure 5.2

It will be noted that this expression makes use of the experimental value for
the work done in fracturing a specimen of thickness equal to two shear lips, so
that the B/2 factor in equation 5.8.4 is automatically included.

Despite the fact that this is only a lower estimate, because the inirial fraction
of slant fracture has been used, agreement with experiment is obviously good.

Krafft, Sullivan and Boyle also examined the way in which the shear lip
fraction increased as the crack grew (e.g. Figure 5.9). It was found that §
depended principally on the absolute crack extension and it was to some
extent possible to relate the increase in load during crack extension with the
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increasing proportion of shear lips. In general, however, an accepted theory for
explaining fractures in the mixed mode range (region B, Figure 5.2) does not
exist and ‘R-curves’ have to be determined experimentally for a given specimen
geometry. Standard testing is aimed at producing consistent ‘plane strain’
toughness values.

Table 5.1

Sp"c”m("’r’;g;wk”e“ s l=f 49 2008 20(1 -5) i
2.0 1 0 1 200 0 200
34 0.8 0.2 0.64 128 4 132
3.0 2/3 1/3 4/9 88 7 95
4.0 1/2 1/2 1/4 50 10 60
6.0 1/3 2/3 1/9 22 13.3 35.3

10.0 1/5 4/5 1/25 8 16 24

125 0.16  0.84  0.0256 5 17 2

25.0 0.08 092  0.0064 1.3 184 19.7

50.0 004 096  0.0016 0.3 192 19.5

5.9 Plane Strain Fracture Toughness (K;c ) Testing

The aim of plane strain fracture toughness testing is to obtain reproducible
values for the lower limiting critical toughness of a material, tested in
sufficiently thick section for the shear lip contribution to the toughness to be
neglected. Simultaneously, the fracture must proceed under quasi-elastic condi-
tions, i.e. the size of the plastic zone at fracture must be very much less than the
cross-section of the specimen. A third requirement is that the region of interest
at the crack tip must be very much smaller than the crack length, so that the
critical fracture event may be characterised by a single-valued K parameter (see
Section 3.10). The critical toughness value in mode I opening is then denoted by
Kic. The recommended procedures for plane strain toughness testing attempt to
meet these three requirements in specimens of a size which is economical on
usage of material and which can be easily tested in the laboratory.

The centrally cracked wide plate demands large specimen sizes, with attendant
problems regarding the capacities of testing machines. The first attempts to
reduce specimen size led to the selection of a single-edge-notched (SEN)
geometry as indicated in Figure 5.11. In relatively thin plate, these were used

Thickness, 8 is %" to %’

\
| |
T ETR

Figure 5.11 Single-edge-notched tension testpiece
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with some success whilst the ‘pop-in’ procedure appeared tenable, but the still
fairly large sizes required to produce instability at the lower critical value led to
a search for specimen designs in which a given K-value could be produced in
smaller pieces, and hence with lower loads. The term ‘K-capacity’ is used to
characterise this property. Additionally, the SEN testpiece was not wholly
satisfactory in that its asymmetrical geometry under nominally uniform tension
tended to produce an additional bending component which could not be
allowed for easily.

The designs currently recommended in ASTM or British Standards are as
shown in Figure 5.12a and b. Both are SEN specimens subjected to a bending
moment. The bend specimen is deformed under three-point loading: the
‘compact tension specimen’ (CTS) is subjected to point loading through pins
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Figure 5.12 Standard toughness testpieces. (a) Single-edge cracked bend testpiece.
(b) Compact tension testpiece (CTS)

above and below the crack faces. Variations of the pin-loading system, using
screw-threads or screw-thread/pin combinations (WOL specimen, Figure 9.6)

have also been tried.
The K-calibration of specimens of complex geometry is not easy. Modified

stress-functions can be developed, so that the boundaries of the specimen
remain stress-free, but the modifications must, by definition, be concerned
with conditions remote from the crack tip. Much careful investigation of the
functions has to be carried out to ensure that the modifications made produce
sensible results in the critical K singularity field near the crack tip. The stress
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obviously tends to infinity as the tip is approached, but we may expect to
detect differences in the region just ahead of the tip.

The alternative method of producing K-calibrations is to make use of the
compliance technique (Section 4.4) either by measuring the compliance
experimentally or by calculating the overall elastic response in various regions
of the specimen.

Table 5.2 COMPLIANCE COEFFICIENTS FOR STANDARD TESTPIECE GEOMETRIES
(Figures 5.12a and 5,12h)

For the bend testpiece

- 3PL 93'51% 457 (a5 a\F a\T a\%
= l‘ —_— St i —_— _— IRy S, p—" i
= (w) (w) + 14.53(W) 25.11 (w) +25.80 (w) J

P a \
where L = 2W. Hence, K =— Y, where ¥, =, (—

BW? W’
Value of Y,
T . _Y o a a
W ‘ w & W i W d
0.450 91 0455 9.23 0510 1096 0515 11.14
0.460 9.37  0.465 9.52 0.520 11.33 0525 11.52
0.470 9.66  0.475 9.81 0.530  11.71 0535 1191
0.480 9.96 (485 10.12  0.540 12.12 0545 12.33
0.490 10.28 0.495 10.44 0.550 12.55 -
0.500 10.61 0.505 10.78

For the CTS testpiece

P (a\& a\F a\F ‘a
K= | 296 1" =1855 | “+6557 {4 —1017 |-
B W W, W W

2 o e
Hence K =—7 ¥; whiere ¥, =f, (ﬁ)

Tl
.
o
w
o0
O
e
=|=
T —
-
| e R

BW? W
Value of Y,
- — - - B
= Y, £ , e Y, = Y
W AN e T N
0.450 8.34 0.455 8.45 0.510 9.90 0,515  10.05
0.460 8.57 0.465 8.69 0.520 10.21 0.525  10.37
0.470 8.81 0.475 8.93 0.530 10.54 0.535 1071
0.480 9.06 0.485 9.19 0.540 10.89 0:545 1107
0.490 9.32 0.495 9.46 0.550 1126 -

0.500 9.60 0.505 XTS5

Values of ¥ for intermediate a/W values may be found fairly accurately by linear
interpolation.

The standard specimens have been calibrated by several methods, which
have been refined until complete agreement has been achieved. Information
is presented to the user of the standard procedures in terms of a compliance
coefficient (the Y-function) which enables the load on a specimen to be
converted directly to the K-value. The main variable in testpiece preparation
is the ratio of crack length (@) to testpiece width (W) (see later), and Table 5.2,
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which is taken from the British Standard, shows Y as a function of (a/W) for
standard bend and CTS testpieces. The appropriate polynomial forms for K
are also given. We now proceed to examine the restrictions placed on specimen
dimensions.

5.10 Specimen Dimensions: Crack Length

The restriction on crack length is treated with reference to the distribution of
the tensile stress o, ahead of a crack (from equation 3.10.2) as given by

it
2

where 7 is the distance ahead of the tip. K| is the leading term in a series of
coefficients and dominates only for very small values of 7. For different test-
piece geometries, we determine stress distributions and K-coefficients as
described above. K is calculated as a single-valued parameter only as r tends to
ZEro.

o SETTes (5.10.1)
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Figure 5.13 Variation between crack tip stress as calculated from a single-valued stress
intensity factor, o, (K), and that calculated from the full series, o, expressed as the

k)
percentage 100 [M and plotted v. distance ahead of the crack tip

T 2=t (after Wilson®)

Now, in Figure 5.13 we compare stress distributions ahead of a crack tip for
different testpieces loaded to produce the same crack tip (r = 0) stress intensity.
As r increases from zero, we expect that the stress will be described less and less
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accurately by a single value of K, because the extra terms in equation 5.10.1 begin
to contribute. It is critically important also to realise, however, that the stress
distributions are different in different testpieces, so that the deviations from a
single valued K parameter description also differ. If we are to obtain agreement
between experimental fracture stresses in different specimens through a K
approach, we must ensure that the fracture events are limited to a region ahead
of the crack which is so small, compared with the other specimen dimensions,
that the single K-parameter describes the stress field in the critical region with
almost complete accuracy. The specification of the size of such a region is one
of many value judgments made in fracture toughness testing. It is usually taken
to be a size equal to one-fiftieth of the crack length. In terms of fracture
criteria, this is interpreted as being equivalent to saying that the radius of the
plane strain plastic zone at fracture must also be less than 0.02a. If the radius of
the plane stress plastic zone is ry, the radius of the plane strain plastic zone,
Fry, is taken to be one-third of ry, because the plane strain yield stress is raised
by constraint to a maximum value of 30y (see Section 2.12). Thus:

riy =3 Kic/2mo% <0.02a (5.10.2)

where K¢ is the critical value of stress intensity at fracture (see page 130).
Reference to Figure 5.13 shows that this criterion produces, in the elastic stress
analysis of the crack tip stress fields: about 7% error for a CTS specimen; about
6% error for SEN bend; about 2% error for SEN tension; and about 1.5% error
for the infinite plate solution”.

We can estimate this last error by recalling the Westergaard solution for the
stress ahead of a crack. From equation 3.7.1 (with change of co-ordinates) we have:

2N =
011:0(1 f%) (5.10.3)

X2

Substituting r = (x, —a) and expanding, we obtain

ola +r) r . 3 9 )
e s e 5.104
S \/(Zatr) (1 de 32 uF ( )
Putting r = 0.02¢ and considering terms in # up to power 1, equation 5.10.4
becomes
_ 0(1.022)(0.995) _ na ) 510.5
011——\/(2;’:)4' 1.015¢ —21_”_1 (‘10 )

Comparison of this more accurate form with the simple expression

o,l=o~/(%)ﬂ\/(§m‘) (3.10.2)

used previously to give the o, stress shows that the simple expression under-
estimates the value by about 1.5%, as indicated in Figure 5.13. Calculations of



FRACTURE TOUGHNESS TESTING IN PRACTICE 135
errors for the other testpiece geometries follow the same procedure, but involve
more complicated expressions for the o, stress because the polynomial stress
functions used to determine crack tip stresses contain more significant terms.

Since the principle which underlies the crack length criterion depends on the
deviation of the real stress distribution from the assumed single-valued K-
parameter distribution, it is not clear why the criterion is not expressed on the
percentage deviation, even though this would imply different ryy /a ratios for
different testpiece geometries. Nevertheless, the ratio is at present standardised
as 0.02, implying the different deviations shown in Figure 5.13.

5.11 Specimen Dimensions: Ligament

The second restriction is on the width of the specimen ligament, i.e. (W —a).
If (W —a) is too small, compared with the size of the plastic zone at fracture,
the quasi-elastic solution for stress intensity breaks down, because the closeness
of the stress-free boundaries significantly affects the crack tip stress field.

To provide a basis for the (W —«) restriction, we examine the solution'® for
the spread of plasticity in an infinite series of cracks whose centres are spaced
2W apart (see Figure 5.14).

1 2w 2w | 2w
»1—:—5 —
bo2ag ! 2ab

X
(W-a)

Figure 5.14 Model used for ligament restriction (see also Figure 3.14)

If the plastic zone has length dy = 2ry, it is found that:

S [ I B mo \ |
dy —a{?m sin I:sm (2_141) sec (T(JY—)J 1} (5:11.1)

i.e.as (a/W)—=0,s0dy —~a |sec L2—0) — 1] as for the isolated crack in an
Oy

infinite body (equations 3.13.7 and 3.13.9). Taking dy = 0.04a (dy is the total
extent of the plastic zone), we find that the stress in an infinite body needed to
produce this amount of plasticity is given by:

O
—_— — 9l
sec (20'{) 1.04 (5.11.2)

At this stress level, we examine the effect of (W —4) on the spread of the
plastic zone, as shown in Table 5.3, derived from equation 5.11.1 by
substituting different values of (a/W). Values for dy = 0.02¢ are included for
comparison.
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The usual value taken for toughness testpiecesis (W —a) =a,ie. W/a = 2. We
see from Table 5.3 that this means that the size of the plastic zone can be as
much as 25% greater in the testpiece than would be predicted for an isolated

Table 5.3. ESTIMATE OF LIGAMENT RESTRICTION [assuming (dy/a) = 0.04 or 0.02
for the infinite plate]

)= 1.04 or 1.02

o
Hence sec (
20y

(dy/a) (from equation 5.11.1)

W/a
(dvy/a)., = 0.04 (dy/a),, =0.02
4/3 0.1 0.045
3/2 0.07 0.035
2 0.05 0.025
3 0.045 0.022

crack in an infinite body at the same stress intensity. In terms of the
equivalent elastic crack, the effect on K, given by equation 4.6.6, may be
written as:

SK/K =~/(1 +ryja)—~/(1 +Fy/a)
=(1+0.025) —(1 + 0.02)* (5.11.3)

and is found to be less than 0.5%. This conclusion holds only for the very low
stress intensities associated with the plastic zone size rjy = 0.02a. For higher
stresses, the errors become much larger, and eventually markedly affect any
substitutions into an equivalent elastic crack formula (see Section 4.6), based
on plastic zone size, for any testpiece of finite width.

5.12 Specimen Dimensions — Thickness

The limitations on specimen thickness derive from the results on aluminium
alloys described in Section 5.5 and from similar experience obtained on
maraging steels. The thickness required to give ‘plane strain’ behaviour (total
instability at the lower critical toughness) is taken to be:

2

K

B=25 (_E) S 120
Uy

where Kg is the plane strain fracture toughness. Substituting values for the

aluminium alloy from Figure 5.2, equation 5.12.1 gives the condition B 2 15.5 mm

which may be seen fairly to represent the experimental observations. In terms of

the radius of the plastic zone, we have:

B=Smry (G 1o

using equation 5.7.1, where rvy is the radius of the plastic zone in plane stress.
In plane strain, the radius r;y is taken to be one-third that in plane stress, as
before. Thus, approximately:

B = 15ar;y =47y (5123)
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This value is extremely close to that decided upon previously for the crack
length restriction (@ = 50r;y, Section 5.10) and the two dimensions are planned
to be identical in the standard testpieces. The final limits become:

K 2
a=(W-a)=B=25 (—UE) (5.12.4)
¥

and these must all have been satisfied before a Ky result can be classed as
‘valid’.

5.13 Test Procedure

Once specimens have been made to the recommended design, it is necessary to
introduced a sharp crack at the tip of the stress concentrator. Figure 5.15 shows
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Figure 5.15 Schematic variation of toughness with notrch root radius. Data taken as for that
of a high-strength steel

the effect of using concentrators which are not infinitely sharp: it can be
seen that the final toughness decreases rapidly with root radius until a
limiting ‘cut-off” radius is obtained. To introduce sharp cracks, fatigue crack-
ing is usually employed. The peak stresses achieved during fatiguing must,
however, be very much less than those producing fracture, or it is found that
the toughness value depends on the fatigue loads used, e.g. Figure 5.16. If the
maximum stress intensity during fatigue is denoted by K¢, a crack may initially
be grown at values of Ky < 0.75 K[ the last 1.25 mm or 2.5% W, whichever
is greater, must, however, be grown by intensities K¢ > 0.67 K, to preclude
effects of the fatigue on the subsequent toughness. The crack front must be
kept as straight as possible: at the end of pre-cracking, the central and surface
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portions of the crack should not differ in length by more than 5% and the
crack plane should not twist or tilt by more than 5°. The final a/W value must

lie between 0.45 and 0.55 (see Sections 5.11 and 5.12).
The standard testpieces have been calibrated to provide a value of K for a

given value of load, using standard tables as Tuble 5.2, provided that the total
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Figure 5.16 Lffect of fatigue stress level on fracture toughness. (The low alloy steel results

indicate that higher values of K can be tolerated in a fatigue test than in a subsequent frac-

ture toughness test carried out under slower rates of loading, and suggest that the restrictions
on fatique stress level may be unduly conservative) (after May'®)

behaviour of the piece is such that fracture occurs under what are nominally
elastic conditions. The test procedure provides a method of estimating how
closely this condition is approached by the examination of load—displacement
curves, as follows. /

Load is measured by a conventional load-cell, which must be accurate to
better than £1%. Displacement is measured by means of a ‘clip-gauge’ mounted
across the open mouth of the stress concentrator as shown in Figure 5.17. The
gauge is composed of two cantilever beams separated by a spacer block. Resist-
ance wire strain gauges are affixed to the tension and compression faces of each
beam and all four gauges are used as the arms of a Wheatstone’s Bridge. The
deviation from the true displacement has to be within 0.003 mm for displace-
ments up to 0.5 mm and within 1% of higher values. Load and displacement
are then plotted as the ordinate and abscissa respectively on an X— ¥ recorder.

Typical load—displacement curves for different materials and different thick-
nesses are shown in Figure 5.18. Trace (a) represents ideal behaviour. Total
fracture or, at least, substantial crack advance is obtained at a characteristic
load and the trace remains linear until this load is reached. The load can
obviously be used directly, via the calibration tables, to calculate K.
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Conversely, in specimens which are not sufficiently thick, giving traces such
as (c) or (d), where total fracture or limited cracking is preceded by large
amounts of plasticity, it is apparent that K¢ values, as such, cannot be
obtained, and, if values of toughness are needed, R-curve analyses (Section 5.8)

Load

Load

(e)

500 ohm wire
_~ resistance
strain gauge

Tension

Gauge mounted on testpiece

Figure 5.17 Design and assembly of clip gauge

Acceptable Transitional
s e
n=)
Secant = Secant
ot
(b) -
Displacement Displacement
Oftset Offset
b=}
o
o
Secant ~ Secant
(d)
Displacement Displacement

Figure 5.18 Schematic load—displacement curves. (For the secant construction see

Figure 5.19 and rext)
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should really be adopted. Trace 5.18(b) represents transitional behaviour,
which will be discussed in the next section, together with the procedure for

deriving a toughness value from a rising-load curve.

5.14 The Offset Procedure

A criterion to decide whether or not the plasticity preceding pop-in is large
or small needs to be applied in situations such as that shown in Figure 5.19 (or
5.18b) where there is some curvature to the trace, preceding an obvious

Av; A
Load i e

Secant line . 5% decrease
/' in slope 225 °% increase in
reciprocal slope

Displacement

Figure 5.19 The secant construction for a trace showing an obvious pop-in. (An ‘obvious’

pop-in is one for which Avp, the extra displacement due to pop-in, is greater than the

distance ab between the elastic modulus and the secant at the load Py, — i.c. the pop-in is

> 0.02 a,). On this trace, Pg = Py, Had the secant line intersected, at P, o the left of Py,
Pg would have been taken as P (see text)

sudden pop-in which produces an increased displacement under decreasing
load. The standard criterion is derived as follows. Suppose that P, is the
maximum load preceding pop-in and that v; is the displacement associated
with the elastic loading of a testpiece containing a crack of length @, to the
load F,. Then Aw; represents the non-elastic displacement prior to pop-in.
This may arise from plasticity effects or from a change in specimen compliance
if there has been any slow crack growth prior to pop-in. It is this second
situation that is analysed to provide the criterion.

If Ay; is due to an increase in crack length of magnitude Ag, it is assumed
that Az shall not exceed the value previously associated with the region
dominated by the K singularity (equation 5.10.2), i.e.

Aajag < 0.02 (5.14.1)

To convert this back to a displacement criterion, use must be made of experi-
mentally determined compliance curves which relate displacement (v) to load
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(P) as a function of relative crack length (a/W). Expressions take the form:

v.%=f (%) (5.14.2)

where £ is Young’s modulus and B is thickness. Then, at constant load:

Av _ Av EB/P f(;/ AI/I(;) f(W)

5 GERP f('a) Gl
Since Aa <€ g, (the condition was Ag = 0.02a,), we may write:
where f stands for [ (W) Thus
Ay
o= B—S% @%W)} £in (5.14.5)
Or, since we have decided that Ag, ¥ 0.02¢,
A 5 gitg [—0 = (5.14.6)
; WL d(ﬂo/W)d
+0.02 H (5.14.7)

where H is a calibration factor derived experimentally from load—displacement
curves as a function of (a,/W). The limitation on deviation from linearity may
be expressed in terms of the reciprocal slope of the (‘secant’) line joining the
origin to the maximum lead, P,, on the trace (see Figure 5.19). Since the dis-
placement at this point B, is v; + Av; we have:

U; + Al-'i

<21 +0.02H] (5.14.8)
P 5

For the recommended range of values of (aq/W), lying between 0.45 and
0.55, it is found that 0.02 A has an average value of 0.05 for SEN bend
specimens (Figure 5.20). This leads to a requirement that the deviation from
linearity before pop-in should represent a change in reciprocal slope of not
more than 5% on the load—displacement trace, where load is the ordinate and
displacement is the abscissa.

The standards put this requirement rather differently. A straight line is
drawn through the initial part of the trace, corresponding to elastic loading,
and a secant line is drawn with a 5% decrease in slope (see Figure 5.19). For
traces more or less at 45° to the axes (the standard specifies inclinations
between 40° and 657) this corresponds reasonably enough to the increase in
reciprocal slope. The point P represents the lowest load at the intersection of,
or tangency to, the load—displacement curve. Then for a trace of the type
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shown, the load, Pg, used to determine toughness is equal to P or to any higher
load preceding P. The toughness value is denoted by K.

For traces of a type which do not show a definite pop-in (e.g. Figure 5.21), a
different procedure is adopted. Again, the 5% secant line is drawn and the point
P =P located. The difference in displacement between the trace and the
elastic loading line at the load Pg is measured. Let this be denoted by z. Then a
similar displacement, ', is measured. from the elastic loading line to the actual

o5 ok
Lt H{W‘TB‘(‘_}
w
2l

Single-edge-crack

tension Single -edge -crack

bend

O 1 1 1 L 1
01 02 03 04 05 06
Crack length to testpiece width ratio %/w

Figure 5.20 Variation of calibration factor, H, with crack length

trace, at a load of 0.8 Py If v "is greater than 0.25 v, it is considered that gross
plasticity or instrumental errors may be occurring, leading to unrepresentative
values of Ky¢.

The 5% secant line represents the change in compliance due to crack
extension equal to the radius of the plane strain plastic zone: Ag = iy = 0.02a,.
The procedure is designed to test whether or not Pgq can be associated with
crack extension. If o is very small, then the dramatic increase in displacement

Vag v
; 08
Load
'DQ _______________ s na
v >
08 j
O e
v/ #0:25¢
(0.8 Ay (Py)
\ 5 for Kgcalculation
v
5°% secant

Displacement

Figure 5.21 Offset procedure used when the trace does not show an obvious ‘pop-in’
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between 0.8 Pg and Pg can be attributed to cracking rather than to plasticity
alone. The criterion itself is empirical, but may be rationalised as follows. If the
displacement at 0.8 Pg due to plasticity is v and the total elastic displacement
is vy g, we have, from equation 5.14.8, if we treat the plastic zone as increasing
the effective crack length (4.6.6):

2 hypy (5.14.9)
Upg dp

where ryy is the radius of the plane strain plastic zone at 0.8 Pg. Since 71y is

proportional to P* (i.e. to 0? or K?), the radius of the zone at £y will be

r1v/(0.8)%. The elastic displacement at Py, is vg /0.8 because the elastic slope

is linear, if the crack has not extended. Then we may write for the plastic

displacement, v, at a load Pg:

U Fry
08—=—--=H (5.14.10
vog (0.8)%a ' )

By elimination between equations 5.14.9 and 5.14.10 we obtain

W= (08P e=05u (5.14.11)

In other words, the displacement at Pg produced simply by effects due to
plasticity would be about twice that produced at 0.8 Py . By laying down the
stipulation that v must be more than four times v', the criterion determines
that cracking of magnitude comparable with that of the plastic zone radius must
have occurred between 0.8 Pg and Pg.

There are several unsatisfactory features with this procedure. First, it is very
difficult practically to measure ©" with any degree of accuracy. Secondly, if
cracking begins at Py, the procedure can be more restrictive than that used
when there is definite evidence of a fast ‘pop-in’. This is because the total
change in displacement at Py, due both to plastic zone and to crack extension,
must lie within the 5% secant line (equivalent to a change in crack length of
0.02ay). For constant- or decreasing-load ‘pop-ins’, only the amount of plasticity
preceding fracture has to fall within the 5% secant line. The amount of displace-
ment produced by the cracking subsequent to initiation may be very large.
Thirdly, there is no clear indication as to the load, between 0.8 Py and Py, at
which cracking started. This must seriously affect the reproducibilities of
fracture toughnesses measured on a rising load curve. From the trace alone,
some indication of the point of initiation could presumably be obtained by
constructing the line between 0.8 Py and Py which shows the effect of
plasticity on displacement (for a load hPy, v, = v'/h* where 0.8 <h < 1) and
comparing this with the actual trace to detect any sharp discontinuity in slope.
This procedure would, however, be very tedious and prone to error, because v’
is difficult to measure,

The main problem with the offset construction is that it is trying to do two
things at the same time. On the one hand, it is trying to detect crack initiation:
on the other it is trying to ensure that the radius of the plane strain plastic zone
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prior to such initiation is less than 0.02a. These two aims are extremely difficult
to satisfy simultaneously in a way that is consistent with the previous procedures.
It would be much more satisfactory to detect initiation directly, using additional
instrumentation such as a piezo-electric crystal (barium titanate or PTZ: lead
titano-zirconate) probe which could respond to the acoustic emission produced
when cracking occurred. The load—displacement trace could then be analysed to
assess non-linear effects.

The very nature of a rising load curve implies, however, that some stable
crack growth occurs after initiation and account should be taken of both the
increase in crack length and (shear lip) resistance to crack extension before
calculating the K¢ value. Preferably such tests should be treated like those of
specimens of intermediate thickness and subjected to a full R-curve analysis
(see Section 5.8).

In all cases, the plastic zone size associated with a Kq value must be
compared with specimen dimensions before the Kq value can be said to
represent a valid K¢ determination.

5.15 Toughness Results

A full category of results produced by fracture toughness testing is well
beyond the scope of this book. The effects of major variables in testpiece
dimensions, such as thickness (Section 5.3) and notch radius (Figure 3.15),
have already been described and will be referred to again in Chapter 7, where
notched-bar fracture behaviour and microscopic fracture mechanisms are
discussed. Three further major variables which produce marked effects on
toughness are the temperature of testing, the applied strain-rate and, obviously,
the material tested. The bare results will be presented in this section and such
discussion as can be related to micro-mechanisms of fracture will be included in
Chapters 7 and 8.

5.16 Effects of Temperature and Strain Rate

Effects of temperature on K¢ are shown most strongly in relatively low-
strength structural steels. Non-ferrous alloys and very high-strength steels, such

as the maraging steels, show rather small variation of toughness with temperature,
up to 100°C. In an analogous manner, the low-strength steels show a sharp
energy transition in the conventional notched-bar impact test, whilst the other
alloys do not.

The main problem in testing a steel of low yield strength is that, if its
toughness is at all high, the size of testpiece required to satisfy the valid K¢
criteria, i.e.

2

BEHE(W-*a)>2.S(_Kiq) (5.12.4)
Oy
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will be very large indeed. Critical experiments have been carried out by Wessel'!,
using CTS testpieces of different sizes, up to 300 mm thick, as shown in
Figure 5.22a. Figure 5.22b shows the form of the results obtained for a steel,
designated A533 Grade B Class 1 (0.23% C. 1.35% Mn, 0.5% Ni, 0.5% Mo),

200
= Fracture
‘I’E toughness
= Kie —1000
Z 1501 —
2 =
i Yield stress —750 =
" ay =
@ 100+ Z
£ X
3 {s00 &
® w
S0 50 o
% Nil-ductility -250 &
uf? (b temperature &
0 3 | 1 : | el
-150 -100 -50 0 50
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Figure 5.22 (a) Standard compact tension testpieces (the largest is 305 mm thick)
(b) Variation of Kyc with temperature for a low-alloy structural sieel A533B
(after Wessel'")

heat-treated to a yield stress of 500 MN m™2 at room temperature. It can be
seen that there is a very steep increase in the K¢ value above a temperature of
about =20° C. At =100° C, the values of oy and K¢ from the figure, when sub-
stituted into equation 5.12.4 show that the K¢ result is valid in testpieces
above about 17 mm thick. At room temperature, where Ky is about

150 MN m™#?2 and oy is about 500 MN m™2, the critical dimensions can be
calculated as at least 225 mm. It is of fundamental importance to realise that
this transition in K¢ has occurred under linear elastic plane strain conditions.
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In other words, it is a transition characteristic of the material and is not
accentuated by the gross relaxations which may accompany an initially modest
increase of toughness with temperature in smaller testpieces. This point will be
discussed further in Chapters 7 and 8.

Moderate increases in strain rate produce rather small effects on K ¢.
Results'? for a semi-killed steel are shown in Figure 5.23. Tt can be seen that
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Figure 5.23 Variation of fracture toughness with loading rate in a semi-killed steel
(after Radon and Turner'?)

about an order of magnitude increase in loading rate is required to decrease
K1c by 10%. To some extent, the effect is small because very large testpieces
are not usually able to be tested. The materials studied therefore tend to be
those of high strength and low toughness, in which the effects of strain rate on
flow characteristics are much less than for a mild steel. At very high loading
rates (ahead of a running crack, for example) it is possible for the deformation
to occur so quickly that the heat generated by plastic flow cannot be fully
dissipated into the bulk of the specimen. The temperature ahead of the
propagating crack may then be raised substantially. Under these adiabatic
conditions, the toughness of the region just ahead of the crack tip may be
greatly increased. If it is desired to stop running cracks in a structure, it is
wise to design on the minimum value of dynamic fracture toughness, Kp
(Knott®).

5.17 Material Properties

This section will be kept short deliberately to draw attention to one or two
general points that can be made concerning the relationship of fracture
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toughness to other material properties. It has been indicated in the previous
section that only relatively low-strength steels have a very marked dependency
of toughness on temperature, at low temperatures.

The main variable affecting the toughness of a particular type of material is
its yield strength. Figure 5.24 shows the way in which toughness varies with
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Fracture toughness, K;c(MN m 72)
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50 : .
1000 1500 5000

Yield strength (MNm)

Figure 5.24 Variation of fracture toughness with strength level, for different classes of steel
(after Pellini et al'®)
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Figure 5.25 Effect of sulphur content on the fracture toughness of a quenched and
tempered low-allow steel (after Feige and Murphy'®)
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yield strength for conventionally quenched and tempered steels, for maraging
steels and for precipitation-hardened stainless steels'?. In all cases, it is

observed that plane strain toughness decreases markedly with increase in yield
strength. The imporvements gained by using maraged steels at very high strength
levels in high-duty applications are obvious. A similar effect of strength level on
K¢ is found for aluminium alloys'*

There is also an effect of non-metallic inclusion content on toughness, as
shown in Figure 5.25, where K¢ is plotted v. yield strength for a quenched and
tempered low alloy steel containing different sulphur levels'3. It is clear that a
high inclusion content produces low toughness. The effect is perhaps even
greater in aluminium alloys where brittle intermetaliic particles (containing iron
and silicon) can provide sites for crack nucleation. Trace impurity elements
also have a marked effect on the toughness of steels if they produce grain-
boundary embrittlement.

(a) fc)
Steel: bend Aluminium: bend
5 151
" 10
: 2
@ @
= 3
o o
ol r 5
w TH
Kic (MN m¥2)
(b) (d)
151 ) 151 )
Steel: compact tension Aluminium: compact tension
>10} ; 10F
b " >
@ /)
3 : 5
o o
wogl o
5 & 5
AT £
20 25 o 30
Ko (MN m ) Kie(MN m™2)

Figure 5.26 Preliminary results of collaborative determinations of Kyc (Courtesy of M. J. May
E. F. Walker)
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5.18 Conclusions

Established procedures are available for measuring reproducible values of

plane strain fracture toughness, K., provided that due care and attention are
given to specimen size requirements and to the analysis of the load—displacement
traces. The minimum specimen dimensions imply that all dimensions are about
fifty times greater than the radius of the plane strain plastic zone at fracture.

With respect to crack length, a similar criterion in terms of testpiece compliance

is reflected in the requirement that the decrease in slope of the load—displacement
curve prior to instability or definite ‘pop-in” shall not exceed 5%. The recom-
mended procedure for determining K, in testpieces which show a rising-load
trace is less satisfactory.

The worth of the standard procedure is finally demonstrated by Figure 5.26
(a—d) which shows K¢ results determined on a steel and an aluminium alloy,
using both SEN bend and CTS testpieces. by some twenty different British
laboratories. It is apparent that satisfactory agreement between the different
laboratories can be obtained through careful use of the recommended procedures
and that the inclusion of Ky¢ values in standard material specifications is quite
feasible. In practice, values are likely to be specified mainly for rather high-
strength alloys, because it is only for these that the required specimen sizes
and testing facilities are not unduly large.

The question of how to measure the toughness of low-strength, tough
materials in relatively small laboratory test specimens is-one which has still not
been fully answered. The following chapter describes the problems involved
and the methods which have been developed to solve them.
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Six

GENERAL YIELDING FRACTURE MECHANICS

6.1 Introduction

In Chapter 5 it was shown that the use of standard procedures leads to the
measurement of consistent values of plane strain fracture toughness, Kyg. To
obtain ‘valid’ results in relatively tough materials, it is, however, necessary to
use testpiece dimensions so large that the testpieces may not be representative of
the behaviour of the sections actually used in service, In addition, the material
user generally requires that a quality control test be carried out on each batch of
material to ensure that it meets the properties specified. It is obvious that a
standard fracture toughness test would be unsuitable for such a purpose in any
but high-strength, brittle alloys, because it would require far too much material
for the testpiece. There is, consequently, much interest in the possibility of
making alternative measurements of a material’s resistance to fast fracture, using
small testpieces, which do not require a large amount of material and which
may be tested easily in the laboratory. To take full advantage of linear elastic
fracture mechanics stress analyses, the toughness parameter measured should be
able to be related directly and quantitatively to the material’s fracture toughness.
Two such parameters have been proposed. The first is the critical value of the
crack-tip opening displacement or COD (Section 3.13) at fracture: the second is
the critical value of a quasi- ‘strain-energy release rate’ (Jy¢), derived assuming
non-linear elastic behaviour'.

6.2 The Crack Opening Displacement — Principles

It is generally accepted that the crack-tip stress or strain field cannot be
characterised by a single-valued parameter when yielding in the crack-tip region
becomes extensive. In particular, when a specimen has yielded generally, the
applied stress cannot be used to calculate either the local stresses or strains at
the crack tip. Independently, however, Cottrell* and Wells® focused attention
on the amount of crack opening prior to crack extension as a parameter which
might be treated as a characteristic of the crack-tip region, for a given material
tested under a given set of conditions.

150
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Cottrell employed the concept to explain why small testpieces, cut from a
large ship-plate which had fractured well before general yield, with a fracture
surface exhibiting more than 90% bright ‘crystalline’ cleavage facets, broke well
after general yield, with a completely ‘fibrous’ fracture appearance, when tested
at the same temperature. The argument runs as follows. A given value of COD
needs to be ‘accommodated’ by a specific size of plastic zone. Well below general
yield, the relationship for plane stress tension is given (equation 3.13.14 et seq.)
by: oy
& =2m 7y (6.2.1)
where ry is the plastic zone radius. Then, if we take a fixed length of crack and a
fixed COD, we can see that the question of whether a piece breaks before or after
general yield is resolved simply by the position of the far boundary surface of the
piece, opposite the crack. If it is so close that the plastic zone traverses the net
cross-section before the critical COD value (6,5 ) is attained at the crack-tip, the
piece is ductile: if the boundary is so remote that &, is attained first, the piece
is brittle. Cottrell estimated the size of testpiece needed to exhibit brittle
behaviour. Using the expression (see equation 3.14.4) to give the antiplane
sliding displacement, S, at a crack-tip:

47+ g
S=——aualn |sec (—):I
g 27y
and taking 7y = u/1000, the values of 10*S/a and c/a can be calculated for
different ratios of (g/Ty) as shown in Table 6.1. Cottrell then took a value for

Table 6.1

qlry 0.1 0.5 0.75 0.9 (.95 0.99
10°S/a  0.16 4.4 12.1 23.6 32.4 53

¢la 1.01 1.41 2.6 6.4 12.8 64

Q 4.5m 178 mm 63 mm 33 mm 23 mm 15 mm
c 4.55m 254 mm 165 mm 212 mm 292 mm 978 mm

the critical displacement of 0.075 mm and derived the individual figures for 2
and ¢ given in the fourth and fifth rows of the table.

It is clear that fracture can occur at about half the yield stress if the piece is
sufficiently large (some 250 mm) and contains a sufficiently long crack (180 mm).
Conversely, it is clear that failures will not occur at normal service stresses
(0.5 7y — see Section 1.5) unless the defects present in a structure are so large
as to be obviously detectable. This argument rests, of course, on the assumption
that the critical displacement remains at the value of 0.075 mm.

The effect is also shown clearly in Figure 6.1%. Here, three testpieces contain-
ing identical stress concentrators have been fractured at the same temperature of
—80°C. The deformation preceding fracture has been revealed by ageing and
ctching in Fry’s reagent. It is obvious that the testpiece with the smallest ligament
has yielded generally before [racture: those of large size have broken before
general yield, but after comparable amounts of local (accommodation) yielding.
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In each case, the value of COD at fracture, i.e. 84,¢. was sensibly constant, as

postulated.
The difference in fracture appearance between the large plate and the small

testpiece in terms of the proportions of ‘crystallinity’, as described above, is
most probably a consequence of the acceleration of a small amount of fibrous
fracture in service leading to the initiation of cleavage cracks in regions which
are subjected locally to high strain rates. This point will be taken up again in
Chapter 8.

The Cottrell/Wells COD concept introduces a parameter which appears to
characterise fracture, under fairly closely defined conditions, both before and
after general yield. The sliding displacement used by Cottrell (3.14.4) may
equally be replaced by an opening displacement 8., for tensile loading
(3.13.11). The possibility arises of measuring the value of §,4; for a material on
a small testpiece which breaks well after general yield and using this same value
to predict the failure stress of a large structure which breaks before general
yield, using the equation (equation 3.13.11):

8 .
Sepit = % aln [sec (%E—):' (6.2.2)

where o is the failure stress. For a large structure, which breaks well before
general yield, the term (0g /0y ) is small and we may write

L 6t::)ri
op —\/(ﬁf'_‘;'ﬁ‘_‘) (6.2.3)

interpreting the critical strain energy release rate as the incremental work done
by the (constant) crack-tip stress (gy ) in the yield zone, when moving through
a (constant) displacement, 8. :

Gcrit s UY(Scrit (6-2-4)

The finite element results, described in Section 3.18, suggest that, for a crack in
plane strain, equation 6.2.4 would take the form: Gy = 20v8erit-

A test of the quantitative relationships between G,y and 64,4, for quasi-
elastic fractures and of the extension of the 8, concept to post-yield fractures
demands that experiments are carried out on testpieces of different sizes, so
that, at constant temperature, some break before, and some after, general yield.
The testpieces indicated in Figure 6.1 all fractured at stresses too high for valid
linear elastic values of G, to be obtained. Results have been obtained which
indicate that, for some steels, equation 6.2.4 gives an appropriate relationship
between the two toughness parameters®. Similarly, the toughness results given in
Figure 5.22 imply critical values of COD at temperatures greater than —20°C,
where fractures extend initially by fibrous mechanisms, which are close to those
which would be predicted by a model for fibrous fracture discussed in
Chapter 8. A full experimental verification of the proposed relationships
between Gy and 8444 is however at present lacking, although, very recently,
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further experimental results which support the form of equation 6.2.4, have
been presented®.

Even if the precise numerical relationship is not known, there is still value in
making measurements of 8,5, in materials which break after general yield, to
provide a rating of their relative toughnesses at a given temperature. The test
then has merit for the purposes of quality control, because measurements may
be made on small testpieces.

It should be made clear that the critical value of COD, as defined by,

e.g. equation 6.2.2 applies only to the initiation of further cracking. Tt does not
characterise the point of total instability, derived from energetic considerations,
as would a K¢ value. There may be a substantial difference between the value
Of 8¢y at initiation and that at total instability.

6.3 Crack Opening Displacement — Practical Measurement

The aim is to measure a value of 8,,;,, characteristic of the mode of fracturing of
a material at the tip of a sharp crack, whether this is situated in a large piece
subjected to an applied stress much less than the general yield stress or in a

small testpiece which is fully yielded and work-hardened. The main difficulties
encountered in practical measurements have been to obtain values associated
with the crack tip region and to detect the onset of crack extension. Variables

Twist converted to
linear motion

Slot width, having a
practical minimum
_of about 0-1 mm __

Figure 6.2 Principle of a ‘paddle’ COD-meter. Spring loading forces the paddle onto the

bottom of the slot and a torsion spring presses the extremities of the paddle against the

slot sides. As the slot opens, the angle, 6, increases and the rotation of the rod is
converted into a linear movement
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such as testpiece geometry, thickness and loading system have also been investi-
gated. The development of techniques is best followed chronologically.

Early attempts to determine the ductility of material at stress concentrators
involved the measurement of strains at the roots of notches of finite root radius,
although these were made using reference marks which, in effect, gave displace-
ments directly. Notch root displacements have also been measured using
reference grids inscribed around the notch. Here, composite specimens were used
in an attempt to determine plane strain values.

The first direct attempts to measure COD as such for a crack-like geometry
were made” using the ‘paddle’ device illustrated in Figure 6.2. Specimens were
machined with slots some 0.10—0.15 mm wide (using a fine jeweller’s saw or a
rubber-bonded abrasive cutting wheel), which were not extended by fatigue or
any other pre-cracking process. The paddle was located diagonally across the
bottom of the slot, and was mounted so that, as the slot opened, the paddle
could rotate by an amount proportional to the opening. The rotation was con-
verted to a linear movement, which was detected by a linear transducer. The
device had the advantage that it operated at the very end of the slot, but the dis-
advantage that it could not be used directly with precracked testpieces.

Figure 6.3 (@) Opening of fatigue crack in the unfractured half of a double-cracked specimen
(x 180). (b) Etching of double-notched specimen fo demonstrate that identical deformation
occurs on both notched cross-sections (x 3)
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A second problem in these early tests was the detection of crack initiation.
At very low temperatures, fracture occurred by a brittle cleavage mechanism and
the final fracture load was the maximum attained during the test. Here there was
no doubt that the initiation of cleavage led immediately to final fracture. At
higher temperatures, however, more characteristic of those found in service
application for the structural steels studied, the clearcut fracture event was
replaced by a less well-defined sequence in which the trace of load v. COD rose
to a maximum value and then decreased before much in the way of macro-
scopic fracture could be detected. The COD at maximum load was then taken as
the value, 8., pertaining to crack initiation.

An alternative method of measuring COD attempted to provide data for the
pre-cracked situation by employing double-notched specimens®. Here, by careful
fatigue cracking, it was possible to produce cracks of roughly equal length at
each notch. The (ductile) specimen was then fractured, and the COD at the
unfractured pre-cracked notch was obtained by metallographic sectioning and
direct measurement on the micrograph. This COD then represents the value just
prior to final instability. Figure 6.3a shows the opening of such a crack and
Figure 6.3b indicates how similar the deformation across the two notched cross-
sections remains. In Figure 6.3a it can be seen that a small amount of further
fracture has occurred ahead of the fatigue crack: this is regarded as the amount
of fibrous growth just prior to total instability. In alloy steels, the development
of brittle nitride layers around the notch root was sought as an alternative to
fatigue for the production of sharp cracks. The COD results obtained with these
nitride layers were uniformly lower than those for fatigue cracks, presumably
because the sudden fracture of a nitride layer produced an effect of dynamic
loading which affected the steel’s ductile/brittle transition temperature at the
crack-tip®. Figure 3.13 shows the surface of a cracked nitride specimen, which
demonstrates the classical slip behaviour described in Section 3.15.

For fatigue-cracked specimens, values of 8.,;; at room temperature and
+80°C were generally identical for the steel studied, but decreased with increas-
ing yield stress and differed for the hardest condition, where +80°C was above
the transition temperature and room temperature was below®. The values of
8erit» even for ductile fibrous initiation, were substantially less than those
obtained from slotted specimens.

Results of this sort and knowledge of the effects of root radius on apparent
K¢ values (Figure 5.15) in linear elastic fracture mechanics led to an investiga-
tion of the effect of stress concentrator width on critical values of COD.
Concurrently, it was necessary also to identify the first stages of crack extension
from the original stress concentrator,

It was realised that, if COD were to be measured in testpieces which con-
tained sharp cracks, the ‘paddle’ type of device could no longer be used. There
were obvious practical advantages to be gained if COD instrumentation could be
identical to that used in linear elastic fracture toughness tests and so a technique
was developed in which the opening at standard knife-edges mounted on a
specimen was measured using a clip-gauge (Figure 5.17) and related directly to
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crack-tip COD by prior calibration'?, The calibration was determined both
experimentally and theoretically'!. In an experimental calibration, a specimen
is unloaded from a particular knife-edge opening (V) and is then sectioned and
prepared metallographically so that optical measurements of the crack opening
(8) can be made. For a series of specimens, it is then possible to draw a calibra-
tion graph of ¥, v. . An example of such a graph for a bend specimen'? is shown
in Figure 6.4a. Here, there is a marked variation in n for low displacements, but

h

Three-point bend
9y =0.36
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o
T

Rotational factor,n
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Figure 6.4 (a) Variation of rotational factor with displacement. (b) Diagram showing

relationship between crack-tip displacement, &, and knife-edge displacement, V. For a
¥igid rotation about C:

&n Vg as VH
= Henbi= e
(W—a) [ T :I nia +z7)
z+a+n(W a) 1+ W—a)

If n =2, Cisat the neutral axis, as predicted by slip-line field theory

a value, n = 2, is approached as V increases (i.e. V; = 25). This is at the lower end
of a range of values (2 <n < 3) found experimentally, but agrees with a
theoretical calculation. The meaning of a particular value of n may be readily
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understood by reference to Figure 6.4b which shows the geometry of the
deforming bend specimen and the form of the plastic deformation associated with

the bending. The slip-lines form two plastic ‘hinges’ (see Section 2.12) along which
the rigid ends of the specimen slide. If n = 2, the centre of rotation for deeply
notched specimens lies on the neutral axis predicted by slip-line field theory. For
four-point bend specimens, the slope n is approximately constant and equal to
2.7, whilst for the compact tension geometry it is about 2.5.

These results are confirmed by an analysis of the compliances of notched bars
of different (a/W) values in materials of different ratios of yield stress to
modulus'?. A proposed standard for COD testing includes these theoretical
calibration factors for general application, but, at the present stage, it is wise to
carry out independent experimental calibrations for any new material.

6.4 Crack Opening Displacement — Results

Results on effects of slot width on COD have been produced by Smith'*'?,
Using testpieces made in a free-machining mild steel which had been fully heat-
treated after fatigue-cracking or slotting, he investigated first the effect, at room
temperature, of slot width on COD at maximum load, §,,,,- The results, shown
in Figure 6.5, indicate that §,,,, increases in virtually a linear manner with slot

Maximum load

03+ 4

0_20/ ./]nil;at'\on

L ”~

Crack opening displacement (mm)

1 i

0 01 02 03
Slot width (mm)

Figure 6.5 Variation of crack opening displacement with slot width
(after Smith and Knott'?)

width. Widths intermediate between 0.15 mm and the assumed zero value for a
fatigue crack were obtained by fatiguing, straining a little to open the crack and
then heat-treating fully as before. It is not clear from these results alone, how-
ever, whether the observed effect is due to the way in which slot width affects
initiation or whether it arises from an influence of slot width on the maximum
in the load—COD trace. Clarification of this point demanded that the initiation
of crack extension be detected.
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Detailed studies were made on specimens containing either fatigue cracks,

0.15 mm or 0.25 mm wide slots. Specimens were unloaded from different
points along the load—COD curve and were then broken open in liquid nitrogen.
Any fibrous crack growth at room temperature could be detected as an obvious
‘thumbnail’ showing in the crystalline cleavage facets typical of the 77 K frac-
ture. By patient experiments of this type, it was possible to draw graphs of
COD . fibrous crack length as shown in Figure 6.6. Extrapolation of these
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Figure 6.6 Effect of width of stress concentration on variation of crack opening
displacement with crack growth (after Smith and Knott**)

graphs to zero crack growth is then a comparatively straightforward matter and
defines an unambiguous measure of the COD at initiation, §;.

These values of §; are shown as a function of slot width in Figure 6.5. Tt is
apparent that it is the variation of §; with width which forms the main variable
and that, for these specimens, &, can be represented approximately by the
relationship:

Bmax = 0; 7017 mm (6.3.1)
From the displacements measured on the slotted specimens, it is possible to

calculate a value of fracture strain, e, if it is assumed that this strain occupies a
gauge length equal to the width of the slot. Thus for the 0.25 mm slot,

0.203
&;=0.203 mm; €= 0735 =81% (6:3.2)
for the 0.15 mm slot:
§;=0.120 mm; ef—O'IZOZSO% (6.3.3)

s
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If it is assumed that this same strain causes fracture in the fatigue-cracked speci-
men it is possible to calculate an effective gauge length, /¢, for the fatigue crack
by putting a value of §; into the relationship
- = 5; T
€ = 80%—m —? (634)

For the fatigue cracks in the mild steel, /; was calculated as 0.046 mm, indicating
that any slot narrower than this figure would give a value of §; equal to that for
the fatigue crack. This limiting slot width is, however, very much the property
of a particular material. It is, for example, much larger than the critical root
radius required for the limiting K;¢ determinations shown in Figure 5.15
(0.006 mm).

Attempts to define §; by less tedious methods have generally made use of
the electrical potential method. This will be described in more detail in
Chapter 9, but briefly consists of passing a constant d.c. current through a
specimen, so that any crack extension, which alters the electrical resistance of
the piece, can be detected by observing the change in potential between a pair
of probes mounted across the open mouth of the crack. Potential methods have
been used to detect initiation with success in aluminium alloys and some steels, but,
in other steels, the crack extension is so gradual a process that no sharp change at §;
is detected. Some sort of offset potential may then be defined as that correspond-
ing to initiation. Attempts to detect initiation have also been made using piezo-
crystal accelerometers to detect any stress-wave emission when a crack forms:
again, the definition produced depends on how suddenly the fracture extension
occurs. Detection by the observation of change in compliance due to crack
growth is an insensitive technique for a fully yielded specimen. Such further
results as have been obtained, however, generally indicate that fracture in ductile,
structural materials can initiate substantially before the maximum in the load-
COD trace.

0-6L .//3vpoint bend
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4L-point bend

Crack opening displacement (mm)
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Figure 6.7 Variation of crack opening displacement with crack growth in three and four-
point bend speciments. 0.15 mm slot 4-point bend;, —— — fatigue crack 4-point bend:
—x— 0.15 mm slot 3-point bend; —-— fatigue crack 3-point bend (after Chipperfield,
Knott and Smith's)
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The value of §; does appear to be a material characteristic, independent of
specimen geometry. Figure 6.7 shows a comparison between four- and three-
point bend specimens and similar results are obtained for four-point bend and
compact tension specimens'®. Despite differences in the rate of increase of COD
with fibrous crack growth and in the point of maximum load, very good agree-
ment between the &; values is found. The effect of thickness is indicated in
Figure 6.8. Here it can be seen that §; is independent of thickness for thicknesses
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Figure 6.8 Effect of specimen thickness on crack opening displacement.
— X — 5 mm thick; —-— 10 mm thick; — — — 17 mm thick

2 mm thick;

of 5 mm or greater, (6; was also found to have the same value for a 63 mm thick
specimen), but is substantially increased for a 2 mm thick specimen. It is antici-
pated that the critical minimum thickness will vary with the critical value of §;
(by analogy with thickness effects in the linear elastic range, see Section 5.7). It
is interesting to note that, if we take the plastic zone radius in a quasi-elastic
case corresponding to the &; value, for a fatigue crack, of 0.037 mm (see
equation 6.2.1)

LB

- (6.3.5)

Fy
and substitute for oy a value of, say, 700 MN m ™2, as representative of the work-

hardened flow stress in the notch tip region, we obtain:

po = 200X 10° 0037
= 700 7 x3.14

= 1.7 mm

In other words, for an analogous LEFM situation, we would expect that a
specimen would need to be greater than about 3.4 mm to develop conditions
conducive to square fracture in its centre (see Section 5.7). This value lies
between the 2 mm and 5 mm limits observed in the present case and may serve
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to indicate that the fact that general yield has occurred has not relaxed through-
thickness stresses in the centre of the specimen. This view is supported by the
behaviour of thicker specimens. At initiation, a thumbnail initiates across all the
central part of the notch, leaving unfractured ligaments approximately 2 mm
thick on each side. Confirmation of this plane strain deformation has recently
been obtained in precracked *V’-notched specimens® .

The &; value for ductile fracture therefore appears to bear many resemblances
to the plane strain fracture toughness, K;¢. To gain reproducible values, there is
a thickness requirement and a need to use sharp cracks or very narrow slots
(< 0.046 mm wide in the free-machining mild steel). There is also an /W require-
ment, which will be described in conjunction with notch depth effects in
Chapter 7.

The aim with COD testing has been to produce a method which facilitates the
measurement of a given value of § from knife-edge displacements. Only recently
has emphasis been placed on the need to detect initiation and to record &, values.
Since &; values are obviously more pessimistic with regard to crack-tip ductility
than are §,,,,, values, there is still discussion as to which figure is more relevant
to service application. The problem is perhaps put into perspective if it is realised
that there may be as much as an order of magnitude difference between §; values
obtained on fatigue-cracked specimens and the &,,,, figures measured previously
on slotted specimens and apparently used successfully to predict service
behaviour. (These predictions were, however, based on experimental calibrations
using large slotted plates which were often subject to the same errors as the
small slotted testpieces’) To compare §; and 8,,,,, scientifically, it is necessary
to study the growth of a fibrous crack until maximum load is reached. Some
similarities with the behaviour of fracture toughness specimens of ‘intermediate’
thickness (Section 5.6) will be discerned.

For a specimen of free-cutting mild steel, 5 mm thick or greater, the initial
thumbnail occupies the total thickness, apart from the two exterior ligaments,
each approximately 2 mm thick, as described previously. In a conventional screw-
driven testing machine, the specimen is loaded further by displacement of its
ends at a constant rate. The central thumbnail deepens with increase in load and
spreads slightly in the through-thickness direction. The exterior ligaments are
thus forced to bear even more load and strain. As maximum load is approached,
it appears that the ligaments are really behaving as independent ‘(ensile’ speci-
mens and the maximum is reached more or less as these ligaments neck and
fracture in a manner comparable with uniaxial behaviour. The value of 6., is
then characteristic of the extension and through-thickness contraction of these
ligaments. In this respect, it is apparent that the behaviour of a 2 mm thick
specimen ought to be generally similar to that of a single ligament in a thick
specimen. Striking confirmation of this is given if the initiation of fracture in a
2 mm specimen is compared with the onset of maximum load in thicker pieces.
The through-thickness necking (see Figure 6.9) and extension phenomena are
closely similar and the 6; value for the 2 mm thickness corresponds almost
perfectly with the 6., values in 10 or 17 mm thicknesses (Figure 6.8).
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The 8,55 values are therefore based on a necking phenomenon in the liga-
ments. This is unlikely to be the same in service as in a bend specimen and must
be understood for every loading configuration likely to be encountered. More-
over, the emphasis on the displacement in the ligaments providing the criterion
for maximum load pertains only to displacement-controlled tests. Under load
control, the rapid transference of load to relatively narrow ligaments at initiation

Figure 6.9 Plan section, just below slot tip, in 2 mm thick specimen loaded to produce a
small amount of fibrous fracture (note similarity to a necked tensile specimen) (x 10)
(courtesy of R. F. Smith)

in a thick specimen means that the difference between the load at initiation and
that at instability will be minimal in thick specimens. This is exactly analogous
to the K¢ situation (Section 5.5).

The most pertinent point of all, however, is that the ligament flow and
necking process is time-dependent®. If a specimen is held under a constant load
greater than that at initiation, the COD is observed to increase until the speci-
men finally breaks. The 6,,,, values are comparable to those found previously,
but the stress necessary to produce them has been decreased by the time
available for thermally-activated flow processes.

The proposed standard on COD testing describes only the experimental
methods for measuring critical values of §. Exactly which values are to be
taken as critical and how they are to be used in practical application is not dis-
cussed. For the various reasons given above, it is considered advisable only to -
quote §; values in material specification and to employ only &; values in
engineering design. The initial collaborative tests which were made did not take
into account sufficiently the need to measure §; or to control loading rate or
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displacement rate. In addition, tests were often carried out in the transition
range where the amounts of fibrous growth preceding fracture varied greatly,
leading to a wide scatter in COD. The point is made by comparing Figure 6.10a,
showing data points from a number of laboratories, with Figure 6.10b where
the COD results are plotted v. the amount of fibrous fracture'®. As in

Figure 6.7 (3-point bend), it is seen that § increases markedly with the fibrous
component.
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Figure 6.10 (a) Variation of COD with temperature. Results from seven laboratories on a
Swedish mild steel. (b) Variation of COD with depth of fibrous thumbnail at —90°C
(after Nichols et al.'®)

On the other hand, the extremely consistent results obtained by Smith,
provide a logical and scientific basis for COD measurement'?'*. The results
depend strongly on the micromechanisms of fibrous fracture at a stress con-
centrator and detailed discussion of these will be deferred until Chapter 8. The
following section describes a proposed alternative method for measuring fracture
toughness, using small specimens.

6.5 The J Integral: Principles

An alternative method for assessing the toughness of a cracked body, which can-
not be regarded as linear elastic, relies on the determination of an energy term,
which expresses the change in potential energy, when a crack is extended by an
amount da, in a manner analogous to that of the strain energy release rate, G, in
the linear elastic condition. The theory is developed for a non-linear elastic
body!”.

We may define for such an elastic body, a single-valued strain energy density
function (as in equation 2.6.4)

€mn
W= W(Emn) =f GU deij (651)
0
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For a simple linear elastic body, subjected to a single tensile stress 0, giving a
strain e, this expression is equivalent to

strain ener <
——gy_ U]l deu =%U.€ (6.52)

" unit volume
We then consider the change in potential energy when a body containing an
elliptical hole and subjected to boundary tractions T, along part of its surface Sr,
and displacements ) along a different part of its surface S, has the hole
increased in size, by a volume increase AV, equivalent to a surface increase AS
(see Figure 6.11). The body is initially loaded with tractions 77 on Sq and dis-

placements «? on S,,. The initial stress in the body is of; the initial strain €.
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Figure 6.11 Change in potential energy for expansion of hole by AV (see text)

The hole is then expanded, but tractions T? = ag-nj are applied to the new
surface AS to maintain the initial deformation state o}, €; in the body. Then,
holding the loadings on Sy and S,, fixed, the tractions on AS are reduced to zero to
produce the new deformation state o + Aoy, €); + Ag;. If TFand ufare the
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loadings and displacements on AS during this process, the total change in
potential energy may be written as:

* *
ui:ughﬁui, Ti =0

—AU=J W(ed,) dV—J {T" du]}dsS (6.5.3)
AV AS u[—u Tr= T°

i.e. the net energy reduction is the strain energy of the material removed minus
the (negative) work done when the tractions on the new crack surface reduce to
Zero.

For the case of linear elasticity, this equation reduces simply to:

AU:%S ohed dV—;—S TP A dS (6.5.4)
AV AS
since AT; =~ T on the void surface. For a sharp crack tip, the change in volume

on extension is zero, so that only the surface integral remains. For an increase in
crack length da, the expression then becomes equivalent to that derived earlier
for the change in potential energy or ‘strain energy release’, G da (equation 4.5.2).
Writing AS = 2 da, we have:

G da —Jja 0\/(%),3&;’&0\/(2@ V(da—r).dr (6.5.5)

where the general traction T} has been replaced by the single component

.. a8
e c\/(j) (6.5.6)
and Au; has been replaced by the opening displacement
2 1 —p?
u =200 20) Vida 1) (6.5.7)

In this case G is defined per unit thickness.

To return to the general form for change in potential energy, involving reduc-
tion in strain energy and work done by applied tractions, it is possible to set up
the inequality:

0<(-AD) - f W(ed,,) dV < S AT;Au; dS (6.5.8)
AV AS

where AT; and Au; are the changes in traction and displacement respectively.
Now, if we extend a notch tip normal to itself by an infinitesimal amount dn,
and note that AT; (= Aoy;n;) and Aw; are both first order quantities, so that
their product — the upper bound of the inequality — approximates to zero com-
pared with the volume integral, which is first order, we may write:

i S W(e.,) v (6.5.9)
AV
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Now consider a flat-surfaced notch in a two-dimensional stress field (i.e. all
stresses depend only on x; and x,) (see Figure 6.12). The notch has upper and
lower surfaces parallel to.x, and a smooth curved tip denoted by T',. Then for an
extension da, maintaining the crack tip shape constant, we note that
AV = da.dx;.dx, and using equation 6.5.9 obtain for &' = U/unit thickness (in
the x5 direction):

e :f W(eS..) dx, da (6.5.10)
AA

of e =f Wl ) dy (6.5.11)
da r,

The change in potential energy is therefore replaced by a path independent line
integral around the notch tip.

6.6 The J-Integral — Definition

More generally, it is possible to define' a line integral, ./, on any curve I" surround-
ing the notch tip, starting from the lower surface and ending on the upper surface
of the notch such that J is given by:

J. [Wdx, —T_ds} (6.6.1)

where the curve is traversed in the anticlockwise direction, s is arc length and
I'= oyn; is the traction vector on I" according to an outward unit vector i1 (with
direction cosines »;) normal to the curve I'. When I is identical to T, T=0
because the free surface of the notch can withstand no stress normal to it, and
soJ =—dU'/da (J would be identical to the strain-energy release rate G for linear
elastic fixed grip conditions). It may be shown that the difference (/; —./,) for
two curves I'; and I'; is zero and the conclusion drawn is that the J integral is
path independent and formally equivalent to the change in potential energy
when the notch is extended by an amount da. The same conclusion is reached if
the change in potential energy is calculated for a sharp crack.

We therefore recognise a parameter, J, derived from non-linear elastic
behaviour, which bears the same function as does G in linear elastic theory. Its
use has been extrapolated to deal with elastic/plastic and even fully yielded
situations. Discussion of these applications follows, but there is one feature of
the path-independent nature of J which gives useful information on the forms
of stresses and strains at a crack tip for linear elastic loading. We write
equation 6.6.1 as

au;
J=f (%ai,.e,.j dx, ~ Tt dc) (6.6.2)
{28 Be o

for linear behaviour. Then, if we take a circle of radius r, where ¥ = 0, as our
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curve I%, it is clear that only the singular crack tip stresses or strains (Section 3.7)
are important. Now, in polar co-ordinates, x, = sin 8, for the definition of x,
given in Figure 6.12 Hence, we have dx; =r cos 6 df and ds = rdf. Since, by
path independence, J is independent of r, the coefficients of dx; and ds must

be of the order of 1/r. For linear elastic behaviour, stress is proportional to

X

Figure 6.12 Relationship between change in potential energy and line integral

strain; since the dimensions of the product have order 1/r, the stress singularity
is shown to have order rf%, as evidenced by the results derived from stress func-
tions (e.g. equation 3.7.5).

Problems arise in determining, and even in defining, the value of J in a real
situation, which is likely to be elastic/plastic rather than non-linear elastic. We
treat first the situation where a yielded region, very small with respect to crack
length and specimen width and small compared with the region governed by the
crack tip singularity, exists at a crack tip. This is similar to the situation described
in Section 4.6 and is referred to as small-scale yielding. Here, the J-integral is
evaluated by using a I'-contour which passes through elastic material encompas-
sing the plastic zone. If I is taken as a circle of radius r, we may, in an infinite
body, allow r to tend to infinity, so that the J-integral becomes identical to the
strain-energy release rate, G, for a linear elastic body:

2
J=G :% (1 —»?) in plane strain (6.6.3)

Here a plastic-zone crack-length ‘correction’ (Section 4.6) ought to be used for
K, because we have assumed that a small plastic zone is located around the crack

tip, i.e.
K=o +/[r(a +r)] —0\/[17(51 + 65:@)] (6.6.4)
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The most appealing feature of the J-integral is that it can be evaluated by
choosing I'-contours which deal with the crack-tip fields or with boundary condi-
tions as appropriate. For example, for the configuration of a crack + yield zone
in plane-strain tension (Section 3.18), J has been evaluated from the shear strain
energy density in the centred fans of plastic slip-lines immediately above and
below the crack tip (the local Prandtl field) as the contour shrinks to zero.

6.7 The J-Integral in Cracked Testpieces

The most straightforward experimental method of evaluating J derives from its
definition as the rate of change of potential energy with crack length'®
(equation 6.6.1 et seq). Figure 6.13 shows schematic non-linear loading curves
corresponding to specimens with crack lengths a and (@ + 84) under displacement

Linear elastic
/

Shaded area
isJB8 a

Load, P

Displacement, v
| Figure 6,13 The J-integral (Displacement control)

control. The shaded area represents an energy change JBSa. The displacement
must be measured at the loading points (cf. Section 4.4).

Experimental values of J may be obtained readily from these curves. At a
given displacement, the potential energy, U', may be found directly by using a
planimeter to determine the area under a loading curve for a given crack length,
a,. Then, at the same displacement, energies may be determined for crack lengths
@y, d3, .. .,etc, in a similar fashion. For a given standard crack length, a,, the
value of J at the displacement u is found from the tangent of the curve Uv. a,
taken at a,. Schematic results'® | obtained by this procedure, are shown in Figure
6.14a and 6./4b. The experiments are not, however, easy to perform and it is of
interest to try to predict the form of curve given in Figure 6. 145 from first
principles.

For linear elastic behaviour (at low loads or displacements), we have: u = CP
where P is the load and C'is the elastic compliance of the system for a given
crack length. The potential energy per unit thickness for this condition is then
given by:

9B 9B (6.7.1)
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omitting the prime on U. Then, by definition, we have:

_dU_1dcP?

J_ﬁ_—fﬁ_g (6.7.2)

Substituting back for « as CP, we obtain:

1 d€
J T (6.7.3)

Hence, for linear elastic behaviour, the dependence of J on displacement is para-
bolic, for a given crack length.

u’ Energy per
unit thickness
at displacement u
= area under
load-detlection
curve

Tangents at g give

Y &

du”
J(u.,)' da(a,)

u, Uy
Displacement, u
Figure 6.14 (a) Variation of energy with crack length and displacement (Data
representative of that for a low-alloy steel). (b) Variation of J-integral with
displacement (for the steel, almost independent of crack length)

1
I
i
I

2

For rigid/plastic material, the displacement u is unlimited at the limit load
(general yield load), P = Pgy, whilst for P<<Pgy, u = 0. The work done in
extension is therefore Pgv.u. Hence, we derive J as

u 0Pgy
i 6.7.4
5 (6.7.4)

where (0Pgy/0a) is evaluated for the crack length of interest. We therefore obtain
a linear relationship between J and u for rigid/plastic behaviour.
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In real specimens, a transition occurs from linear elastic behaviour at low
loads to fully plastic behaviour beyond the general yield load (limit load) Pgy .
Figure 6.15a shows schematic load—displacement curves for crack lengths a and
(a + 6a) and Figure 6.15b shows how J, calculated for these specimens, would
fLEnear elastic

Load -
/ Vs
/ /
G:e?grcu = /{ 7 Crack length a
yle / *__/
(limit . s ’ l
luuds) Poviassa s Perfectly
7 plastic
Transition

Crack length
(a+8a)

Displacement, u

(a) =
Offset

=2 s
= /
b= s
- Rigid/plastic 7
{ oo
g 5 Jecu 7 Linear Je u
o o (perfectly plastic+
S < // offset)
el , 5
o ’ / -

@ ’ / s -
= s ¢ “~~—Transition
Tl & !
8] // /I//
= S #7 Parabolic : J o u?
. o {linear elastic J=G)

Displacement, u
(b)

Figure 6.15 The J-integral for elastic/plastic behaviour. (a) Schematic load-
displacement curves. (b) Schematic dependence of J on displacement

vary with u, initially in a parabolic manner and finally in a linear manner. It is
assumed that J/ exhibits simple transitional behaviour: at low displacements,
J e« u?; at high displacements, J & u; but the line is offset by an amount which
-depends on the non-linearities in the transition region. To a large extent, it is
possible to allow for non-linearity by employing the plasticity correction
(Section 6.6) up to limit load Pgy; i.e. by taking the effective crack length as:

2 -

a*=(a+try)= (a + o2 ) in plane stress (6.7.5)
: A2 :
a*=(a+ry)= (a + W) in plane strain (6.7.6)

In the following section, we consider how detailed ‘J-calibration’ tables may be
constructed.
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6.8 Calculation of J in Bending

Consider a cracked specimen subjected to a bending moment, M, which we will
take initially as pure bending. Then the total energy stored in the piece, Uy, is
given by the sum of that which would exist if no crack were present, U,, and
that due to the presence of the crack, U,:

Uot = Uy + U, (6.8.1)

In pure bending, for a beam of depth W, thickness B and length between loading
points L, U, is given by:
6M*L
i X
U§ EBW3 (6'8"")
where £ is Young’s modulus. For three-point bending an additional contribution
U, arises from the work done by the shear stresses. By definition, U, /0a is the

strain energy release rate per unit thickness; hence:

a a KZ
U, =f GBda =f — (1 -v*)Bda (6.8.3)

0 o £
in plane strain (see Section 4.5), where a is the crack length. However, from
elastic compliance calibrations (e.g. Table 5.2), we may express K as a function
of (a/W), e.g. for three-point bending:

_3PL

K
BW:

o
f(ﬁﬂ (6.8.4)
The displacement at the loading point, , is composed of a part arising from the
bending of the beam and a part from the presence of the crack, and may be
found from the differential of total energy with respect to load:

_ Uy 03Uy 38U,
P 9P  aP

(6.8.5)

The first term may be calculated by standard strength-of-materials calculations
for beam deflections. The second term may be calculated from equations 6.8.3
and 6.8.4 as a polynomial, i.e.

ung(%,mL,&ﬁ) (6.8.6)

If plasticity has occurred at the crack tip, the crack length a* (from equation 6.7.6
for plane strain) is substituted:

u:Pﬁ(

a*
W

& 2 2
=Pf1|: (a +Knjf'6ﬂﬂy)

; W,L,B,E)

; w,L,B,E] (6.8.7)
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Expressions such as these, derived for three-point bend and CTS specimens, have
been used to compute the dependence of J on displacement in the transition
region'® (Figure 6.15b), and the predictions agreed well with the results of
experimental compliance calibrations.

The J-integral can thus be evaluated for a given specimen, either experimentally
or by calculation. The next section describes such evidence as exists for postulat-
ing that a critical value of J, Ji¢, represents a characteristic failure criterion in
situations where fracture is preceded by substantial amounts of yielding.

6.9 The J,; Fracture Criterion

It was stated, in Section 6.2, that no single parameter could be used to
characterise fracture in a yielding situation. The COD experiments show that a
critical value of the crack tip displacement can be used to define the initiation
of fibrous fracture for a limited set of conditions, but that thickness, for
example, can drastically alter the critical value, if no plane-strain thumbnail can
form.

Experiments in which the value of J at fracture has been measured in two
specimen geometries, designed to give markedly different stress states, appear
to show that a constant Jy¢ figure characterises fracture in both geometries'®.
It is argued that the crack blunting occasioned by the large displacements preced-
ing fracture reduces the effects of plastic constraint on the fracture criterion.

The two geometries studied were a thick, centre-cracked tension specimen
and a deeply cracked bend specimen. The slip-line fields at limit load in these
specimens are indicated in Figures 2.17 and 2. 15. In the tension specimen, there
is no stress elevation ahead of the crack tip and the limit load, Pgy, is given by:

Bay =Ty JW =538 (2.12.14)

where Ty is the shear yield stress. In three-point bending, the limit moment,
Mgy, is given by (preceding 2.12.12)

MGY = 0608TyB(W—a)2

which is 1.216 times that of an uncracked bar. Experimental measurements of
Mgy were found to agree well with this expression. The material tested was a
medium strength (approx 900 MN m™? yield stress) alloy steel and J values were
determined experimentally, as described in Section 6.7.

It was necessary accurately to determine the (gross) displacement correspond-
ing to fracture initiation, because any crack extension alters the compliance of a
specimens are indicated in Figures 2.17 and 2.15. In the tension specimen, there
fracture initiation was found fortuitously to coincide with maximum load, in
contrast to the mild steel behaviour in COD tests reported in Section 6.3,

The values of J;¢ were measured for the displacements corresponding to frac-
ture initation and are tabulated in Tuble 6.1 together with further results for
rather similar specimen geometries.
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These values appear to be reasonably constant and tend to indicate that, in
terms of energy release, the higher limit loads associated with constrained test-
pieces are more or less compensated for by higher displacements in the less con-
strained specimens.

Table 6.1 CRITICAL VALUES OF Jic. (after Landes and Begley'®)

Specimen type Dimensions (mm) Temp. (K) Jic (kI m™?)
Ni—-Cr—Mo—V steel
Centre cracked 25 x 25 x 57 394 172
Double thickness bend bars 12 x 20 x 40 394 187
Single thickness bend bars 12 x10 x40 366 167
Compact tension (8T) 406 x 203 x 488 394 175
Bend bars double size 24 x 20 x 96 366 179
A 533B Class II steel
Compact tension (2T) 102 x 51 x 122 298 165
Compact tension (1T) 51 %25 %61 298 180

There is, then, evidence that a critical parameter, J;, adequately represents
fracture in specimens of different geometries. The values of J; also appear to
extrapolate well from those of Gy at lower temperatures. It is, of course,
vitally important that /i should be measured at the point of initiation because
any crack growth prior to final instability will affect the compliance of the
specimen. Measurement of Jy¢ is a new testing technique and much work
remains to be done to establish fully the viability of the approach and the
detailed dependence of the critical values on variables such as temperature, strain
rate, stress state and so forth. In steels, it is possible that low triaxiality induces
fibrous fracture, whilst high triaxiality induces cleavage (see Chapter 7). In such

circumstances it seems unreasonable that identical Ji values should be obtained
in widely differing specimen geometries.

6.10 Conclusions

Both COD and J;¢ attempt to characterise ductile fracture events by single para-
meters which may be related to the critical value of energy release rate when a
large piece breaks well before general yield. The COD focuses attention on the
crack tip region and is able to be related directly to the micro-mechanisms of
fracture in a region of area less than some 0.01 mm?: J relates to macroscopic
work terms or to crack tip conditions, depending on the I'-contour chosen.

In a generally yielded specimen, J is directly proportional to the displacement
of the loading points, u. In bend, u is proportional to the angle of bend, 0, and so
J is proportional to 0. In notched bars, it has been shown, that, for a given speci-
men geometry, ¢ is proportional to notch root displacement. In other words, it
is highly probable that/ 1s directly proportional to COD for a given specimen geo-
metry. This relationship remains to be explored. The J parameter is, in principle,
easier to measure, but, in practice, is probably subject to at least as many errors
as COD. In the transition region, / has no obvious advantage over the LEFM
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approach, with plastic zone correction. The main defect, as with K¢, is that the
critical value of Jyc has no physical basis. The next two chapters discuss the
extent to which a knowledge of crack tip fracture mechanisms can help to pro-
vide such a basis.
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Seven

NOTCHED BAR FRACTURE MECHANICS AND THE MICRO-
MECHANISMS OF CLEAVAGE FRACTURE

7.1 Introduction

In previous chapters, we have considered macroscopic methods of measuring
toughness parameters, such as critical stress intensity, J-integral or crack
opening displacement. We shall now pay attention to the local fracture events
ahead of a stress concentrator to try to gain a physical understanding of how
material properties control the limiting values of toughness. The aim of this is
twofold. First, by knowing how mechanical factors affect the micro-mechanisms
of fracture near a stress concentrator, we can comment on how generally
applicable any particular toughness value may be. Secondly, by identifying the
microstructural features which give poor toughness, we may be able to eliminate
them in the design of materials with improved resistance to fast fracture.

The majority of the chapter concerns the behaviour of medium- and low-
strength steels in specimens containing notches, rather than sharp cracks. The
reason for dealing with these materials is that the microscopic fracture events
are more clearly defined than those in high strength alloys. The reason for dis-
cussing behaviour in notched specimens is that more is known about elastic/
plastic stress distributions, as related to fracture mechanisms, in these, than in
pre-cracked pieces. The analysis of notched-bar behaviour may be used to
distinguish mechanical and microstructural effects and also to estimate the value
of results obtained from more traditional methods of toughness testing.

7.2 Notched-bar Impact Testing

Usually, notched-bar toughness tests are carried out under impact conditions
(see Section 1.7). Specimens are broken in a machine which allows a pendulum
hammer to descend on the specimen from a fixed height. By recording the
height of the swing when the hammer has smashed through the specimen, the
amount of energy absorbed in fracture is determined. This fracture energy is
usually measured as a function of test temperature and the results are presented
in the form of an ‘impact transition curve’. A curve, typical of those obtained

176
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for a low-strength steel, is drawn in Figure 1.3. Several ‘transition temperatures’
may be defined. We shall refer later to two temperatures: that at which the
fracture appearance is 50% fibrous, 50% crystalline (the fracture appearance
transition temperature or FATT) and that corresponding to the temperature at
which the curve changes from the almost horizontal line at low temperatures
to the steep slope in the transition region. This is the ‘nil-ductility temperature’
or NDT. We shall also be interested in the ‘upper shelf’ energy level when the
curve flattens off at high temperatures. These various parameters are indicated
in Figure 1.3.

It is difficult to relate the energy measurements directly to the local fracture
mechanisms in the notched impact specimen because the work done involves
contributions from that needed to initiate fracture and that needed to propagate
fracture through the specimen, in addition to the plastic work associated with
the indentation of the specimen by the hammer. Instrumentation may be
attached to the hammer or to the specimen but it is easier to consider first the
results which have been obtained in slow notch-bend, where loads and displace-
ments can be measured directly.

7.3 Slow Notch-bend Testing

The general fracture behaviour of mild steel notched specimens deformed in
four-point bending is shown as a function of temperature in Figure 7.1a (see
Knott'). The general yield load curve gives the loads Pgy needed to spread
yielding completely across the net section of the specimen, and may be related
to the uniaxial yield stress by the expression (following equation 2.12.10)

Mgy = 0.637¢(W —a)*B (73.1)

where Mgy is the bending moment (5Pgv x bending arm) and 7y is the shear
yield stress (7y = ay/2 on the Tresca yield criterion or oy /v/3 on the Mises
criterion). The temperature, Ty, is that below which the fractures are brittle
in the sense of our definition in Section 1.6. The low temperature fractures are
generally produced by cleavage mechanisms. The sequence of photographs in
Figure 7.1b shows how the amount of yielding preceding fracture increases with
temperature (see Knott and Cottrell*). Above Ty, the specimens deform
generally before they break. Consequently, the amount of work required to
fracture them increases rapidly with temperature. To a first approximation the
transition point, Tgy, may be regarded as analogous to the nil-ductility-
temperature (NDT) in impact testing (see Section 7.2). In several steels, however,
it is observed that the fracture load curve runs nearly parallel to the general
yield load curve over a substantial temperature range above Ty, and that the
macroscopic deformation preceding fracture remains fairly small until a
temperature 7y is reached. This temperature is associated with the yielding of
the gross section of a specimen before fracture by the spread of plastic ‘wings’
from the top face®* (see Figure 7.1). In such steels, and perhaps generally, Ty
rather than Ty is to be identified with the NDT.
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The behaviour may be related to the increasing amounts of plastic deforma-
tion which precede fracture as the temperature is raised. At low temperatures,
the small plastic zone is contained within the specimen, which is then macro-
scopically brittle. At Tgy, the zone is just sufficient to give general yield. At
Ty it can be made bigger only by raising the applied load, because the net
section has been work-hardened, and the increase in load is sufficient to yield
the gross section. Above Ty, the loads and displacements rise rapidly, because
some of the effect of the notch on triaxiality is removed by the gross deforma-
tion. The onset of fibrous fracture may occur above or below Ty, depending on
the magnitude of the notch-tip fracture strain required to initiate fracture and
on the ratio of notch to specimen depth. This strain is usually a function of a
material’s inclusion content. In a very pure iron, a specimen with a fairly shallow
notch may be bent double, without initiating fracture. For a similar matrix, but
containing a high volume fraction of closely spaced inclusions, fracture may be
initiated at low notch strains, with correspondingly small overall angles of bend.

Fracture load

Load

General yield load,

PGY

(a)

Notch root strain

Tsy Tw | Temperature
; | QL2

I : -

! "7 First onset of

| ) ‘wings’ from top
B@ surface

Fracture coincident
wilh general yield

Figure 7.1a Schematic fracture behaviour of mild steel in slow notch-bend test
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295 K 232 K 205 K

Figure 7.1b The deformation preceding fracture in notched bars, broken at low temperatures
(the deformation is shown by etching in Fry's reagent) (x3)
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The phenomena which need to be explained are therefore: the production of
cleavage fracture as a function of temperature; the ‘engineering’ ductile/brittle
transition at Tgy; the onset of gross plastic deformation at Ty and the transi-
tion from cleavage to fibrous initiation. We begin by considering the behaviour
associated with cleavage fracture.

7.4 The Tensile Stress Criterion for Cleavage Fracture

The first really successful attempt to explain the effect of a notch on the
cleavage fracture process in mild steel was made by Orowan®, who pointed out
that the slip line field at general yield for a specimen containing two deep
external cracks (Figure 2.13) implied that the peak tensile stress in the specimen
was given by:

O11(maxy = 2Ty (1 + 1/2) = 2.570y (7.4.1)

using Tresca’s yielding criterion. He supposed that cleavage fracture was con-
trolled by the magnitude of tensile stress at the ‘yield point’, and that the
notched bar therefore behaved in a more brittle manner than a tensile specimen
because the tensile stress was higher at a given temperature. Over a range of
temperature, the situation would be as indicated in Figure 7.2, assuming that

Brittle fracture stress

0
w
2
&
Maximum stress in
cracked bar:
9 (max) = 2:57 0y
I
: Uniaxial yield stress, oy
1
{A Temperature
| i
IUni l,ductile:
Both brittlel 0" gl 'Both ductile

Icracked Jbrittle ;

Figure 7.2 Orowan’s theory of brittle fracture

the ‘brittle fracture stress’ — the critical value of tensile stress needed to produce
cleavage fracture — was relatively independent of temperature. The tensile
stresses at yield in smooth, 0y, and notched 2.570+, bars are shown to increase
markedly with decrease in temperature. Orowan’s model predicts that, above
Tx, both notched and smooth specimens are ductile, because they yield at a
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stress lower than the fracture stress. Between T, and Tg, the notched bar is
brittle because it breaks before it ‘yields’, but the tensile specimen remains
ductile, Below T, both types of specimen exhibit brittle behaviour.

The main faults with Orowan’s argument are that distinctions between local
and general yield in the notched piece are not drawn. The model is, therefore,
not sufficiently flexible to incorporate the requirement that cleavage crack
nuclei must be initiated by slip-bands or by mechanical twins even when the
piece is macroscopically brittle. It does, however, draw attention to the
importance of tensile stress in promoting brittle behaviour. This view received
support from the experiments of Hendrickson, Wood and Clark®, but tended to
be ignored by contemporary dislocation theories of fracture, which predicted
that the total behaviour was controlled by the localised stresses at the head of a
dislocation pile-up. A dislocation model for cleavage fracture produced by
Cottrell” appreciated the importance of tensile stress, but, again did not
discriminate properly between local and general yield conditions. This model
will be discussed in more detail in Section 7.10.

By comparing Figure 7.1 with the Orowan predictions shown in Figure 7.2,
it is clear that the temperatures Tgy (Figure 7.1) and Ty (Figure 7.2) are
equivalent in that they both represent the point at which fracture is coincident
with general yield. Below this temperature, it is clear (from Figure 7.1) that
fracture actually occurs after successively decreasing amounts of local plastic
deformation around the notch, even though the total fracture behaviour is
macroscopically brittle.

In the absence of any reliable analyses for the stresses in the locally yielded
zone, Knott® examined the importance of tensile stress in determining the onset
of cleavage fracture by testing specimens of annealed mild steel containing
notches of different included angles. From Section 2.12 it is found that the
maximum tensile stress in a notched bar at general yield is given as a function
of notch angle by the expression:

e
O11(max) = 2Ty (1 +§_§) (7.4.2)

Then, by determining the temperatures Ty at which fracture is just coincident
with general yield for a range of angles, it proves possible to calculate the value
Of 011 (max) at fracture as a function of temperature, using the appropriate value
of uniaxial yield stress at each value of Ty . Typical values of 011¢max) at frac-
ture are plotted in Figure 7.3a from which it may be deduced that the basic
Orowan concept: that fracture occurs at a critical value of tensile stress, Op,
which is virtually independent of temperature; is substantiated for these steels.
Further support is gained from metallographic evidence which indicates that a
cleavage crack first forms below the notch root where the tensile stress is high®
(Figure 7.3b,c).

The sequence of events, for a bar of constant notch angle at temperatures
below Ty is then as follows. At low temperatures, the uniaxial yield stress is
high and the size of plastic zone needed to elevate the tensile stress by stress
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intensification (Section 2.12) to the critical value is small. Fracture therefore
occurs well before general yield. As the temperature increases, the uniaxial yield
stress decreases and the plastic zone at fracture must therefore be correspond-
ingly larger. Eventually, at Tgy, it is of a size such that general yield and fracture
coincide. The fracture criterion may be stated simply as:

Qoy =0g (7.4.3)

where (0 represents the stress intensification produced by the plastic zone.
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Figure 7.3 (@) Experimental values of maximum local tensile stress at fracture for three

mild steels. (b) Initiation of a cleavage crack in the region of high tensile stress well below

the notch root (x 70). (¢) Detail of cleavage crack, showing association with grain-boundary
carbide (x 400)

Knowing oy over a range of low temperatures, it proves possible to calculate
Q for any particular specimen geometry, by measuring values of oy over the
temperature range. The method has been used for a piece of Charpy dimensions,
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tested in four-point bend. Results are given in Figure 7.4, and show the increase
in O with size of plastic zone (P/Pgy). much as indicated earlier (Section 2.13).
Very recently, finite element computer programs have been developed to deter-
mine the stresses in the plastic zone (Section 3.18). These have been applied to
calculate values of o as a function of temperature and give fairly close agreement
with the experimental results, despite the fact that the maximum value of ¢, is
found to lie some distance behind the plastic/elastic interface, particularly for the
larger plastic zones. A direct test of the tensile stress criterion in 3% silicon—iron,
based on the finite element analysis, is shown in Figure 7.5, from which it is clear
that the general concept of the temperature independent fracture stress is well
supported®.
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Figure 7.4 Experimental determination of stress intensification in specimens of Charpy
geometry (% = 0.2), assuming general yield slip-line field solution. (In four-point bend,
the geometry is insufficiently deep to give fully constrained yielding: see Figure 2.16b)
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Figure 7.5 Variation of critical fracture stress with temperature in Iron—3% silicon,
(Stresses calculated by finite element analysis. Owen and Griffiths®)
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The criterion may now be explored in more detail, firstly to show how it can
be used to explain effects of specimen geometry on cleavage fracture and,
secondly, to relate it to micromechanisms of cleavage fracture. The first geometri-
cal variable to be considered is that of thickness.

7.5 Effects of Specimen Thickness

The main effects of thickness®!° on the occurrence of fracture in notched mild-
steel specimens are indicated in Figure 7.6. Not only is the obvious transition
from cleavage to fibrous fracture strongly affected, but the temperature, Tgv, at
which cleavage fracture is coincident with general yield, also varies with thick-
ness. Typical results are quoted in Table 7.1. If a particular temperature, such as
Ty in Figure 7.6 is chosen for close examination, the thickness effect is

Thickness |
Fracture
load

10-0 mm y
T 12:5 mm "
S o
~ General x
ield load =

\ (. :g, Fracture load
T T T increases o
e “2% "] slightly with g

(=5 mml o thickness) = General yield load

(@ Temperature (b) Thickness, B

Figure 7.6 (a) Schematic variation of fracture behaviour with thickness in slow notch-
bend tests (cf. Figure 7.1). (b) Fracture behaviour at temperature Ty

maximised, because fracture in the thin specimens is initiated by high-strain
fibrous mechanisms, whereas the thick specimens fracture entirely by cleavage.
The general curve of fracture stress v. thickness (Figure 7.6b) bears many
similarities to that for fracture toughness values in an aluminium alloy at room

Table 7.1 VARIATION OF TRANSITION TEMPERATURE, Ty, WITH THICKNESS

Thickness (mm) 12.5 10 5 5 2:5
Temperature, Ty C —102 —-108 -114 -120 —126
Q=oploy 251 2.48 2.36 722 215

temperature (Figure 5.2a). It should be noted that, for the mild steel, ‘square’
fractures in moderate thickness may occur at loads substantially higher than the
critical fracture load for very thick sections (see Section 5.7). We are therefore
led to distrust a square fracture appearance as any definitive indication of
whether or not limiting ‘plane strain’ conditions have been attained.

Use may be made of the experimental values of Ty to calculate the maxi-
mum tensile stress, and hence the stress intensification, in a specimen at general



NOTCHED BAR FRACTURE MECHANICS 185
yield as a function of thickness. If the local fracture stress is given by oy over
the temperature range of interest (Figure 7.3), we have, at general yield:

O11(max) = Q@)Y Iy = OF @50

Hence, by measuring values of oy in uniaxial tensile tests, Qgygy may be
obtained as a function of thickness. Results are shown in Figure 7.7 for a four-
point bend specimen. It is apparent that Qgygy decreases rapidly below a thick-
ness of about 2.5 mm. Even above 2.5 mm, (g,gy increases slightly with
testpiece thickness.

The analogy with the aluminium alloy may be pursued. If the mild steel
specimens were of much larger section, so that they broke under virtually linear

N
o
T

O

—a
(=]
T

Stress intensification Qgyey

i 1 1 d il
2-5 5 ek 10 12:5
Specimen thickness,B {mm)

o

Figure 7.7 Variation of stress intensification, Q(B)GY’ with testpiece thickness

elastic conditions, one would expect that the critical thickness might correspond
to a characteristic size of plastic zone at fracture. It has been shown?® that the
average plastic strain across the notch root at general yield is some 7%, i.e. the
associated notch tip displacement is about 0.25 mm (the root radius) x 0.07 =
0.0175 mm. Under linear elastic conditions, the radius of plastic zone

associated with such a displacement is:

5 B
21 oy

ryo—

= 1.8 mm

taking an average value of about 400 MN m™? for the low temperature yield
stress. We might therefore expect (from Section 5.7) that some effect on decreas-
ing the fracture load would be observed in specimens greater than about 3.5 mm
thick, but that any plane strain fracture requires a thickness of at least 7 mm.
These estimates hold strictly for conditions well below general yield. However,
they agree fairly well with the calculated variation of Qgygy with thickness.
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The general picture is then that, in thin specimens, stress intensification does
not build up to a very high value, because through-the-thickness relaxation of
stresses occurs. The applied load must therefore be raised to a rather high value
to produce fracture. There is an intermediate range of thicknesses in which
some triaxiality persists at general yield, but where the peak stress is not as
high as in very thick specimens. There is evidence, from macroscopic measure-
ments of general yield loads and comparisons of these with the values predicted
by plane-strain slip-line field theory, that plane-strain conditions exist in thick
specimens up to, and, indeed, well beyond, general yield (see also Section 6.3).
The gross transitions in fracture load and ductility occurring at temperatures
Tw (see Figure 7.1) are usually attributable to the relaxations in stress state
produced by gross-section yielding, rather than by yielding through the thickness.
This point is amplified by considering effects of notch depth on yield and frac-
ture behaviour.

7.6 Effects of Notch Depth
The fracture loads and general yield loads of thick notched specimens containing

notches of different depths'" are drawn in Figure 7.8. It is apparent that speci-
mens with shallow notches possess lower transition temperatures. The values of

Load

- Envelope
“~of general yield loads

Temperature

Figure 7.8 Schematic variation of fracture behaviour with norch depth in slow notch-bend.
Net section depth (W — a) held constant in all cases at 8.75 mm.

Curve A B (&4 D E F
Notch depth, ¢ (mm) 1 2 375 2 75 1
Thickness, B (mm) oS 12.5 12:5 1.25 1525 .25

Notice that effects of notch depth on the transition do not occur in thin specimens

Ty as a function of notch depth are indicated in Table 7.2. Over the range of
shallow notch depths, the value of stress intensification at general yield may be
calculated from:

O11(max) = Q)cyly = Op (7.6.1)
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where oy and oy have been determined separately as before (Section 7.5). It is
readily concluded that some form of relaxation of the triaxial stress state has
occurred in thick shallow-notched bars at general yield. The reason for this
relaxation may be deduced from the modes of yielding, as discussed in
Section 2.12. To produce general yield in a 45° V-notched bar in bending
requires a moment of:

M=0.63r¢(W—a)*B D

whereas the moment required to yield a rectangular bar of dimensions equal to
the gross section is

M=057yW?B (7.6.2)

Table 7.2 VARIATION OF TRANSITION TEMPERATURE, 7'y WITH NOTCH DEPTH

Notch depth (mm) 5.5 ) 1 3.75 2 1
Thickness (mm) 12.5 12.5 125 1.25 1.25 125
Tgy °O) =15 -85 -107 -128 -133 -140
Q= op/oy exptl 2:51 2.36 2:07 1.74 1272 1.60
Q theoretical 2.51 2.40 1.96 = =2 o

(see also Table 2.1)

The critical ratio of notch/section depth needed to produce constrained
general net-section yielding before gross yielding has been shown to be (Figure
2.16b): a/W=0.41/1.41 = 0.3. It will be noticed from Table 7.2, that the low
values of Qgygy are obtained only for notches which are more shallow than this
critical ratio. The relaxation occurs simply by the onset of gross-section yielding
as indicated in Figure 2.19. Plastic ‘wings’ spread in from the top surface
before the full ‘hinge’ pattern can develop. These events do not occur in thin
specimens because the constraint factor is low.

The implications of these effects of notch depth on toughness testing pro-
cedures are important. It is clear that the notch must be deep for fully con-
strained net-section yielding to be developed. This shows also that even fracture
toughness tests carried out well below general yield would be misleading if the
pre-cracks were not sufficiently long: the specified ratio, a/W = 0.45 — 0.55 is,
however, more than sufficient for the standard bend or CTS testpiece.

Problems may still arise in the application of fracture toughness values to
design against fracture in service. A value obtained from a highly constrained
testpiece may be unduly pessimistic if the material is used in structures where
deep stress concentrators do not exist. Equally, a value may be optimistic if
triaxial residual tensile stresses are present in service.

The problems are increased if small testpieces have to be used, to measure
toughness through COD or J-integral procedures. Here general yielding pre-
cedes fracture and there is much more chance of gross-section yielding. Effects
have been shown clearly in experiments where a comparis,on12 was made
between deep- and shallow-notched cylindrical (double-notched) testpieces of
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an alloy steel tempered to a 0.2% proof stress of 950 MN m 2. For the deep
notch, yielding was constrained, the fracture initiated by brittle intergranular
mechanisms and the COD at the unfractured notch was low. For the shallow
notch, triaxial stresses were relaxed, the mode of initiation changed to fibrous
and the COD was large.

Effects of both thickness and notch depth have been explained in terms of
the maximum value of tensile stress below the notch, which must reach a critical
value to cause cleavage fracture. We shall now attempt to relate this critical
value to the micro-mechanisms of fracture.

7.7 Micro-mechanisms of Cleavage Fracture

As discussed in Section 4.3 the theoretical fracture strengths of crystals are very
much greater than those observed in practice. The discrepancies may be
explained if real crystals contain atomically sharp flaws which propagate in the
way suggested by Griffith'?, i.e. when the thermodynamic balance between the
potential energy release rate and the surface energy required to separate bonds
at the crack tip is attained. For iron, taking Young’s modulus to be 200 GN m™2,
surface energy to be 2 J m™, and a typical fracture stress to be some 1 GN m™>
(cf. Figure 7.3), we have for the critical flaw size, @g¢:

2Ey

derit = 'JT(l s VZ)O'FZ (7-7'1)

=~ 0.3 um

Pure irons may be made which do not contain inherent, atomically sharp flaws as
large as 0.3 um and yet which cleave at low fracture stresses.

For iron tensile specimens, it has been shown that even the most apparently
brittle fractures, in testpieces broken at 77 K, fail at stresses coincident with
the uniaxial vield stress. The point was proved by comparing the fracture stress
in tension with the yield stress in compression for a variety of different grain
sizes, as indicated in Figure 7.9'*.In fine grain sizes, yielding precedes fracture:
in coarse grain sizes, it is clear that yielding and fracture are coincident.
Similarly, even in very brittle notched bars, cleavage fracture is preceded by a
small amount of local yielding around the notch root. The load required to
produce fracture when the notch region is in tension is equal to that which
produces slip or twinning when the notch is in compression.

These various results led to the conclusion that yielding precedes fracture,
because yield is necessary to produce a cleavage crack nucleus. The yield may
take the form of slip or twinning. In each case, the models proposed for
nucleation involve the blocking of a slip-band or twin by an obstacle, such as
a grain boundary or second-phase particle. The model for a slip-band is indicated
in Figure 7.10a where a pile-up of dislocations in a grain of diameter d produces
a highly-concentrated stress at each end of the band. We suppose for a tensile
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specimen that a shear stress, 7, deriving from an applied tensile stress o(1 = 0/2),
acts on the slip-band. Since slip proceeds by dislocation movement, the shear
which the stress 7 is trying to produce is opposed by a ‘friction stress’ 7;, which
includes contributions from the inherent resistance of the lattice to slip (the
Peierls—Nabarro force), from small precipitates, from clusters of solute atoms or

Fracture stress

Fracture stress
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[compression)

Yield stress
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Figure 7.9 Schematic variation of yield and fracture stresses with grain size. Mild steel
at 77 K (after Low'%)

point defects (if the material has, for example, been subjected to neutron
irradiation), and from the annealed-in dislocation density. For a twin, 7 is very
small and is often taken as zero.

—1.’2=d-1f2 -IIZ)

(7= Ti)

|

d/2

Figure 7.10 Effects of slip-bands in yield and fracture. (@) Slip-band in a grain
(average diamerer d). (b) Model as a shear crack (Kyy mode). (¢) Stroh’s model
for cleavage fracture'®



190 NOTCHED BAR FRACTURE MECHANICS

The stress distribution around the slip-band subjected to an applied shear
stress, 7, is equated to that for a freely-slipping crack, of length equal to the
grain diameter, under an applied stress (7 — r;) (Figure 7.10b). The mode of
deformation is that of Mode II shear (Section 3.8), and the local stresses ahead
of the slip-band therefore take the form:

_ Ku
012 _\/(err) f06)+ ... (7.7.2)
_ K
or Opg —\/(27”’) fg (6) acn (773)
where we write, for Ki;:
Kip = (7=~ m)VA(nd/2) (7.7.4)

This result has been used in two very important ways. We consider first its use
as a model of the yielding behaviour of a polycrystalline specimen.

7.8 Yielding: the Petch Relationship!®!®

Considering the expression for the concentrated shear stress, 0,4, and taking
f,(0) = 1, we may write:

0= =) (£) (78.1)
We are now in a position to model the propagation of a Luders band along the
gauge length of a smooth tensile specimen at the lower yield stress, by postulat-
ing that the grain ahead of the slip-band will yield when o,, attains a critical
value, 7#. Then from equation 7.8.1, the applied shear stress, 7y, required to
spread yield from grain to grain is given by:

ry =1t (4r)irEdTE (7.8.2)

On the average, the distance, r, to the nearest dislocation source in the unyielded
grain and the value of the stress, 7%, needed to operate that source may be taken
as constant and we write

Ty =1 +kSdT (7.83)

where ki. is a constant pertaining to the shear stress state.
The shear stresses may be written in terms of the applied tensile stress through
an orientation factor: o = mr, where m may be taken as approximately 2.2 for
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randomly-oriented body-centred-cubic polycrystals. The final expression for the
tensile yield stress is then:

Oy =0+ kyd * (7.8.4)

where kv is a constant. This equation was first derived by Hall'S and Petch!® and
is generally called the Petch equation.

The value of ky relates to the process by which mobile dislocations are pro-
duced in the unyielded grain. For thermally activated unpinning of dislocations
from carbon or nitrogen atmospheres, kv is dependent on temperature, but it has
been shown that, in normalised or annealed mild steel, mobile dislocations are
created in, or close to, the common grain boundary at local stresses which are so
high that the process is not affected by the thermal energies associated with low
temperatures'”.

The second important use of equations 7.7.3 and 7.7.4 is to model fracture
behaviour.

7.9 Cleavage Fracture: Stroh’s Theory'®

An early dislocation model for the cleavage fracture of a polycrystal was based on
the attainment of a critical value of the tensile stress, Opg, in the unyielded grain.
By an argument similar to that developed for the Petch model for yielding, a
relationship was derived between the cleavage fracture stress and the material’s
grain size:

-

(7.9.1)

where kg refers to the critical value of local tensile stress required to fracture
the second grain. This theory makes the correct prediction, that the cleavage
fracture stress is higher in fine-grained material, but gives no clear meaning to kp
and does not therefore adequately explain the experimental variation of fracture
stress with grain size, as shown in Figure 7.9. For such results, kr appears to be
identical to ky for coarse grain sizes, but substantially greater than kv in finer
grain sizes. Initially, the experimental values were ‘corrected’ and then appeared
to fit the theory, but the procedure used cannot be regarded as satisfactory.

The meaning of the kg value was investigated by Stroh'®!, He supposed that
the dislocations at the head of the slip-band were squeezed together to produce
a crack nucleus and calculated the magnitude of the local tensile stress, Ugg.
needed to spread this nucleus as a Griffith crack. This is a maximum at 70.5° to
the line of the slip band. The model is drawn in Figure 7.10c. Certain modifica-
tions to the original Stroh analysis are needed to take account of the role of
shear stresses in assisting crack growth and that the crack nucleus spreads under a
non-uniform stress*’. (Stroh also failed to allow for an incorrect factor of two
in the first version of Griffith’s equation.) When the corrections are made, Stroh’s

-

Op =03+ kpd
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expression for the conditions under which the nucleus will spread may be
written as*®

MY :
Tef{ Ty — T = [mi] (7.9.2)

From this result, it may be clearly deduced that, if a crack nucleus can form, any
increase in the length of the nucleus will lead to a decrease in the total energy of
the system, provided that the surface energy encountered by the growing crack
remains constant. This implies that cleavage fracture is nucleation-controlled,
demanding simply that a number of dislocations sufficient to nucleate a crack
may be squeezed together at the end of the slip-band. The critical number is
given by:

ny

n= szeﬁb (7.9.3)

where b is the Burger’s vector of a dislocation.
The important stress in causing cleavage fracture is therefore predicted to be
the effective shear stress,

Tegg =Ty T =kSd (7.9.4)

from equation 7.8.3. This prediction does not then explain why cleavage fractures
predominate at low temperatures [where the tensile yield stress is high, but

(ty —7;) is little different from its value at room temperature] or why the

tensile stress is so important in notched-bar fracture.

If tensile stress is to be the vitally important parameter indicated by the experi-
mental results, fracture must be growth-controlled, rather than nucleation-
controlled. Stroh’s formula (7.9.2) shows clearly that this is impossible, assuming
his nucleation mechanism, if the surface energy term, vy, remains constant.

7.10 Cleavage Fracture — Cottrell’s Theory’

Cottrell proposed a dislocation mechanism for cleavage fracture, which allowed
growth to be the controlling factor, by providing an easy nucleation process. If,
as indicated in Figure 7.11, we have intersecting {101} slip-planes in iron on

which dislocations with Burger’s vectors of type a1 are gliding, we may
obtain the reaction:

o a
5 (1] oy 5 (110 gy a[001] s (7.10.1)

The resultant dislocation is formed with a reduction in energy and is a sessile
edge dislocation (the line of intersection of the planes is [010]) with a Burger’s
vector normal to the cleavage plane (001). It therefore provides the first stage of
crack nucleation. The relative motions of material above and below the slip-
planes produce the effect of driving a wedge into the cleavage plane.
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The importance of tensile stress in causing fracture may be deduced by con-
sidering the total energy of the system as more dislocations are fed into the
nucleus to increase the wedging displacement in the [001] direction. Suppose
that, for a displacement nb, produced by n pairs of slip dislocations, the length
of nucleus is ¢. We recognise four contributions to the total energy per unit
thickness:

(1) the Griffith energy of a crack of total length ¢ under a tensile stress p:

VB (c i

Ly = = 5) (7.10.2)

(cf. equation 4.3.14 for a crack of length 2a)
(2) the work done by the stress in forming the nucleus:
Uy =—1p.mb.c (7.10.3)

(the average displacement is %n. b)
(3) the surface energy

Us =+2y.c (7.10.4)
(4) the strain energy of the ‘cracked” edge dislocation of Burgers vector nb
p(nb)* '2R)
o TR S S oot sl
U, s ln( 5 (7.10.5)

where R is taken as the distance over which this strain field is effective and (¢/2)
is taken as the core radius of the cracked dislocation. The equilibrium lengths for

d .
the crack are found by equatingg(b’] + U, + U3 + U,) to zero. A quadratic

in ¢ is obtained, which implies that either there are two stable crack lengths or no

T Tensile stress
P

(001) Cleavage plane

]
\Length ¢ for displacement nb
(i01) Slip plane

b:-gu[ﬂ?l
| °

Figure 7.11 Cottrell’'s model for cleavage fracture’
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real roots, in which case the energy decreases spontaneously. At the transition
point, we obtain:

pnb = 2y (7.10.6)
or, substituting for b (= a[001]),
pna = 2y {7.10:7)

This may be taken as the critical condition where the curve of energy v. crack
length decreases, but shows a horizontal point of inflection corresponding to a
characteristic nucleus size. We may substitute for the displacement na the sum of
the sliding displacements at the end of each slip band resolved in the [001] direc-
tion. If each slip band is one grain diameter d in length and the effective shear
stress at the yield point is (7y — 7;), the shear strain is (Ty — 7;)/ut and the shear
displacement is d(7y — 7;)/11. We may therefore write:

d_Kd
it b L ) e 7.10.8
(ry )u ” ( )
making the substitution
(ry —1)=kSd* (79.3)

The value of the tensile stress needed to propagate a nucleus then becomes:

pZ—d (7.10.9)
Cottrell applied this expression mainly to explain the experimental results on
tensile specimens shown in Figure 7.9. Writing p = oy = 27y for the value of
tensile stress at the yield point, he obtained the expression:

rekSdE =y (7.10.10)
2 i
or g st £ (7.10.11)
kY

as the stress required (on energetic grounds), for propagation, once a nucleus has
formed. From Figure 7.9 it is apparent that, for grain sizes coarser than d*, the
fracture is not growth controlled. It is mechanism controlled, because it is neces-
sary to produce dislocations before they can form a crack nucleus. The fracture
stress is then simply the yield stress. For grain sizes finer than d ¥, yielding
precedes fracture, but the crack nucleus will not spread until a stress

Op =a-d (7.10.12)

is attained. (Strictly, the Cottrell argument as such applies only at d ™, because y
may increase and k; may decrease once the specimen has yielded.) The value of
v calculated from the results in Figure 7.9 was about 20 Jm™2, i.e. about an
order of magnitude greater than the surface energy of the lattice. Cottrell
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attributed this larger value to the extra work done in producing river lines or
traversing grain boundaries.

The model was applied to explain notch fracture by writing

oykSd: =B2uy (7.10.13)

where f is a factor [taken by Cottrell to be% to conform with the Orowan general
yield solution for deep external cracks (equation 7.4.1)] which relates the tensile
yield stress to the maximum tensile stress below a notch. In fact, for a given
notch geometry, 8 varies with temperature, because the plastic zone size at
fracture increases with temperature®. The g factor is the reciprocal of the stress
intensification, O (see Section 7.4).

Cottrell’s model therefore emphasises the role of tensile stress and explains
effects of grain size (d~ ) and yielding parameters (7y, k5 ) on fracture. Harden-
ing, other than by decreasing grain size, is predicted to promote brittle cleavage
fractures, by raising the value of tensile stress at the yield point. Initially, the
Cottrell equation appeared to serve as a complete basis for the microstructural

Fine carbides

Coarse
carbides
lead to

Stress

Strain

Figure 7.12 Schematic stress—strain curves for steels containing fine and coarse carbides
(after McMahon and Cohen*')

design of steels with improved resistance to cleavage, but one important variable
was omitted from the model.

This was demonstrated by McMahon and Cohen®' who tested, at various low
temperatures, tensile specimens of identical yield and flow properties, but con-
taining carbides of different sizes. Their results (Figure 7.12) showed that
coarse carbides promoted cleavage, whilst fine carbides allowed the material to
behave in a ductile manner.

7.11 Cleavage Fracture: Smith’s Theory??

These experiments provided the starting point for an alternative model for
growth-controlled cleavage fracture, to incorporate the effect of carbide particles.
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The situation is drawn in Figure 7.13. Here, a brittle carbide of width Cy, at the
grain boundary dividing adjacent grains is subjected to the concentrated stress
ahead of a pile-up of length 4. The system is subjected to a tensile stress o. From

Pt

a

Grain boundary carbide
surface energy, Y.

Ferrite matrix:
surface energy
Yo

M

[ Grain diameter et

thick ness

Figure 7.13 Smith’s model for cleavage fracture®®

a Stroh-type analysis (equation 7.9.1) it may be deduced that the carbide will
be cracked by the pile-up if

4By, T
e J [T

=(7v —T: = —
Teft ( N TI)/[TI'(I—VZ)d_
where 7, is the surface energy of the carbide particle. If it is assumed that the
work required to spread the crack from the carbide into the ferrite matrix of the
unyielded grain (an ‘effective’ surface energy, v, ) is greater than ., we may
deduce that fracture at the yield point is nucleation-controlled if

Teﬁ:(TY_Ti)>,:?('ff'TTg)d}z (7112)

If, however, T4 at yield lies between the limits set by equations 7.11.1 and
7.11.2 the change in energy as the crack length is increased may be examined in a
manner similar to that for the Cottrell model to obtain as a failure criterion for
growth-controlled fracture:

.

. L 2
&) 5o +i(@)‘£ e, e
(_d o Tef‘[l m\d) Toe| = 7(1—2v?)d =il

We notice that, if the dislocation contribution (the second term) is absent,

equation 7.11.3 reduces to:
4By, T
il S
F ['n(l _vl)co:l (7.11.4)
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as for a Griffith crack of total length ¢y (¢co = 22 in equation 4.3.18). This model
therefore emphasises the importance, not only of yield parameters and grain size,
but also of carbide thickness and indicates clearly that coarse carbides give rise to
low fracture stresses. The predictions of equation 7.11.3 with respect to grain
size are interesting. If 7.¢ is written as kf{d"% (equation 7.9.3), the equation pre-
dicts that o is independent of grain size, other factors being equal. In practice,
however, fine grains are associated with thin carbides. and values of op are
usually expected to be high.

7.12 Twin-initiated Cleavage Fracture

It is appropriate at this stage briefly to discuss the importance of mechanical
twinning in the initiation and growth of cleavage cracks. In studies made to try
to substantiate the Cottrell mechanism for nucleation (Section 7.10) in iron—
silicon single crystals, it was found that a cleavage crack was initiated on the
(001) cleavage plane, not by the intersection of slip bands, but by the inter-
section of twins®®. Similar events have been observed in polycrystalline mild
steel? (see Figure 7.14) and indeed, the value of ky obtained from the yield
stress curve in Figure 7.9 tends to suggest twin-initiated, rather than slip-
initiated, fracture, even in this case.

In the body-centred cubic lattice, twinning occurs by the movement of
partial dislocations of the type @/6 (111> on {211} planes. The twinning shear is

Figure 7.14 Initiation of cleavage microcracks by twins, in mild steel at 77 K. (The section

is almost a (100} plane and the edges of the etch pits show 010) directions. The twins show

the traces of {1 12} planes, and the crack, lying parallel to one set of etch pit edges, may
be shown to represent the trace of the appropriate {010} plane) (x 1500).

0.707. By analogy with the slip dislocations, it is reasonable to suppose that the
partials moving ahead of the growing twins might interact to produce a resultant
displacement normal to the cleavage plane. Estimates of this displacement have
been made by measuring the thicknesses of the intersecting twins and applying
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the known value of the twinning shear. Values of v, calculated from the dis-
placements are of the order 20T m™?, i.e. approximately an order of magnitude
greater than the surface energy of the lattice.

In annealed and normalised steels deformed at low temperatures or high
strain rates, where twinning is the operative mode of plastic deformation, twins
may act as potent stress concentrators in the nucleation of cracks in brittle
carbides. The friction stress resisting the motion of twinning dislocations is
very small and is conventionally taken as zero. Smith’s formula for the propaga-
tion of a crack from a grain boundary carbide (equation 7.11.3) then becomes:

s 4F

C'o) 2 Tp

— t+ Ty 2———— 7 i)

(d, R T ( )
The implication of this result is that, even when cracks are nucleated by very

large shear stress components, the total fracture event may still sometimes be

controlled by the magnitude of the applied tensile stress. Experimental support

for this prediction is given by results obtained on notched bars of various thick-

nesses, fractured at 77 K (see Figure 7.15)* . It is necessary to develop a critical
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Figure 7.15 Variation of fracture load with thickness ar 77 K

size of plastic zone beneath a notch before a ‘burst’ of twins is produced. In
thick specimens, the tensile stress below the notch when the twins are formed

is more than sufficient immediately to propagate any carbide cracks nucleated
by the ‘burst’ and final fracture is coincident with the onset of twinning. In thin
specimens, the triaxiality is low, and the tensile stress at the onset of twinning is
insufficient to propagate the nuclei. It may be raised by increasing the size of the
plastic zone and hence the applied load on the specimen. Consequently, the
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fracture loads for thin specimens are substantially greater than those for thick
specimens. The temperature dependence of o for twin-initiated fracture
(equation 7.12.1) is predicted to be much greater than that for slip-initiated
fracture because 7y is strongly dependent on temperature.

Even in coarse-grained mild steel, twin-initiated fracture would not be antici-
pated at temperatures above about 150K, if the applied loading rates were
equivalent to those normally obtained in standard fracture toughness testing or
in the loading of a structure. Only if the external loading is carried out under
impact conditions will the initiation of cleavage fracture at temperatures
approaching ambient be associated with twins. Twinning is commonly associated
with propagating cracks, however, because very high strain rates are produced
ahead of the accelerating crack tip.

Since we are primarily concerned with the onset of crack extension in fairly
slow tests, we shall not pursue these twinning mechanisms. In particular, the
behaviour of mild steel is to be regarded as a model for more complex materials,
which often do not deform by twinning. Slip-initiated fracture mechanisms are
therefore more generally relevant.

7.13 The Fibre-loading Model

A further model, for crack nucleation®® in a ferrite/carbide microstructure by
slip dislocations, supposes that the carbide acts as a long thin fibre which is
loaded elastically when the matrix around it deforms plastically, and which
cracks when the matrix strain reaches a critical value. The energy release on
cracking may be so great that the crack nucleus bursts into the matrix for a short
distance. The final fracture is again growth-controlled and should therefore occur
at a critical value of the applied tensile stress.

The implications of the fibre-loading model are that the thinnest carbides,
aligned most nearly parallel to the tensile axis, are those which are the most
likely to be cracked and that a significant amount of plastic strain must occur in
the matrix before a fibre is loaded to its breaking point. The total fracture
criterion becomes complicated because nuclei initiate more easily in thin car-
bides, yet the larger nuclei, formed in the thicker carbides, are able to be
propagated by lower stresses. It is predicted that fractures produced in the local
plastic zone ahead of a stress concentrator do not form at the plastic/elastic
interface, but at some distance behind the interface, where the plastic strains are
sufficient to form crack nuclei. One of the main virtues of the fibre-loading
model, as opposed to simple tensile-stress controlled growth, appeared to be
that fractures in 45° V-notched bars at low temperatures seemed to nucleate
well behind the interface. However, recent finite-element analyses of the stress
distributions in such plastic zones® show that the position of maximum tensile
stress itself lies some considerable distance behind the interface (see Section 3.18),
so that the observations do not, in fact, discriminate between the alternative
carbide-cracking mechanisms.
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7.14 Implications of the Cleavage Micro-mechanisms

The various micro-mechanisms proposed for the formation of cleavage cracks
involve the nucleation of cracks by the high stresses developed locally at the
ends of slip-bands and the propagation of the nuclei under the applied tensile
stress to produce the final fracture. For fracture to be growth-controlled,
rather than nucleation-controlled, it is necessary for the ‘effective surface
energy’ to increase as the crack grows. Cottrell’s model provides for this con-
dition by means of a nucleation stage which is energetically favourable: Smith’s
model and the fibre-loading model postulate that the work required to crack a
brittle carbide is substantially less than that needed to spread the nucleus into
the surrounding ferrite matrix.

Another growth-controlled situation might occur in rather fine-grained
material. Here, the growth of a crack through a single grain could be a relatively
easy process compared with the difficulty of propagating a microcrack of
length equal to a grain diameter into a second grain, where the cleavage plane
has a different orientation. If the crack were to arrest at the grain boundary, the
total fracture stress could be estimated by supposing that the fracture would
continue to propagate when a new crack was nucleated in the second grain. The
displacement in the second grain associated with nucleation is then given by
equation 7.9.3 as:

nb =Ty 2Tess

If this displacement is equated to that at the end of the microcrack in the first
grain, we may calculate the fracture stress directly from equation 3.13.11,

writing & .yi¢ as b and taking for the crack length, 2a = d, the grain diameter?®.

In a sense, we assume that the microcrack acts as a sensitive probe which samples
the displacement in the adjacent grain. Values of 7y calculated in this manner are,
however, some two orders of magnitude greater than the surface energy. Although
it does seem clear that, in some situations, the grain-boundary arrests provide

the basic reason for growth-controlled fracture, it is difficult to see how they
would cause the effects shown in Figure 7.12 where the grain size was held con-
stant, although the carbide thickness was varied.

At present, no single growth-controlled mechanism has been shown to cover
all possible cases (particularly since grain size and carbide width are usually
varied simultaneously in most practical heat-treatments) but Smith’s model seems
to fit most results for rather coarse-grained polycrystals. Results obtained by
Qates?” (see Figure 7.16) on a plain carbon steel and a manganese steel, having
identical grain size, but containing different widths of grain-boundary carbides,
support the quantitative predictions of the model closely, assuming a value for 7y
of 14 Jm™ 2. Fracture in the mild steel, which contained coarse carbides, could
occur at low tensile stress levels and fracture at general yield was therefore
obtained at relatively high temperatures, because the uniaxial yield stress did not
need to be very high. The cracks were therefore nucleated by slip. In the manga-
nese steel, on the other hand, fracture at general yield could occur only at very
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low temperatures where the uniaxial yield stress was high. Cracks were nucleated
by twinning and the temperature dependence of the local fracture stress was
consequently much increased (see Section 7.12).
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Figure 7.16 Variation of fracture stress with temperature for mild steel (filled points),
compared with Smith’s model (see also Figure 7.3). Results are included for twin-
initiated fracture in a manganese steel (solid lines and open points)
(after Oates®”)

The effect of grain size on local fracture stress in notched bars has been
studied by Almond, Timbres and Embury?® and by Knott®. Their results are
shown in Figure 7.17 and may be interpreted directly in terms of Smith’s model,
or of a modified version of it.

The general explanation of a critical tensile stress criterion for the fracture of
notched bars of mild steel is that this represents the stress needed to propagate
a cleavage crack nucleus. We expect that the magnitude of the stress depends on
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the size of the nucleus and on the shear stress contribution from slip-bands or
twins. Twins provide more effective stress concentrations and so for growth-
controlled situations (notched bars, as opposed to uniaxial specimens), we expect
the critical fracture stress to be lower for a constant nucleus size. The tempera-
ture dependence of the fracture stress depends on that of the “effective shear
stress’ (or ky, see Section 7.9). If fracture is slip initiated, this is virtually
independent of temperature: if it is twin-initiated, a strong dependence may be
produced (e.g. Figure 7.16). In steels hardened by large precipitates or by forest
dislocations, the friction stresses are long-range and thermal fluctuations are
unlikely significantly to affect the ky term, so that the local cleavage fracture
stress could again be relatively independent of temperature.

We therefore recognise a mechanical situation in which the macroscopic
ductility of a notched specimen depends on the ability of the specimen to
undergo general yielding before the tensile stress in the plastic zone exceeds the
critical value needed to propagate a cleavage crack. A transition temperature,
Tgy, s defined for the condition where fracture coincides with general yield. A
combination of high uniaxial yield stress, large grain size, and coarse carbides
leads to high transition temperatures. Usually, the metallurgical heat-treatments
which produce hardening refine the grain size or carbide distribution, but
simple hardening of the ferrite matrix in an annealed microstructure (e.g. by
neutron irradiation hardening or by precipitation, as in the iron—copper—
carbon system) ought to enable the increase in Tgy to be studied in an
unambiguous manner. In general, an increase in yield stress may have two com-
ponents: a temperature dependent component, Ag;”, arising from short-range
forces (dislocation—interstitial interactions, solute clusters, jogs, etc.), and a
temperature independent component, Aoy, associated with long-range inter-
actions (forest hardening, precipitates, etc.). If ky becomes temperature-
dependent, re-analysis is necessary, because the model at present has been
justified only for the two limiting conditions: 7. = constant (slip-initiated
fracture) and 7.4 = Tv (twin-initiated fracture). Complications might arise in,
¢.g. quench-aged material, where ky is temperature dependent and is a function
of the state of ageing.

Almond and Embury®® have shown clearly how the cleavage fracture
resistance of a simple mild steel may be improved by altering the distribution of
carbides. In the annealed condition, with coarse grain-boundary carbides, the
cleavage fracture strength was 660 MN m™?. In a quench-aged and fully
spheroidised condition, the fracture stress was 900 MN m 2. Even though the
vield strength was increased by some 33% by the precipitation-hardening, the
transition temperature decreased by some 40°C because the crack nuclei were so
much more difficult to nucleate and propagate in the spheroidised condition.

7.15 Conclusions

From this extensive discussion of the cleavage fracture behaviour of mild steel,
it is clear that the macroscopic fracture behaviour can be related to the micro-
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mechanisms of fracture and that these are in turn dependent on microstructure
and flow characteristics. In certain cases, it has proved possible to exert metal-
lurgical control on the microscopic fracture process, such that the macroscopic
behaviour is improved. It is obvious that further detailed study of micro-
mechanisms is necessary to establish technological limits on fracture resistance
in more complicated materials. Some work of this sort will be discussed briefly
in Section 8.10.

Recently, it has proved possible to use the cleavage fracture stress model
directly to predict values of K¢ in mild steel at low temperatures. This will be
described in Section 8.9. In the following chapter we examine the cleavage-
fibrous transition in slow notch-bend tests and show how it relates to impact
testing.
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THE CLEAVAGE-FIBROUS TRANSITION, FIBROUS
FRACTURE AND IMPACT TESTING

8.1 Introduction

In contrast to the previous chapter, which concentrated on the single theme of
cleavage fracture, the present chapter deals with several topics. Initially, the
cleavage/fibrous transition is treated in general terms. The precise conditions
required for the initiation of fibrous fracture are discussed in detail, so that
transitions in slow-bend and in impact can be related to a material’s micro-
structure and flow properties. Transitions in notched impact testing and in
dynamic tear testing are then described, to demonstrate the interaction of
mechanical and metallurgical factors.

A model is developed which shows how the temperature dependence of Kig
in a mild steel microstructure may be explained in terms of the specific micro-
mechanisms of fracture. The limitations of the cleavage/fibrous micro-
mechanisms in providing a general basis for fracture toughness are discussed,
with reference to some specific failure mechanisms in steels and aluminium
alloys.

8.2 The Cleavage—Fibrous Transition

So far, we have considered two ‘mechanical’ transitions in notched-bar testing
(Section 7.3). The ductility of a specimen increases as the temperature is
raised because it is necessary to develop a larger plastic zone to increase the
local tensile stress below the notch by plastic constraint. At the transition
temperature, Ty, fracture is coincident with general yield. Above Ty, the
stress intensification cannot be increased by further constraint, and the reason
for the occurrence of cleavage fracture after general yield must be attributed to
the contribution of strain-hardening in the region below the notch'. This
increases the flow stress and we may write for the fracture criterion:

Ocy - (0y * Ao) = o (8.2.1)

where Ao is a function of strain, and where op may also be increased by the
204
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general strain in the lattice (dislocation pile-ups are shorter, the effective surface
energy is increased because the crack must propagate from sub-grain to sub-
grain, and so on). The introduction of strain-hardening in a generally yielded
specimen demands that the applied load is increased, and at a critical value,
dependent on the geometry of the testpiece and on the strain-hardening proper-
ties of the material, gross-section yielding may occur. A typical value for deeply
notched mild steel testpieces has been given as 1.25 times the general yield load.
The relaxation of triaxial stresses produced by this yielding makes it virtually
impossible to develop sufficient tensile stress to propagate a cleavage crack and
the fracture load rises steeply with increase in temperature to the point where
sufficient strain has been produced at, rather than far below, the notch root to
initiate fibrous fracture. In such a situation, we expect the temperature at which
gross relaxation occurs, Ty, to approximate closely to that at which evidence
of fibrous fracture at the notch root is first obtained. We take this latter tempera-
ture to be the cleavage/fibrous transition temperature Tp. The fracture appear-
ance transition temperature (50% fibrous, 50% cleavage) is, of course,
substantially higher.

In general, the onset of fibrous fracture demands that a critical strain level is
achieved at the notch root. Whether or not Ty is greater or less than Ty, or even
Tev, depends on the relative ease of producing fibrous fracture (strain at the
notch root) compared with cleavage fracture (tensile stress below the notch root).
As far as the macroscopic fracture behaviour (Tgy, Tw) is concerned, it is simply
a question of whether the plastic zone size associated with the critical stress or
strain can be accommodated before general yield, between general yield and gross
yield, or only after gross yield. In the last case, T will usually be close to Ty,
because the relaxation of triaxial stresses demands a rapid increase in general
strain level. We have discussed, in previous sections, the factors controlling the
micro-mechanisms of cleavage fracture. To decide how microstructure affects
the position of Tp, it is now necessary to examine the micro-mechanisms of
fibrous fracture at a stress concentrator.

8.3 The Initiation of Fibrous Fracture

In contrast to the large amount of theoretical and experimental information
available on the production of cleavage fracture in notched bars, rather few
studies have been made on the conditions leading to fracture initiation by fibrous
mechanisms. The general behaviour usually involves the formation of voids
around inclusions or second-phase particles and the subsequent growth of these
voids in directions transverse, as well as parallel, to the applied tensile stress to
give final coalescence. This growth stage may be affected by the hydrostatic
component of the stress state, because the presence of transverse principal
tensile stresses facilitates the lateral growth of the voids.

The situation in uniaxial tensile specimens is not particularly easy to analyse.
The initiation of a void around a particle depends very much on the degree to
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which that particle is bonded to the matrix. For an inclusion, such as manganese
sulphide in steel, the bonding is negligible and voids may ‘initiate” and grow, at
least in the direction of the applied tensile stress, at very low plastic strains.
However, even though inclusions may not be bonded chemically, it is quite
common for void initiation to be made difficult by the presence of ‘tessellated’
stresses (arising from the differences in thermal contraction between inclusion
and matrix on cooling) which bind the matrix onto the particle® If the stresses
are tensile in the inclusions, it is possible that the inclusion will break before the
interface separates. Other inclusions, such as copper oxide in copper, may wet
(be bonded to) the matrix. Particles such as carbides or nitrides in steels are
bonded quite strongly to the matrix and voids can be initiated only by the high
local stresses produced when many prismatic vacancy loops are created at the
‘north and south poles’ of a particle. These loops derive from the ‘glissile’ types
of loop left surrounding the particle as a result of the precipitate hardening
mechanism®. Large plastic strains are then needed before voids initiate. The particles
must be somewhat incoherent for this mechanism to be viable, because coherent
particles are simply cut by the slip bands. A size effect on initiation can arise if
particles are small and it becomes more easy for dislocations gliding through the
matrix to cross-slip out of the particle’s region of influence rather than tangle
round it. Higher matrix strains are therefore needed to initiate a void. The effect
is enhanced if the particles are more strongly bonded to the matrix when they
are small.

There is consequently a large variation in the strain needed to initiate a void.
In steels, voids are likely to initiate around inclusions at much lower strains
than those at which they initiate around carbide or nitride particles and they
initiate more easily around large, than around small, particles.

8.4 The Growth of Voids

The growth of voids to final coalescence has been the subject of several theoreti-
cal models. McClintock® considers the case of the expansion of cylindrical holes,
with longitudinal axes parallel to the X5 direction, subject to generalised plane
strain. The holes have initial diameter 2#5 and spacing /9 in the X, direction.
Coalescence in the X, direction occurs when 2, =, where r, and [, are the
final values of radius and spacing. At any given instant, the ‘damage’, associated
with partial void coalescence is given by:

_din(2r/])
In(19/2r9)

A solution, assuming viscous flow properties, enables the damage rate to be calcu-
lated for a given equivalent strain, €=, when transverse stress components o,
and 04,7 are applied to the system. Approximating the effects of strain-hardening
through the expression

(8.4.1)

32

ag=0,€" (8.4.2)
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the damage rate is given by:

dn32 sinh [(1 = n) (071 + 053)/(28//3)]
de™ (1—n)In(18/2/)

For the particular case where the ratios of stress components are held constant,
this equation may be integrated to give for the fracture strain,

— (1=n)In (153/2¢3)
sinh [(1 = n)(o7; + 03)/(20/+/3)]

If 79 is large or 19 is small, it is clear that the subsequent fracture strain will be
small. If we substitute a typical value, n = 0.5, for the work-hardening rate and
take values of (07, + 0%,)/(20/+/3) equal to 1 and 2 respectively, it is clear
that doubling the transverse stress component reduces the fracture strain by a
factor of some two and a quarter. Reducing » from 0.5 to 0.2 in the latter
situation further reduces the fracture strain, by approximately 17%. Thus, large
volume fractions of voids, high transverse stresses and low work-hardening rates
all promote low-strain fracture.

Similarly, for the radial expansion of a cylinder in the plane transverse to X5,
when subjected to a radial stress 0,,., Rice® has obtained the expression

s =2 é; [\/3 smh( - )4 1} (8.4.5)

(8.4.3)

(8.4.4)

I

where Fq is the rate of increase of radius with time, €35 is the strain rate in the

X5 direction and 7+ is the shear yield stress. Again, if the transverse stress, o},
is large, the rate of increase of void radius is high. The stresses ahead of a sharp
crack tip are: 0y = 27y(1 + 7/2), 022 = 77y . Taking an average value for o,

as Ty (1 + m), we obtain, by substitution in equation 8.4.5

.0

2266433 (8.4.6)
r

which suggests a very rapid rate of enlargement ahead of the crack.

Rice and Tracey® have considered the growth of an isolated spherical void in
a remotely uniform stress and strain-rate field. The sphere has initial radius r°
and the remote strain field comprises a tensile extension at the rate € in the X3
direction, with contractions at the rate 7%6 in the X, and X, directions. This
situation corresponds to a state of simple tension for an incompressible material.
A Mises material is chosen for analysis. The relative rate of void expansion,
D =#%é°, is shown as a function of /7 in Figure 81 where ¢* is the remote
mean normal stress and 7+ is the shear yield stress. For large values of 0%/7y
(high triaxiality) the shape change of the void is negligible compared with the
dilatational growth, which can be expressed in terms of ¢*/7y in the analytic
form:

;0

D="-=0283 exp(\/3 ) (8.4.7)
EJ" Y
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Figure 8.1 Dependency of relative rate of void expansion on mean normal stress
(after Rice and Tracy®)
This expression in fact fits the computed curve extremely well, even at low
triaxiality, and is indistinguishable from it for values of ™7+ greater than
1.5(D > 1). It is clear that the model indicates that even small increases in
triaxiality produce very large increases in the rates of void expansion.

8.5 Thomason’s Model

A rather different model is employed by Thomason? to describe void coales-
cence. As shown in Figure 8.2 he takes an initially square array of square holes
in a matrix whose flow behaviour is rigid/plastic. The deformation is assumed to
be plane strain and is usually composed of two parts. If the voids are widely
spaced, it is easier to deform the body as a whole, by gross-section yielding,
than it is to produce internal necking between the voids. The effect of applying
a tension is to draw the voids out in the X, direction and to bring their centres
closer together in the X, direction. Eventually, the voids are spaced sufficiently
closely for localised internal necking between them to become possible. Final
void coalescence then occurs rapidly.

If the mean tensile stress in the X, direction, necessary to cause flow in the
internal neck is 0,,, the general condition for the onset of coalescence is given by:

0, (1 =/V) + P< 0,55 + 21y (8.5.1)

where 0, is any tensile stress applied in the X, direction, P is the superimposed
hydrostatic pressure and V; is the volume fraction of voids. Coalescence cannot
occur if P> 27y + 6,5 For a uniaxial tension specimen, Thomason shows that
the majority of the elongation comprises the uniform elongation, with only a
small amount being attributable to the non-uniform internal necking.

The model is able to treat effects of volume fraction on ductility both in
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uniaxial tension and in the triaxial stress field ahead of a sharp crack. Up to the
onset of coalescence, as given by equation 8.5.1, the change in geometry is
given by:

=exp (2e11) V(1 -VVy) (8.5.2)

SRS

where €, is the uniform strain in the X, direction. This strain e,; increases
until the neck geometry a/b, and the corresponding constraint factor 0,,/27v,
satisfy the condition for the coalescence of cavities. Once internal necking has
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Figure 8.2 (a) Thomason’s model for void coalescence. (), (c), (d) Progressive
stages of deformation

commenced, it is assumed that the plastic flow is such as to give the maximum
rate of unloading. The total relative displacement between the two faces required
to produce final fracture is of the same order as the inter-void spacing at the
onset of internal necking which, for low volume fractions, implies that the
macroscopic strain to the onset of coalescence may be taken as the total strain

to fracture. Thomason refers to this strain as a post-instability strain, because he
considers that a specimen must have been strained to greater than its UTS before
any tendency to form internal necks exists. An application of his model to
tensile tests is described in the following section.
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The crack situation® is treated by taking a pseudo ‘plane-strain’ value of
crack opening displacement, 28 as:

Al=v* K

2 280,

(8.5.3)
[ef. equation 3.13.12 with a substitution of (1 —»*)] where o, is the average
value of the tensile flow stress in the plastic zone ahead of the crack, say 4k,
where k is a work-hardened shear flow stress (cf. preceding equation 8.4.6). Thus
equation 8.5.3 may be re-written:

§ = (1 — v )(K/26)Y4(E[2K) (8.5.4)

The plastic strain must decrease to zero at the plastic/elastic boundary. The
shape of the plastic zone is taken as a wedge of width 2r, at the crack tip and
zero at the plastic/elastic boundary, x, = 1 (Figure 8.3). If the width at any
point x, is 2r,, it is assumed that the displacement is given by:

¥ X
Bl(x) = (S_rﬁo (1 _T) (8.5.5)

X,

1 o,

Displacement is
3 at crack tip
8y(xatx, 55

Figure 8.3 Relationship between void coalescence and fracture toughness
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The logarithmic strain at x, is given by:

81ty ]
Etrue ~ In(1+ enom) =In (1 +7P‘1(x)) =In [1 +r£0‘ (l ‘;C—)i| (8.5.0)

v X

Using the theoretical relationship between post-instability fracture strain, volume
fraction and transverse stress component, 0,5, derived for tension, it is possible
to substitute in equations 8.5.2 and 8.5.4 to obtain:

T E \(eT-1) (ﬂ ' Vf”}‘%
316 sl asf—— ) "l g, ﬁ(-—)
Jak {ro[ (\/3]() = 8.81 tan 3 1 000
for 0.02 < 7 < 0.09.
The main problems with this expression are that, first it is necessary to know
the root radius of the crack tip, which must be related to the fracture displace-
ment and that, secondly, the instability in the crack tip region is identified

with that 1n uniaxial tension. The importance of high volume fractions in reduc-
ing crack-tip ductility is again apparent.

8.6 Experimental Observations on Fibrous Fracture

As indicated previously, the amount of definitive experimental work carried out
on the fibrous fracture process is not large. In tensile tests, confusions may arise,
if it is not clear whether the events are related to void initiation or to void
growth. We may distinguish between two limiting situations.

For the case of a matrix containing only non-wetting inclusions, which does
not produce interfacial thermal stresses on cooling, voids are present from the
beginning of the test. Before internal necking can occur, however, they must be
brought into close proximity. Some lateral movement is obtained during the
uniform elongation of the specimen, but if the initial spacing is large, it will be
insufficient to produce the critical spacing for internal necking between the
voids. When a critical elongation (rate of work-hardening) has been reached,
macroscopic necking of the specimen begins. This introduces radial tensile
stresses in the transverse plane (see also Section 2.12), but, until the external
neck deepens and these stresses become large, Thomason’s model predicts that
the internal necking process is primarily dependent on the void spacing. Experi-
mental work by Baker® on the formation of voids around copper oxide particles
in a copper matrix associated the onset of internal necking with the development
of an external neck, but the technique used was such as to exaggerate the
influence of even small radial stresses. Voids grow laterally under decreasing load
in the triaxial stress field which exists in the centre of the neck. Whether the
coalescence of voids at a particular point is a catastrophic process or not depends
on the rate of release of elastic energy of the testing system. In a really hard
(displacement-controlled) system, achieved perhaps by pulling a strong spring in
parallel with the testpiece, it is possible to control the growth of the central ‘cup’
fairly well. As the cup becomes larger, the geometry changes to that of an
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internally cracked specimen, and the piece breaks by a combination of tension
and shear on the ‘cone’ surface.

The other limiting type of particle is the carbide or nitride well-bonded to the
matrix. Here, particularly if the particle is small, a large amount of matrix
strain is necessary before voids initiate by the action of the concentrated stresses
developed at the particle/matrix interface by the dislocation tangles left surround-
ing the particle.

The strain may indeed be so large that substantial macroscopic necking has
occurred before initiation. Voids are then produced, more or less simultaneously,
around particles which are now quite closely spaced, in a triaxial stress field.
Under these conditions, void linkage is likely to be rapid and it may be difficult
to arrest the central ‘cup’. The fracture profile is similar to that in the previous
situation, but the *dimples’ in the ‘cup’ are much shallower and more closely
spaced. In such a catastrophic situation, it is difficult to distinguish between
initiation and growth of the voids.

Most commercial steel microstructures contain a mixture of inclusions, fairly
coarse carbides or nitrides (such as grain-boundary carbides or particles obtained
by interactions of the interstitial elements with grain-refining elements such as
Nb or Al) and perhaps fine carbides, produced by tempering a martensitic matrix.
The sequence of events will then be as follows. Voids are formed round the
inclusions at low strains and during the uniform elongation and early stages of
necking draw closer together. Internal necking between the inclusions may then
occur, with the carbides initially moving simply as part of the continuous matrix
in this new ‘macroscopic’ (in terms of carbide size and spacing) neck. Eventually,
the strains in the internal neck become so large that voids are initiated around the
carbide particles. The final fracture surface is then composed of a number of
rather large dimples, formed around the inclusions, with very much finer dimples,
deriving from the carbides, where the inter-inclusion necks have been drawn out
most extensively. The fairly large particles needed to restrict austenite grain
growth (and hence situated on prior austenite boundaries) can form voids more
easily than tempered carbides and it is sometimes possible to obtain a surface
which shows dimples around inclusions, together with what appears to be a
ductile intergranular fracture, caused by void linkage between the particles on
the prior austenite boundaries.

The most commonly quoted experiments on the effect of volume fraction of
particles on reduction of area in a tensile test are those carried out by Edelson
and Baldwin'®. Their results are given in Figure 8.4 and show clearly that for a
whole range of types and sizes (approx. 1200 um) of particles or voids in a
copper matrix, volume fraction was the main single factor determining ductility.
The work-hardening exponent, »n, determined from an expression of the type:

0 = Ke", also decreased with increase in volume fraction of the dispersed phase.
A similar effect has been found by Turkalo and Low!" on the effect of volume
fraction of carbide particles on the ductility of steels. Edelson and Baldwin
discounted the argument that their results were similar for all types of inclusion
because all were minimally bonded to the matrix, by reference to these effects
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in steel, but a closer comparison of the data reveals that the steels were, in

fact, almost an order of magnitude more ductile for a given volume fraction (see
Figure 8.4). The situation is very similar to that obtained for steels by Gladman'?
(Figure 8.5). Here, effects of particle shape are shown in addition to those of
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Figure 8.4 Dependence of ductility on volume fraction of second-phase particles.
(Copper-based results from Edelson and Baldwin'®; steel results from Turkalo

and Low"™)

interface bonding. Disc-shaped sulphides are more detrimental to ductility than
sulphides elongated parallel to the tensile axis. Pearlitic carbides, although
plate-like, are less detrimental because void initiation occurs by particle cracking
and this is stress dependent, so that a significant strain is required before voids
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Figure 8.5 Effects of type and shape of a second-phase particles on the tensile
ductility of steel (after Gladman, Holmes and McIvor'®)
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initiate. Spheroidal carbides increase the ductility still further, because very
large true strains (> 0.7) are required to initiate the voids.

The lack of bonding in Edelson and Baldwin’s experiments may be further
demonstrated by the good agreement obtained between the predictions of
Thomason’s model, derived for the growth of voids, with their results on the
effect of volume fraction on ductility, see Figure 8.4. Further, results obtained
by Palmer, Smith and Warda'® indicate that, in internally-oxidised copper—
silica alloys, where the interface bond is strong, the strains to fracture are very
much increased.

The sequence of events leading to the initiation of fibrous fracture ahead of a
crack-like stress concentrator is best described on the basis of the observations
made on the mild steel/manganese sulphide system by Smith and Knott!®, which
have been partly described in a previous chapter (Section 6.3). Here in normalised
material, the effective gauge length of a fatigue crack was found to equal the
mean (centre to centre) inclusion spacing (0.046 mm) and the fracture strain
was some 80%. The growth of a fibrous crack by internal necking between
inclusions (and not carbide particles) is shown in Figure 8.6a.

Observations of the dimple spacing on scanning electron micrographs of the
fracture surface, which are essentially planar projections of rather rough surfaces,
e.g Figure 8.6b, gave a value of about 0.02 mm. By assuming that this was the
final spacing at which internal necking between inclusions could start, it proved
possible to estimate the “uniform’ and ‘non-uniform’ components of the total
fracture strain. The general picture that emerges from this, and similar studies on
other steels, is that the uniform component represents the strain necessary to
draw inclusions sufficiently close together (a separation of some two to three
particle diameters) to promote internal necking. The non-uniform component is
that given by the necking process. The uniform strain may be similar to that at
which macroscopic necking occurs in a tensile test, but this seems to be fortuitous.
Two extremes in pre-cracked specimens may be recognised. In one case, repre-
sented by very closely spaced inclusions, such as type II manganese sulphide,
the uniform strain is negligible and internal necking between inclusions, although
small, is the sole contributor to the total strain. On the other hand, in very clean
material, such as a vacuum-melted steel, the uniform strain needs to be very large
to draw the inclusions together'®. It may be so great that the general inter-
inclusion strain field is sufficient to produce voids around matrix carbides or
nitrides, which give fine-scale linkage between the inclusions. The total ductility
will eventually be limited by this fine-scale microstructure.

The situation regarding the microstructural basis of fibrous fracture is there-
fore complicated. Recent experimental observations indicate that the very high
rates of void expansion predicted by the modified visco-elastic theories are
unrealistic, because particles tend to deform with the matrix (except at their
poles) until the lateral separation has decreased to a critical value. Thomason’s
model expresses this in terms of plastic constraint and generally appears to
represent the physical situation quite closely. However, the onset of macro-
scopic necking in a tensile specimen does not seem to be critically related to the
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ductile fracture events on the local scale, even in a tensile specimen (although
the radial tensile stress in the neck promotes lateral void growth) and bears
little relevance to the events near a stress concentrator.

The critical factors in determining ductility are therefore the critical distance
of approach and the strength of the particle/matrix bonding.

To summarise, the critical crack tip ductility at the initiation of fibrous frac-
ture depends on several factors. It decreases with increase in inclusion content
(decrease of inter-particle spacing for a given size of particle), with decrease in

() . % v e

Figure 8.6 (@) Section through growing fibrous crack showing formation of hotes around

inclusions, but not around pearlite (x 240) +(b) Fracture surface, showing void formation
around inclusions (x 800) (both courtesy of R. F. Smith)
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work-hardening rate and with increase in transverse stress. The role of yield
stress is not clear, although an increase in yield stress will increase the magnitude
of the hydrostatic stress component around the stress concentrator.

8.7 Transitions in Slow-bend and in Impact

The general features of the cleavage/fibrous transition in slow notch-bend have
already been described. The situation in small specimens is probably best
illustrated by showing how the notch-tip strain or COD varies with temperature,
in comparison with the general yield and fracture load curves (see Figure 7.1).
Below Tgvy. the critical COD value is low, because fracture initiates by cleavage
mechanisms and the plastic zone is obviously smaller than the width of the speci-
men. Between Ty and Ty, the COD increases more rapidly (and is directly
proportional to the angle of bend of the specimen) but not until gross yielding
has occurred, above Ty, does it rise really steeply. The fracture is cleavage until
the COD is sufficient to produce fibrous fracture. The further increase in COD
with temperature depends on the growth of the fibrous thumbnail prior to the
onset of instability by cleavage fracture, until a limit is reached where the frac-
ture is 100% fibrous.

A similar sequence is found in impact tests, where the hammer and tup have
been instrumented to provide readings of dynamic loads'®. In mild steel, the
main effect of high strain-rate is to raise the yield stress at any given temperature,
because less time is available for thermal fluctuations to lower the stress needed
to glide dislocations through the matrix (the temperature dependent component
o;" of the friction stress, 0;). A limit is reached at very high strain rates where all
strain rate sensitivity of the yield stress is lost'”. As might be expected the limit-
ing strain-rate necessary to produce this ‘cut-off” effect decreases with tempera-
ture. The limit may correspond in all cases to the onset of twinning as the mode
of general plastic deformation, but this point does not appear to have been
exhaustively investigated. In high strength steels, both the temperature depen-
dence and strain-rate sensitivity of the yield stress are proportionately reduced,
because far more of the friction stress derives from the temperature independent
component o; (long-range stress fields). The microscopic deformation modes of
such steels under very high rates of loading are not well documented.

The effect of increasing the strain-rate on the various transitions at T'gy, Tw
and Ty is to move them all to higher temperatures. Because the uniaxial yield
stress at a given temperature is greater, a smaller plastic zone is required to
develop a tensile stress below the notch sufficient to propagate a cleavage crack
nucleus. The effect on Tgy is indicated schematically in Figure 8.7, assuming
that the critical value of cleavage fracture stress does not vary with strain rate.
The absolute shift of transition temperature, AT gy, depends on its initial value,
because the dependence of yield stress on temperature is not linear. If Ty
were initially at a low temperature where the yield stress curve was steep, a
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given increase in yield stress would produce a much smaller absolute shift in
temperature than if Tgy were initially high. This point pertains particularly to
the use that has been made of shifts in transition temperature to assess absolute
amounts of grain-boundary embrittlement (see Section 8.10).

. Although twinning can occur at low temperatures and high strain-rates, experi-
ments on normalised and annealed mild steel indicate that slip-initiated cleavage
fracture occurs at Tgy, even under impact conditions. Knott’s analysis'® of
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Figure 8.7 Schematic effect of increasing strain-rate on the ductile/brittle transition
temperature, Tgy

Wilshaw’s experimental results'® showed that all could be explained in terms of a

single critical cleavage stress, over a range of crosshead speeds spanning more than

10°. Oates*® has determined direct values of cleavage fracture stress for mild

steel over a range of 10% (see Figure 7.16). Only for the highest strain-rate and

lowest temperature did the slip-initiation model fail to apply. For a manganese

steel of identical grain size, but containing finer grain boundary carbides, the

temperatures were generally much lower and twins were involved in cleavage

crack formation at Tgy .

The usual information gained in an impact test (e.g. Figure 8.8) is a composite
value of the energy needed to cause fracture. At low temperatures, up to the
initiation of fibrous fracture at Ty, this energy is fairly representative of the
wark required to initiate fracture, although it includes work expended in indenta-
tion of the specimen at the loading points. If this could be removed, e.g. by pre-
loading a bar, before notching or fatigue cracking, so that the loading points were
work-hardened and did not deform plastically when the bar was broken, it
ought to be possible to relate the work done in a cracked, rather than notched,
impact specimen directly to a “Jy¢’ value (see Section 6.9) which could be related
to K. Because the yield stress decreases and the critical COD increases, the
energy absorbed increases only weakly with temperature, until Ty is reached,
when the relaxation in constraint allows such large displacements to occur that
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the energy rises sharply. Thus, the nil-ductility temperature (NDT) is close to
Ty and, for specimens of constant geometry and similar work-hardening rates,
comparative values of NDT will usually rate materials in the same order as one
would obtain from accurate values of Ty . The correlation would have to be
applied very carefully in cases where the NDT values covered a wide range,
because the difference between Tgy and NDT varies with the steepness of the
yield stress/temperature curve.

It is clear that Ty, and hence NDT, varies substantially with specimen
geometry. Shallow notches allow gross relaxation to occur rapidly after, or even
before, constrained general yielding (Section 7.6). In bend specimens which are
relatively deep compared with their thickness (B) it is possible to obtain stress
relaxation by through-thickness yielding, rather than by gross-section yielding.

The other transition temperature commonly used in conventional impact
testing is the fracture appearance transition temperature (FATT), representing
50% fibrous, 50% cleavage fracture (Figure 8.8). This is greater than the value,
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Figure 8.8 Schematic relationship between quantities in impact testing
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Ty, that we have taken to indicate the temperature at which the first trace of a
fibrous thumbnail is seen around the notch root on the fracture surface. The
amount by which it is greater depends critically on the growth characteristics of
the fibrous fracture and on the criterion which governs the transition from
fibrous to cleavage fracture.

In detail, the growth characteristics are complicated, because the impact
loading of a specimen containing a growing crack is variable. The time element
is, however, virtually removed, because the loading is fast. We can approximate
the increase in energy to the extra displacement involved in growing the crack to
a given length (see Figure 6.7) and conclude that the reason that the energy
increases is simply because the length of fibrous crack needed to promote
cleavage increases with temperature. The magnitude of the energy increase
obviously depends on the form of the COD/crack growth curve and we may
generally expect that , if the notch root has not been work-hardened before
testing, a fibrous fracture that initiates at low COD will show little increase of
COD with growth.

The reason for the change from fibrous to cleavage fracture has not been fully
established. Initially, it was thought that the fibrous fracture accelerated as it
grew, so that the local strain-rate in the region ahead of the advancing crack tip
increased and eventually reached a level which elevated the yield stress, and
hence the tensile stress, in that region sufficiently to allow cleavage cracks to
propagate. An example of the change from fibrous to cleavage fracture is shown
in Figure 8.9. However, displacement-controlled tests by Smith'* have shown

avage as a crack grows (mild
steel, room temperature) (x 42)

that the tendency of a growing fibrous fracture is initially to slow down,

because the tunnelling forward of the plane-strain fracture in the centre of the
piece is restrained by the need to develop high crack tip displacements before
the side ligaments (shear lips) can fracture (see Section 6.4). In his tests, it seems
that the effect of a growing fibrous fracture is to increase the constraint, and
hence the stress intensification @ (see Section 7.6), in the unfractured part of
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the specimen, because this section deforms under deep-notch, rather than
shallow-notch, conditions. It is not clear that the same results would be obtained
from load-controlled tests, where accelerations might well be obtained. The
actual form of the loading programme during an impact test is therefore very
important.

Once a growing crack situation has been obtained, it is not possible to relate
the total energy values to Jic, because the displacement is produced both by
plastic work and by increased compliance. The COD value at the original notch
tip for this situation is a combination of a general base level displacement, §;,
obtained when the first element of fibrous fracture was initiated at the notch,
together with incremental displacements representing the integrated effect of
increasing the base level displacement to §; for all other elements which fracture.
At present, experimental curves of the type shown in Figure 6.7 are the best
way of visualising the situation. The increasing COD cannot be easily related to
the increasing energy value at this stage, except by experimental, or empirical,
correlation, because it is no longer proportional to the angle of bend of a
specimen.

To summarise, we may expect to recognise general features of impact tran-
sition curves as follows. The ‘lower shelf” energy level is associated with cleavage
fracture and is therefore expected to be relatively high for material of fine grain
size and fine carbide distribution. The transition, Ty, is not determinable as
such, but the NDT will, in general, relate to Ty or Tgy in a comparative manner,
as a measure of the particular balance of yield stress and cleavage fracture stress
for a given material which gives rise to failure at a specified value of specimen
deformation (e.g. gross-section yield). The NDT is therefore critically dependent
on specimen geometry. The temperature, Ty, indicates when fibrous fracture is
first obtained: a COD measured at T would give the value of §; at T directly.
This may not be the same value of §; as that obtained at room temperature: it is,
in general, lower. The FATT is representative of 50% fibrous fracture. Its close-
ness to T relates to the conditions for changing from fibrous to cleavage fracture:
we may expect that these are also geometry dependent; markedly so, if the effect
arises from notch-deepening and constraint. The positions of Ty and FATT
depend on how easy it is to initiate and grow a fibrous fracture as opposed to a
cleavage fracture. The ‘upper shelf’ level depends entirely on the characteristics
of fibrous initiation and growth. In terms of microstructure, low ‘upper shelf’
levels are produced by high contents of closely-spaced, non-wetting inclusions,
by low rates of work-hardening and by high yield strength levels.

The impact transition curve for a clean, annealed mild steel will therefore
exhibit a low ‘lower shelf” and a high NDT (Ty,, Ty ), because cleavage frac-
ture is easy to produce; a steep transition, governed by the gross relaxations at
NDT (Ty); and a high ‘upper shelf” value. Additions of sulphide inclusions to
the steel will reduce the ‘upper shelf’, but will not affect the transition tempera-
ture. A similar effect can be obtained by testing a constant inclusion content in
different orientations'* (see Figure 8.10), because the interparticle spacing is
reduced in the transverse orientation. The transition curve for an equally clean
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medium strength steel is far less discontinuous in nature. The lower shelf is
higher (because the refinement of the microstructure more than compensates for
the increase in yield strength), the NDT is lower, and the upper shelf is lowered
by the increased yield stress and decreased work-hardening rate.
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Figure 8.10 Effect of testpiece orientation on the ‘upper shelf’ level. Data for a free-
machining mild steel. Note that the transition temperature is virtually unaltered
(after Smith and Knott'*)

All these comments are clearly semi-quantitative at best. Some energy values
may be related to more useful parameters (COD, Ji¢) in certain cases, but
regions of applicability have to be clearly defined. The two transition tempera-
tures, NDT and FATT, are likely to vary with geometry in ways which just can-
not be estimated from conventional impact tests. This major fault of the method
has led to the establishment of more realistic impact testing techniques.

8.8 ‘Drop-weight’ and ‘Dynamic Tear’ Testing

The main work which has been done to extend impact testing to geometries
which are more representative of service application has been carried out by
Pellini and co-workers at the Naval Research Laboratory?' ~*7. The standard
design of dynamic tear (DT) specimen is that of a beam containing a sharp crack-
like stress concentrator which has been deliberately embrittled, for example, by
using a Ti-embrittled electron beam weld as a crack starter in order to remove
the ‘initiation stage’ of fracture, by subjecting the specimen to a fast-running
crack when the weld breaks. Testpieces are of full-plate thickness (from 16 to
305 mm) and the standard dimensions for different thicknesses are indicated in
Table 8.1. 1+ is clear that the variable ratios of notch depth to specimen depth
and depth to thickness dimensions cannot be regarded as entirely satisfactory.
in the light of our previous discussion on the importance of these parameters
(Sections 7.5 and 7.6). The older drop-weight-test (DWT) specimens similarly
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provided an embrittled crack starter, but are different in detailed .design. The
impact loading system ranges from a balanced impact tester for small specimens
to vast drop-weight facilities (simply, large masses descending on guide rails
from a fixed height) of capacities up to 1 MJ (75 x 10* ft. Ibs), for the really
large pieces.

Early tests on drop-weight (DWT) specimens served to estimate the position
of the ‘nil-ductility temperature’ (NDT), which defines the temperature below
which the fracture resistance is so low that brittle plane-strain (cleavage) frac-

Table 8.1 DIMENSIONS OF DYNAMIC TEAR (DT) TESTPIECES

Brittle weld or

Designation Thickness, B (mm) Depth, W (mm) Notch depth, a (mm)
2in (16 mm) 16 41 13
1in (25 mm) 25 120 44
2 in (50 mm) 50 203 76
3in (76 mm) 76 203 76
6in (152 mm) 152 305 76

12 in (305 mm) 305 381 76

tures can be initiated from small flaws under the high strain-rate conditions in
the test (cf. Section 8.7). The standard definition of the position of the NDT
temperature in DWT tearing has been shown to correspond to a ratio of
dynamic fracture toughness, K;p, to yield stress, 0y, of 0.5%'. In terms of
specimen thickness requirements (see Section 5.12) this implies that specimens
less than 16 mm thick cannot be used to establish fracture toughness values
corresponding to the NDT temperature.

In low-strength steels, the steepness of the transition from low to high tough-
ness values over a narrow temperature range enabled a simple philosophy to be
developed with respect to design against fracture. This stated that, if the operating
temperature were more than 33.3 °C (60 °F) higher than the NDT, the resistance
of the material to fracture would be such that fracture would occur only at
stress levels greater than the yield stress. To design against fracture at low
temperatures, steels with correspondingly lower NDT temperatures would have to
be used. This procedure might be expensive in terms of alloying elements and
would be unduly conservative if the operating stresses were substantially less
than the yield stress.

The use of higher-strength materials with less sharply defined energy transitions
and the general desire to design as efficiently and economically as possible have
led to a broadening of the original philosophy based on the NDT temperature. In
dynamic tear (DT) testing, the whole transition curve is obtained for what is
regarded as the worst case of service loading: the running-crack situation. The
transition curves vary in position with specimen thickness up to a limiting thick-
ness (75 mm in a reactor pressure vessel steel) and two curves are drawn in
Figure 8.11 to represent the behaviour of thin (16 mm) and thick (> 75 mm)
specimens, with energy normalised by dividing by the fracture area. It is
important to note that the NDT does not vary with thickness for a given size of
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starter crack (weld), because even a 16 mm specimen can provide sufficient con-
straint to give brittle fracture: if the crack size is scaled with thickness, however,
the NDT increases with specimen size. The transition curve for the thick speci-
men is taken as the limiting transition temperature range (LTTR) for the brittle—

Normalised energy/area (MJm?
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Figure 8.11 Dynamic tear test curves (after Lange®®)

ductile transition, because the combination of high strain rate (dynamic testing)
and large thickness (> 75 mm) is regarded as the most severe condition likely to
be met in service.

It is conventional to describe (index) the transition curves in terms of
temperatures and energies. The NDT temperature has already been defined and
provides the main indexing point, since it does not vary with thickness. The
temperature at which the ‘upper-shelf” (100% fibrous fracture) is first obtained
is known as the fracture transition plastic, or FTP. The temperature correspond-
ing to an energy which is the mean of the upper and lower shelf values is known
as the fracture transition elastic, or FTE. Certain other modes (regimes) of
behaviour are indicated on the diagram (Figure 8.11). In regime 1, fracture occurs
under linear elastic plane strain (dynamic) conditions; in regime 2, loss of con-
straint leads to a rapid increase of toughness with temperature: the initial running
crack may arrest, re-initiate by a fibrous mechanism and re-propagate by cleavage;
in regime 3, material ductility is so high that the initial crack arrests and the rest
of the total fracture is fibrous: at the FTP, the length of arrested crack running
from the weld is essentially zero. The transition from regime 1 fo regime 2 repre-
sents the plane-strain limit for dynamic conditions and, for convenience, the
FTE is taken as a slightly conservative estimate of this transition.

The DT transition curve between the NDT and the FTP is equated to the
Robertson crack arrest curve. In the Robertson test®®, a large plate is subjected
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to a uniform stress and a running crack is propagated through the plate, either
in a temperature gradient or at constant temperature. For a given stress level, it
is found that a critical temperature can be determined, above which the crack
arrests. The complete series of critical temperatures v. applied stress levels
defines a crack arrest curve. In relation to the DT curve, the FTE represents the
Robertson crack arrest temperature (CAT) for an applied stress equal to the
yield stress. The early design philosophy in low strength steels of maintaining an
operating temperature of NDT +33.3 °C (60 °F) implied, from the general
shapes of the DT transition curves found experimentally, that the operating
temperature coincided with the FTE and that crack propagation could not
occur for service stresses less than the yield stress.

The comparison of the transition curves for thick and thin specimens
(Figure 8.11) reveals that the main shift in position is due to an expansion of
regime 1, i.e. the thicker specimens can maintain plane strain conditions to
higher temperatures. Once the basic curves have been obtained, it should be
possible to estimate the LTTR curve in regime [, for a fairly similar type of
steel, by making measurements on 16 mm specimens and adding some 40 °C
(70 °F) to the FTE. The NDT does not vary with thickness and the curve can.
be indexed to these two points.

It is possible also to relate the general forms of the transition curves to the
stress levels required to propagate flaws in service. These relationships are
based mainly on service experience and some of the force of the DT approach
is lost because it is found that, in practice, the sizes of critical flaws which
initiate brittle fractures are usually such that fracture must have started under
static, rather than dynamic conditions. The summary information is presented
in terms of a fracture analysis diagram, as indicated in Figure 8.12, which plots
stress . temperature. Curves equivalent to the DT energy transition curves are
indexed by means of the NDT and FTE. The NDT corresponds to the tempera-
ture at which fracture may be initiated by a small flaw (less than 25 mm long)
under local dynamic loading of yield stress level, or to that at which a long
crack propagates under minimal applied stress. The FTE represents the
temperature at which long cracks can continue to propagate under yield stress
loading, as in the Robertson test. Loadings greater than yield stress are not con-
sidered in detail, because these correspond to failure by gross plastic collapse
rather than by fracture. Below the NDT, failure stress/ flaw size relationships
can be calculated using linear elastic fracture toughness techniques. These agree
fairly well with service experience to give some indication of the sizes of flaws
likely to propagate under applied stresses of, say, 3, % and 1 of the dynamic
yield stress at the NDT. Curves starting from these three points at the NDT may
then be drawn parallel to the transition curve appropriate to a particular speci-
men thickness to indicate the stress level required to propagate a flaw of given
size at a given temperature. The aim is to give results in a temperature region in
which linear elastic calculations cannot be used and yet in which the economical
factors have demanded operating conditions, of stress above, and of tempera-
ture below, the LTTR.
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Despite the empirical nature of many of the correlations which are made,
dynamic tear testing can often adequately define the likely behaviour of steels
in service and has been used, for example, in the assessment of materials for
nuclear pressure vessels. It concentrates, however, on the dynamic ‘metallurgical’
transition from cleavage to fibrous fracture and is not easily able to treat unstable
propagation by fast fibrous fracture. The importance of this is demonstrated
by the behaviour of pneumatically loaded, as opposed to hydraulically loaded,
vessels. In the hydraulically loaded vessel, as in the Robertson test or the drop-
weight test, the applied stress on the system drops rapidly as the crack propa-
gates and a clearly defined transition is obtained. In a pneumatically pressurised
vessel, even ductile fracture (accompanied by strains of the order unity and
local bulging of the walls of the vessel) propagates faster than the pressure can
be reduced by leakage and a catastrophic situation can occur, With very long
flaws, catastrophe can be produced by low applied stresses at temperatures
higher than the LTTR®®, The lengths of these flaws are such that they would not
normally be found in plate material. Emphasis is therefore placed on the need
to examine sub-critical crack growth mechanisms (by fatigue, stress corrosion,
ductile tearing, etc.) in such situations.

Transitions in impact testing, whether conventional notched bar testing or DT
testing, are obviously dependent on specimen geometry, but it is clearly possible
to examine effects of geometrical variables, as for slow-bend testing, so that the
position of a particular transition is explained simply in terms of the conditions
for initiating cleavage or fibrous fracture. These are then related to the micro-
mechanisms of fracture which we have discussed previously. The main factors
are yield stress, stress intensification and microstructure with regard to cleavage
fracture: strain concentration, strain gradient and microstructure with regard to
fibrous fracture. The impact transitions must take account of the effects of high
strain-rate on yield stress and work-hardening rate.

We shall now attempt to relate the variation of linear elastic fracture tough-
ness, K¢, with temperature to the micro-mechanisms of fracture in a typical
mild steel microstructure.

8.9 A Model for Ky; in Low-strength Steel

The previous sections have been concerned with the micro-mechanisms of
cleavage and fibrous fracture in notched bars and how these are related to the
ductile/brittle transition. It is now of interest to examine the extent to which
these micro-mechanisms can explain the temperature dependence of K¢ in low-
strength steel, where the cleavage/fibrous transition occurs under fully plane
strain conditions, i.e. where the position of the transition is controlled directly
by the metallurgical factors, rather than by any stress relaxation caused by
gross-section or through-the-thickness yielding. Typical results for a pressure-
vessel steel have been given in Figure 5.22b, where it is seen that Kic increases
steeply, from some 60 MN m™? at —20°C to over 150 NM m™3/2 at +20°C.
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Unfortunately, no information on local cleavage fracture stress, grain size,
carbide or inclusion distribution is available for steels on which large-scale
toughness tests have been carried out, and it will be necessary to try to deduce
behaviour from results obtained on simpler materials.

Recent experimental determinations of K¢ in an annealed high nitrogen
steel (of 60 pum grain size) are presented in Figure 8.13. An ‘effective elastic
crack’ correction (see Section 4.6) has been applied to the experimental K

——  Experimental Kg values

—— Including plastic zone
40 correction

Fracture toughness, Kic (MNni™2)

10

1 1 1
-125 -100 -75
Temperature (°C)
Figure 8.13 FExperimental variation of fracture toughness with temperature, compared
with theoretical predictions (see text). Filled points assume a critical distance of two

grain diameters: open points a distance of one diameter. @ calculated using Figure 3.18a;
8 using Figure 3.18b (after Ritchie, Knott and Rice**)

values, but this makes very little difference to the temperature dependence of
the fracture toughness. The results are appropriate only to low temperatures,
because the specimens were of small dimensions. The cleavage/fibrous transition
did not set in until very much higher temperatures, well after general yield.

We postulate that the temperature dependence of K¢ is of the form that it
is because the plastic zone at each temperature must be of a size such that the
socal tensile stress is equal to the cleavage fracture stress, as in notched bars.
Only recently, with the development of finite element stress analyses which
give the elastic/plastic stress distribution ahead of a sharp crack, has it become
possible to test this hypothesis in a quantitative manner. Typical stress distri-
butions were drawn in Figure 3.18 for non-hardening material and for various
work-hardening exponents with oy /E = 0.0025 (the average value over the
temperature range of interest).

Consider the curve for n = 0.1 (corresponding to the average low tempera-
ture work-hardening rate). At low temperatures, where the yield stress is high,
little stress intensification is needed and the critical fracture stress can be met



228 THE CLEAVAGE-FIBROUS TRANSITION

at a point, not too far behind the plastic/elastic interface (Figure 8.14a). The
absolute size of plastic zone (value of X) is small because the yield stress is

high. As the temperature is raised, more and more stress intensification is
required and the failure point moves closer to the maximum in the curve. It does
not necessarily move with respect to the crack tip, because the maximum moves
away from the tip as the tip blunts (Figure 8 14b).

We suppose that the critical stress at any temperature must be attained at
some fixed distance ahead of the tip, governed by the microstructure of the
material®®. The association of cleavage fracture with grain boundary carbide
cracking mechanisms, as described in Chapter 7, leads us to choose one or two
grain diameters as the characteristic distance. Smith’s model (Section 7.11),
which has been used successfully to relate the critical value of local fracture
stress to microstructure in notched bars, assumes that a microcrack grows into
the ferrite matrix from a carbide under the action of a uniform tensile stress. In
the plastic zone ahead of the macroscopic crack tip the stress is non-uniform
and it is plausible that insufficient stress is generated across the second grain to
propagate the carbide crack nucleus if the critical stress predicted by Smith’s
theory is achieved only at the first boundary.

The high-nitrogen steel, for which the fracture toughness results are shown
in Figure 8.13, possessed a grain size of 60 um. Notched-bar tests, carried out
over a range of low temperatures, enabled the critical local fracture stress to be
determined as 850 MN m™? for this grain size. Taking the figure 850 MN m™? to
be independent of temperature, and using values of uniaxial yield stress
measured over the appropriate temperature range in subsidiary tensile tests, it
is then possible to calculate the critical size of plastic zone, and hence the frac-
ture toughness, as a function of temperature. The results of these calculations
are shown in Figure 8.13, assuming that the stress 850 MN m ™2 is achieved at
distances ahead of the crack tip of 60 um and 120 um respectively. Agreement
with the experimental results is obviously very close if the latter figure is
assumed.

If the value of approximately two grain diameters is taken to be of general
significance, it is possible to examine the validity of the cleavage crack propaga-
tion model with regard to the prediction of fracture toughness in other steels.
In particular, we examine the pressure-vessel steel data shown in Figure 5.22b.
Unfortunately, no information on the microstructure of this steel was included
with the toughness results. We assume that, at the NDT, a condition has been
reached where the maximum stress intensification is operating. The temperature
is higher than for the high nitrogen steel, and it is appropriate to take # as 0.2.
From the experimental values of K¢ (75 MN m™/2) and oy (530 MN m™2) at
the NDT, it is possible to deduce that the critical distance is some 30 um. This
implies a grain size of 15 um, which is reasonable for a steel of the appropriate
composition and heat-treatment. The local value of fracture stress is found to be
about 2600 MN m™2, which is considerably greater than the value of some
1600 MN m™? which would be typical of an unalloyed, normalised steel of the
same grain size (Figure 7.17). The carbide distribution in the pressure-vessel steel
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Figure 8.14 (a) Situation at low temperature. The critical cleavage fracture stress is

attained at the first (or second) grain boundary ahead of the crack. Because the yield

stress is high, the stress intensification (o ooy or UB/UY), need not be high and the

critical event can occur close to the plastic/elastic interface. The plastic zone size (and

hence Kr) can therefore be small. (b) Situation at higher temperature. A high stress

intensification is now needed, because the yield stress is lower. The plastic zone size at
fracture (and hence K;o) must be larger (see Figure 3.18)



230 THE CLEAVAGE-FIBROUS TRANSITION

is, however, likely to be very much finer than in the plain carbon steel and this
will give rise to a much higher critical stress. The effect is observable in Oates’s
results (Figure 7.16), where, for coarser grain sizes, a manganese-containing steel
had a much higher fracture resistance because the carbides were more finely
distributed.

Taking the value of 2600 MN m ? as the critical value, we examine the situa-
tion at —150°C, where oy = 800 MN m™2 and at —100°C, where oy = 600 MN m 2.
The required stress intensification factors (of 3.25 and 4.3) imply critical values
of K¢ of 32 and 60 MN m 2 compared with the experimental values of just
under 40 and just over 50 MN m™>/2, These results cannot be regarded as com-
pletely convincing, because op and n may vary with temperature, but give
sufficiently close agreement to warrant further investigation of the application
of the cleavage model to the calculation of K.

At the high temperature end, the mode of crack extension should change
from cleavage to fibrous. At the NDT, where K;c =75 MN m™3/2 and
oy = 530 MNm ™2 as before, the value of COD is calculated as approx. 0.05 mm.
This is close to the critical value for the initiation of fibrous fracture found in
free-machining mild steel (Section 6.4) and suggests that the transition in frac-
ture initiation occurs just above the NDT when sufficient strain to produce
internal necking between inclusions has been developed at the crack tip.

The sequence of events in precracked specimens therefore appears to be very
similar to that in notched specimens, except that the cleavage fracture is con-
trolled by a critical microstructural distance, taken for the present as about two
grain diameters. Effects of root radius on fracture toughness in a mild steel of
grain size approx. 50 um show that the critical distance there is again about two
grain diameters?’ and, using this argument to apply to high-strength steels,
where the cut-off occurs at about 6 um (e.g. Figure 5.15), we may deduce that
the limiting fracture toughness for a steel of yield strength 1400 MN m 2 is
about 40 MN m /2, in agreement with the experimental results (assuming an
average stress intensification of 4). The general development of fine grain size,
fine carbide distribution and widely spaced inclusions will therefore produce
high toughness, although the refinement of microstructure is limited with
regard to cleavage resistance, because the critical distance is much reduced.
Before a fully quantitative model for K¢ in steels can be developed, it is
obviously necessary to investigate further the micro-mechanisms of fracture in
fine carbide dispersions, to devise suitable fracture criteria for these
microstructures.

8.10 Other Fracture Modes

The modes of fracture used in the explanation of the general temperature
dependence of K¢ in steel were cleavage, at low temperature, and fibrous, at
high temperatures. An alternative form of low temperature brittle fracture can
occur in alloy steels if minor impurity elements (Sn, Sh, P, As, etc.) have
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segregated to prior austenite grain boundaries in amounts sufficient to induce
intergranular failure. Such segregation may be present in an as-quenched or
lightly tempered steel, or may occur during slow cooling after tempering at
higher temperatures. The ‘degree of embrittlement’ is conventionally assessed
by measuring the difference in impact transition temperature between an
embrittled and unembrittled steel, but this shift cannot be related directly to
the segregation phenomena, because the fractures at different transition
temperatures take place in materials of different yield stress?®. Similarly, the
shift, as a measure of embrittlement, can be misleading if, for example, results
on a high yield strength martensite are compared with those on a lower
strength bainite.

A recent detailed investigation into temper-brittle fractures has shown that
they behave in a way similar to that for cleavage. In notched bars, fracture
appears to occur at a critical tensile stress, which varies slightly with tempera-
ture, and which is lower than the critical cleavage stress, because the segregating
species form brittle boundary films. Coarse carbides (e.g. in bainites, rather than
martensites) reduce the fracture stress, but the effect of grain size is more com-
plicated, because it also affects the degree of grain-boundary coverage by
impurities. In principle, however, it would seem feasible to be able to relate the
critical fracture stresses obtained in notched-bar tests to Ky, as for cleavage
fractures.

The low-energy fracture of aluminium alloys in thick section involves the
formation of dimples around intermetallic particles or inclusions® . Large iron-
and silicon-bearing particles fracture at low strains and form the sites for primary
voids (rather like non-wetting inclusions in a steel), but the linkage between
these large voids is enhanced by the formation of secondary dimples around
smaller particles at higher strains: these smaller particles being associated with
the age-hardening or the grain-refinement of the alloys. Higher-toughness
alloys therefore demand pure components. The fracture appears to be
displacement-controlled. Aluminium alloys do not exhibit any transitions in
impact or toughness results over a range of low temperatures. The yield stress
increases slightly with decrease in temperature and, for displacement-controlled
behaviour, one would expect that the toughness at low temperature would be
somewhat greater than at room temperature, because it is necessary for the
applied load to produce the same displacement in harder material. There is,
indeed, some evidence that the toughness is higher at low temperature.

8.11 Conclusions

It is apparent that different types of material will fracture in different ways and
that many more investigations need to be carried out before the relationships
between micro-mechanisms and toughness are understood. In general, coarse,
brittle particles will crack at low stresses and non-wetting inclusions allow

voids to form at low strains. Refinement of the microstructure is apparently the
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best way to achieve high toughness, but the metallurgical properties need to be
developed in conjunction with a logical appreciation of the role of engineering
design. As shown in Table 8.2 the same working stress can be achieved with
greater safety from fast fracture, not by improving the material’s toughness at a

Table 8.2 PERMISSIBLE DEFECT SIZES IN 3% Cr—Mo—V STEEL AT OPERATING
TEMPERATURE (350 K)

Critical defect size for applied stress/proof stress of
0.2% Proof stress 0.5 0.57 : 0.61
800 MN m™? . 25:mm L 2imm
<o — -4
860 MN m™ 17 mm 12.5 mm 11 mm
SN S

I
. I

980 MN m™ 9 mm ! 7 mm 6 mm
-

Working stress 490 MN m 2

given high strength level, but by using a numerically smaller ‘safety factor’ in
material of lower yield strength. The aim of the Fracture Mechanics approach

is to replace the degree of ignorance in conventional design factors by a quanti-
tative parameter which is a direct measure of the material’s fracture resistance.
Numerically smaller factors used properly can mean that the true factor of safety
is much increased.
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APPLICATION OF FRACTURE MECHANICS TO CRACK
GROWTH BY FATIGUE OR STRESS-CORROSION MECHANISMS

9.1 Introduction

In many practical applications, it is clear that the sizes of defects needed to
produce catastrophic, brittle fractures under service stresses are so large that the
defects could always be detected and eliminated, by repair work, before the
piece entered service. Nevertheless, catastrophic failures can occur, if initially
small defects grow to critical lengths during operation, by ‘subcritical crack
growth’ mechanisms, such as fatigue or stress-corrosion. The success of conven-
tional linear elastic fracture mechanics in characterising the final fracture event
in terms of parameters which can be related to the applied stresses on a structure
has led to attempts to characterise subcritical crack growth by similar methods.
The present chapter contains descriptions of the experimental observations which
have been used to provide a basis for a fracture mechanics approach to fatigue-
crack propagation and to stress-corrosion crack growth and of the models which
have been developed to explain the experimental results.

9.2 Fatigue Failure

A fatigue failure is one which occurs after a number of cycles under alternating
stresses whose peak amplitudes are less than the strength of the material in a
uniaxial tensile test. The complexity of interpretation of the measurements used
to determine resistance to fatigue failure is reduced if we concentrate on limiting
situations, which may be regarded as initiation-controlled and propagation-
controlled.

The initiation-controlled situation is found typically in circumstances where
smooth shafts, rotating in bearings, are subjected to eccentric loadings, which
produce a bending moment. A region of the surface of the shaft is then sub-
jected alternately to tensile and compressive maximum fibre stresses (see
Figure 1.2) as it rotates. If these stresses locally exceed the elastic limit, alter-
nating plastic deformation is produced in the surface grains. In practice, this
_ deformation is not fully reversible and gives rise to two effects. First, the

234
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redundant dislocation density within a grain forms a debris structure or cell
structure which produces ‘fatigue hardening’ and which is characteristic of the
plastic strain amplitude, the temperature and the ability of the dislocations to
cross-slip. Secondly, non-reversible {low at the surface produces ‘extrusions’,
which pile up material on the surface, and associated ‘intrusions’, which act as
embryonic cracks along the active slip-bands (see e.g. Plumbridge and Ryder!
and Ham?). The general hardening of the grain facilitates localisation of
deformation along a slip-band and the lack of reversibility of plastic flow at the
surface is enhanced by an environment, such as air, from which gaseous species
may adsorb onto freshly exposed slip steps, making the reversal of flow at such
positions more difficult. The intrusion propagates along the active slip-band,
inclined roughly at 45° to the direction of the maximum principal stress, as a
‘stage I” crack, until it reaches a length significant with respect to the geometry
of the piece, such that the crack tip stress field becomes dominant. It then
propagates as a ‘stage II’ crack, normal to the maximum principal stress until it
becomes so long that the piece separates by a fast tensile fracture. The fracture
surface during stage II propagation shows a sequence of ‘ripples’.

This situation is initiation-controlled at low plastic strain amplitudes because
the growth of the crack from intrusion to stage II is a rapidly accelerating process,
as the net section decreases in size and stresses become intensified around the
growing crack tip. For low amplitudes, some 90% of the total fatigue life is
expended in developing the initial intrusion. The important point is that, since
fairly substantial amounts of alternating plastic flow are needed to form a crack-
like profile in an initially smooth surface, the alternating stress needed to initiate
fatigue fracture is high. This implies that the stress applied to the specimen is
high, so that a crack, once initiated, propagates rapidly.

Conventional fatigue testing has concentrated primarily on the behaviour of
smooth specimens. Testpieces are machined to provide parallel-sided gauge
lengths or ‘hour-glass’ (waisted) profiles and are tested in plane bending, rotating
bending or uniaxial compression—tension (‘push—pull’) or tension—tension. Infor-
mation is presented in terms of an S—/N curve, which shows the dependence of the
number of cycles required to cause failure on the applied alternating stress (see
Figure 9.1). Materials generally exhibit one of two types of behaviour. In mild
steel, and in other strain-ageing materials, a sharp ‘fatigue-limit’ is obtained:
below a critical value of applied stress, specimens appear to last indefinitely. The
importance of strain-ageing is demonstrated by the effect known as ‘coaxing’: a
specimen fatigued for a sufficiently long time at stresses below the fatigue limit
is subsequently found to possess an improved resistance to fatigue failure,
because its flow stress has been increased by strain-age-hardening. Non-ageing
materials do not show a sharp fatigue limit and it is conventional to define an
‘endurance limit’, which is the stress required to cause failure in 10® cycles. It is
important to note, although the point is seldom stated explicitly, that conven-
tional fatigue or endurance limits are nearly always greater than the macroscopic
uniaxial yield stress, although less than the UTS. An important exception occurs
in the case of fine-grained mild steel: here, the combination of short dislocation
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pile-ups in the most easily activated grains and strongly locked dislocations in
neighbouring grains can produce intrusions at stresses as low as some 80% of the
macroscopic lower yield stress®. The yield stress of individual grains has, of
course, been exceeded. In such fine-grained steel, the fatigue limit represents the
stress at which heavy fatigue damage and intrusions are just able to spread from
grain to grain. The difference between this and the simple strain-ageing effect is

'Coaxiny

F—_—»
B B

Alternating stress £ S

Fatigue limit

Endurance limit-—-———————=

1
1
Number of cycles 108
to failure, N

Figure 9.1 'S—N’ Fatigue curves. Curves of type A are typical of mild steel and alloys
which strain-age. Curves of type B are typical of non-ageing alloys
shown by the fact that a sharp fatigue limit persists at low temperature in fine-
grained mild steel, but not in coarse-grained mild steel.

The importance of plastic strain range, Ae,,, on fatigue fracturein smooth
specimens is clearly demonstrated by the so-called Coffin—Manson® > relation-
ship between A€, and the number of cycles to failure, M. In its most general
form, the relationship is given by:

R N 200, (9.2.1)

where C, is a constant, often having a value close to 0.5, and C, is a constant,
approximately equal to the true strain to fracture in a tensile test (about unity).
The extent to which this equation is obeyed by a wide range of metals is
illustrated by Figure 9.2. There is also a marked effect of mean stress on the
endurance limit (Figure 9.3), which indicates that, once the tensile yield stress
has been exceeded and alternating plastic strain is possible, a mean tensile stress
accelerates the fatigue fracture mechanisms.

The behaviour in such tests has been divided into three parts: intrusion
formation, stage I propagation along 45° slip-bands and stage II propagation
normal to the applied stress. It is clear that large plastic strain amplitudes will
produce large slip steps on the surface and perhaps substantial surface buckling
and folding. The general scale of upheaval is much increased and it is reasonable
to suppose that fewer cycles are needed to form a definite crack embryo.
Similarly, the larger alternating shears are likely to produce more rapid crack
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advance during stage 1 propagation along the active slip-band. If the plastic strain
amplitude is very large, such that failure occurs in less than 100 cycles, for
example, stage II propagation may start after the first few cycles. The magnitude
of the strain needed to produce this situation is large. From equation 9.2.1 a
life of 100 cycles requires that Aej, is about 10%, i.e. a plastic movement of
0.5 mm of the ends of a gauge length of 10 mm.

A model has been developed to explain the mechanism of stage II propagation
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Figure 9.3 Effect of mean stress on fatigue strength at 10° cycles in two aluminium alloys

in terms of plastic flow processes”*®. The sequence of events is depicted in
Figure 9.4. As an initially sharp crack is loaded in tension, shear deformation
is concentrated in bands inclined at some 70° to the crack plane (see Figure 9.4a

and Section 3.15). With further straining, the initial crack is subjected to a
simple opening, until a point is reached where physical separation occurs in the
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Figure 9.4 Schematic representation of fatigue crack advance by plastic blunting process

slip bands. At peak tensile strain, the profile contains two ‘ears’ at the end of the
crack (Figure 9.4b,c). In the earlier version of the model the portion of the crack
front between the ears was apparently squeezed forward on closure, so that the
tip of the new crack protruded beyond the tips of the ears. Advance of the

point A on closure, however, seems physically unreasonable, unless it is possible,
in a specimen undergoing very large reversed plastic strains, to concede that lateral
movements of exterior surfaces are possible and to regard A as a fixed hinge,
about which the upper and lower faces rotate (counter clockwise and clockwise
respectively) on closure. More recent versions tend to show advance of point A
during the tensile stroke, i.e. between Figure 9.4b and 9.4c. In either case, it is
difficult to understand why the tensile deformation is not identically reversed on
compression, to give the original profile, as in Figure 9.4a. Alternative possibili-
ties are that cracking or voiding occurs ahead of the original crack tip (rather
than in the ‘ears’) when the tensile stress or strain reaches a critical value (see
Chapters 7 and 8) or that adsorption of gaseous matter on the freshly exposed
surfaces at the tip prevents re-welding on closure, so that an increment of crack
advance depends on the amount of freshly exposed surface (crack opening), on
the environment (availability of species) and on the time of exposure (frequency).
This latter alternative may prove to be the more realistic model at low plastic
strain amplitudes. At high amplitudes, the opening and closing, with ‘ear’ forma-
tion, provides a good explanation for the formation of the ‘ripples’ observed on
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the fracture surface and confirms the one-to-one relationship between number
of ripples and number of fatigue cycles.

These events have been concerned with smooth pieces in which, unless the
applied plastic strains are very large, the total failure is governed by the
initiation of a small slip-band crack in the smooth surface. It is necessary to
develop alternating plastic flow in the surface layers before any cracks can be
initiated and commercial treatments to prevent fatigue in components such as
crankshafts therefore rely primarily on the hardening of the surface, so that
plastic flow is difficult to produce. Treatments such as flame-hardening,
induction-hardening or case-carburising simply increase the yield stress: shot-
peening and case nitriding (or cyaniding) also introduce residual compressive
stresses in the surface layer, which then needs a yet larger stress amplitude to
be applied before cracks are initiated (see Figure 9.3). One problem, particularly
with shot peening, is that the surface treatment may so increase the surface
roughness that much of the benefit of the treatment in terms of preventing
crack initiation is lost. It may be necessary to grind away some of the hard
surface layers to remove flaws which would otherwise serve as preferential sites
for initiation. In all hardened smooth pieces, initiation control is even more
important, because the initiation stress is so high that subsequent events proceed
very rapidly.

9.3 Fatigue Crack Propagation

The opposite extreme to the case of initiation-controlled fatigue failure in
smooth components is found in situations where fatigue stresses operate on
structures which contain large stress concentrators. These may be defects in
welds or features of the general structural design, as in the Mark I Comet
aircraft, where the sharp corners of windows in the fuselage were sufficient
to allow cracks to initiate and grow under normal service stresses (pressurisation/
depressurisation cycles, wind gusts, vibrations, bumpy landings, etc.). If a
piece is fully heat-treated after the introduction of a stress concentrator, it is
reasonable to suppose that the same sequence of events (i.e. development of
dislocation sub-structure, localisation of slip, formation of cracks in slip bands)
will be followed at the root of the concentrator as would occur at the surface of
a smooth specimen. However, if the stress-concentration factor is large, the
macroscopic applied stress needed to activate these events can be small and the
inception of a stage II crack .does not necessarily lead rapidly to final fracture. It
will propagate at a steadily accelerating rate, but the rate of advance may be so
small for such long periods of time that it would be possible to rely on periodic
inspections of a structure to guarantee integrity. This approach would necessitate
both a knowledge of the material’s terminal toughness and a knowledge of how
the crack growth rate was related to the stresses likely to be encountered in
service.

In fairly large pieces, containing substantial stress concentrators, it is possible



240  APPLICATION OF FRACTURE MECHANICS TO CRACK GROWTH

for stage II propagation to occur at stresses sufficiently lower than the general
yield stress for the stress analysis to be treated as linear elastic. In conventional
fatigue testing, it is clear that the alternating plastic strain amplitude, Ae,, is the
main factor controlling the number of cycles required to produce failure. For the
quasi-linear-elastic situation, where the plastic zone associated with the propagat-
ing crack is very much smaller than the length of the crack or the width of the
uncracked ligament, we expect that any crack tip plastic strain will be propor-
tional to the size of the plastic zone or to the COD. In turn, these are given by:

2
Py £ = (equation 3.12.2)
2TTUY
K? !
= t .
8 o (equation 3.13.12)

in plane stress. The situation becomes complicated when reversed plastic strains
at the crack tip are involved and will be discussed later in Section 9.6: at present,
it is sufficient to indicate that the variable parameter taken to be equivalent in
function to Ae, is AK, which is defined simply as the difference between the
maximum and minimum stress intensities encountered during each cycle:

AR =K e = Koite (9.3.1)

It is anticipated that the increment of crack growth per cycle, or ‘crack growth-
rate’ da/d¥, should be proportional in some way to the instantaneous value of
the ‘alternating stress intensity’, AK.

A simple functional relationship of the form:

da i
F]\f_ « AK (9.3.2)
was introduced by Paris to cover early experimental observations of fatigue
crack growth rates, made on a variety of materials. Generally, he found that the
average value of the exponent, m, taken over a wide range of growth rates, was
close to 4 for nearly all materials: some high strength steels, however, occasionally
exhibited values as high as 10. The variance between these slopes will be dis-

cussed in Sections 9.5 and 9.6.
The existence of a fully established and understood relationship between

crack growth rate and AK would greatly facilitate the assessment of growth rates
in a structure, because relatively simple laboratory tests could be used to provide
information which could be used directly, knowing the service stresses. The exist-
ence of inexplicably high exponents, coupled with marked effects of mean
tensile stress on growth rate in some alloys, but not in others, leads to a lack of
confidence in the general application of fracture mechanics to fatigue crack
propagation and retards the adoption of what are, potentially, very useful
diagnostic techniques. Further problems involve crack propagation in thin sheets
and under non-uniform alternating stresses (overloading, random fatigue, etc.).
Before the attempts that have been made to meet these problems are described, it
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is worthwhile first to discuss some of the experimental difficulties involved in
obtaining the basic crack growth-rate data.

9.4 Experimental Methods

Equation 9.3.2 relates the crack growth rate, da/d MV, to the instantaneous value
of alternating stress intensity, AK. Experimental techniques are therefore con-
cerned mainly with the control and measurement of AK and with the measure-
ment of growth rate under controlled conditions of temperature and humidity.
The experiments study the way in which crack length increases with number of
cycles. For testpieces of CTS or SEN bend or tension geometry (see Section 5.9),
this implies that the compliance (Section 4.3) of the testpiece increases as the
crack grows. This change in compliance not only means that the local crack tip
value of AK changes as the crack grows, even though the applied alternating
stress remains constant, but can also produce severe testing difficulties, if the
fatigue machine is of the resonance type, because resonance may be lost as the
testpiece progressively becomes a weaker spring. Attempts have been made to
propagate cracks under conditions of constant AKX, either by manually reducing
the applied stress amplitude as the crack grows or by designing a testpiece
geometry whose compliance remains constant as the crack grows. A design for a
CTS type of ‘constant K’ specimen is shown in Figure 9.5. Generally, however,
the change in AK with crack growth has been assumed to occur so gradually
that steady-state conditions, pertaining to the instantaneous value of AKX, are
always maintained at the crack tip.

Several forms of measurement of crack length have been employed. In thin
sheet specimens, visual observation of the crack length on the side faces may be
perfectly satisfactory, but surface measurements are unreliable when made on
thicker pieces, because the fatigue crack front tends to bow forward in the centre,

in a manner somewhat analogous to the tunnelling forward of a plane-strain
‘pop-in’ (Section 5.6) or a fibrous thumbnail (Section 6.4). The effect is not

usually so large, however. In these situations, techniques are employed, which
reflect the average crack size: in particular, use has been made of ultrasonics® or
the change in d.c. resistance of the testpiece!®!! as the crack grows.

An application of ultrasonics to fatigue crack propagation in specimens of a
type similar to the CTS testpiece (a WOL specimen: see Section 5.9) has been
made by attaching a probe to the top edge of aspecimen® (see Figure 9.6). The
probe is moved along this top surface so that a constant relationship between
the crack tip and the position of the probe (as judged from the magnitude of the
crack tip reflection signal) is maintained. Then the movement of the probe gives
the amount of crack advance. Systems can be devised so that the movement of
the probe is linked automatically to that of the crack and also gives continuous
read-out.
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Probably the most popular method of monitoring crack growth is the
Electrical Potential method'®'!. Here, a constant d.c. current is passed through
the specimen and the change in resistance of the specimen as the crack grows is
detected by measuring the change in potential across the open mouth of the

X

Figure 9.5 Schematic design for ‘Constant K’ testpiece of thickness B
(dimensions approximate)

starter notch. Optimum positions for attachment of current leads and potential
measuring probes are indicated in Figure 9.7 for ‘uniform current’ configurations
in SEN bend and CTS testpieces, together with the distributions of equipotential
lines corresponding to these configurations as the crack grows (Figure 9.8). It is
possible to provide theoretical calibrations for the potential distributions in
cracked pieces, by solving, for the appropriate boundary conditions, the Laplace
equation

where ¢ is the steady electric potential. For ‘uniform current’ applied to a sheet

Ultrasonic transducer

Clip gauge

Fatigue precrack

Figure 9.6 WOL-rype specimen for fatigue crack growth-rate measurements
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Figure 9.7 Optimum positions for current leads and measurement probes on SEN bend and
CTS testpieces (see also Ritchie, Garrett and Knott')
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Figure 9.8 Distribution of equipotential lines in SEN bend and CTS testpieces for uniform
current configuration. (a) Uncracked SEN bend testpiece. (b) Cracked SEN bend testpiece.
(¢) Uncracked CTS testpiece. (d) Cracked CTS testpiece (see also Ritchie, Garrett and Knott')



244  APPLICATION OF FRACTURE MECHANICS TO CRACK GROWTH

of width W containing an edge crack of length a (or a sheet of width 2 contain-
ing a central crack of length 24), a mapping procedure leads to the choice of a
potential function'? of the form:

_ _, cos (mz/2W)
d) =Im {C Ccos 1 W} (942)

where z is the complex variable: z = x; +ix,;x; and x, are defined, as for the
Westergaard analysis, along the crack and normal to the crack (see Section 3.7)
and the uniform lengthways potential gradient is Crr/2W. The boundary condi-
tions are that the exterior surfaces and the crack are perfect insulators

(9¢/dx,; = 0 when x;, =0 or W, 0¢/dx, = 0 when x, =0 and x, <a) and that the
uncracked ligament (x, =0, 2 <x; < W) is an equipotential line. It is then
possible to predict the potential difference between any two points across the
mouth of the crack, for any length of crack. The theoretical calibrations have
been applied primarily to relatively simple configurations, such as the centre-
cracked and edge-cracked plate. For more complicated testpiece geometries it is
generally necessary to produce direct experimental calibrations of the change in
potential with crack length. Although attempts have been made to apply the
theoretical analyses directly to real testpieces some of the assumptions made
have not been justified rigorously. By optimising the system and using very low
noise (< 0.1 uV) and low drift (less than 0.05 uV for the duration of a test)
amplification, it has proved possible experimentally to measure crack lengths to
within 0.1 mm in different specimens and changes in crack length of less than
10 um (about half a grain diameter in normalised steel). Such sensitivity demands
very close control of the constant current and of testing temperature (thermal
e.m.f.’s are highly significant). The rise in specimen temperature due to the
passage of current is of the order of 1—2°C, but this is allowed for by passing the
current through a specimen for a sufficiently long period before the fatigue test
begins.

AK calculated from

loads and compliance:

K=R§(Z),etc. _do calculated from
d~¥  tangent

Crack length,a

Q

Number of cycles, N

Figure 9.9 Basic data: crack length v. number of cycles
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Further methods of measuring crack growth involve the change of compliance
as the crack grows or a.c. resistance changes. The compliance change may be
detected by a clip-gauge mounted across the crack mouth, but the measurement
is not particularly sensitive and is ambiguous if substantial plastic flow
accompanies crack extension. The a.c. methods would appear to hold promise,
particularly if the ‘skin effect’ is utilised, but have not been used extensively.
Stress-wave emission techniques are not really suitable for monitoring continuous
crack growth, but may prove to be very useful in conjunction with, e.g. the
electrical potential technique if discrete bursts of cracking occur (see Section 9.6).

The electrical potential method additionally offers a means of propagating
cracks under constant alternating stress intensity, because the feedback signal,
which is proportional to crack length, can be made to reduce the stress applied
by a servo-controlled machine so as to maintain constant AKX conditions
automatically.

9.5 Experimental Results and Crack Growth Models

The basic information obtained from conventional crack propagation studies is a
graph of crack length versus number of cycles, for a constant amplitude of
alternating applied stress, as shown in Figure 9.9. Equation 9.3.2 indicates that
the incremental crack growth per cycle is expected to depend on the alternating
stress intensity through a simple power-law relationship. The information given
in Figure 9.9 is therefore processed as follows. At any given crack length, g, it is
possible to calculate AK directly from the maximum and minimum loads applied
to the specimen, using the compliance function: ¥ = f(a/W) (Table 5.2); appro-
priate to the instantaneous specimen geometry (¢/W). The compliance functions
are often extended to high (a/W) values to cater for fatigue crack growth in
geometries which would not be accepted as ‘valid’ for fracture toughness tests:
for example, for notch-bend specimens with (/W) values greater than 0.6, K, is
given by!3:
(W-a)*B

where ¥is equal to 4 to within 1% error. At this same crack length, the value of
(da/dN) is determined from the gradient of the curve in Figure 9.8, either
manually or by fitting a polynomial function to the whole curve, or, better, to
the section of immediate interest, and numerically calculating the slope of this
function at crack length a.

It is then possible directly to test the power-law relationship:

da

Ty AKIT[ s

e (9.3.2)
by plotting a graph of log(da/dV) v. log AK. A typical curve of this type is
drawn in Figure 9.10.
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Early analyses of such crack growth-rate data determined the average value of
the slope as 4 for a wide range of materials. With improved techniques and
closer examination of the data, however, it has become more clear recently that
the growth-rate curves are usually not straight lines, but are composed of three
regions. At low values of crack extension (region A, Figure 9.10), the graph rises
rather rapidly; over most of the AK range experienced in the test, the slope, or
exponent m, is usually about 2—3 (region B);'*''® and, at high AK values, such
that K. approaches Kyg, the slope steepens again (region C). We consider first
the behaviour in region B, which, in ductile metals, may be regarded as repre-
senting pure stage II propagation. 3§

The discussion in Section 9.2 suggested that the most important parameter in
determining the rate of crack advance by plastic processes was likely to be the

Slope =2 (or,in range
2-3)

da
dnN

log

Figure 9.10 Schematic crack growth-rate dependence on K

range of reversed plastic strain amplitude, Ae,: under quasi-linear-elastic condi-
tions and a particular stress state this should be a function of the reversible
plastic zone size, COD, or AK? (Section 9.3). Models for stage II propagation
suppose that the crack increment per cycle is a proportion of the instantaneous
COD. This proportion represents the amount of non-reversibility, caused perhaps
by the adsorption of species from the environment onto freshly-exposed slip
steps at the crack tip and preventing re-welding of the new surfaces on closing
the crack. The radius of the reversible plastic zone can be deduced by assuming
that the local flow stress is twice the monotonic yield stress (or, more logically,
twice the fatigue-hardened [low stress) and using the standard relationship
(equation 5.10.2) to obtain, for plane strain conditions:

AK?

e (9.5.2)

g
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The reversible COD is proportional to r¢ and so to AK? also. In general terms,
therefore, a dependency of crack growth rate, da/dN, on AK?, appears to arise
simply from any model dependent on reversed plastic opening at the crack tip.
In terms of a physical model, the critical factor is, however, more likely to be
the alternating plastic strain amplitude in the region immediately ahead of the
tip. In plane strain, a given value of Ae, will be associated with a particular
value of reversed COD or plastic zone size, but different factors of propor-

tionality between these parameters are to be expected in plane stress (see
Section 9.7).

Stress

Displacement

Stress

Figure 9.11 Model for reversed plastic flow. The material yields in tension at a stress o

and extends plastically from A to B. On unloading, the stress is at first removed elastically

to zero (BE) and then loads elastically in compression (EC) until reversed plastic flow is

produced, The amount of this reversed flow at zero overall displacement (CD) is given by

the amount of flow corresponding to a material with a flow stress 2oy = OA" = BC

(i.e. CD=A'B"). At zero displacement there are still positive dislocations present, giving
a compressive stress. The Bauschinger effect is ignored

The reason for using a value of twice the monotonic flow stress to represent
the stress required to produce reversed plastic flow may be understood by
reference to Figure 9.11, which shows a schematic stress—displacement curve
for the region immediately ahead of the crack tip. The curve is non-hardening,
because, at the point of crack advance under steady-state conditions, saturation
hardening has already been achieved. As a specimen is unloaded from the peak
of the tensile stroke, the local stresses at the crack tip unload elastically and
then become compressive. Some reverse plastic flow is obtained when the com-
pressive stresses become equal to the flow stress in compression. We may
estimate the amount of reversed flow by equating it to the amount of tensile
flow that would have occurred had the specimen had a flow stress equal to the
tensile unloading plus the compressive loading, i.e. to twice the tensile flow stress.
When the displacement is zero, the plastic flow has not fully reversed and com-
pressive stresses exist in the crack tip region. This ignores the Bauschinger effect.
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Alternatively, one may consider the equilibrium of dislocations in the inverse
pile-ups ahead of the crack tip (see Section 3.14 and Figure 9.12). At the maxi-
mum of the tensile stroke, the balance of forces is such that a dislocation is just
prevented from moving any further forward against the friction stress, o;, (or
yield stress, 0y, in a non-hardening material), and the back stresses of more
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Figure 9.12 Dislocation model for reversed plastic flow. At the peak tensile stress, the
rth dislocation is in equilibrium under stresses
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As the load begins ro decrease, so that the dislocation will want to move to the left, the
equilibrium becomes
T (decreasing)
og IR op as in (b)
_+ (—
Y ———>
The instantaneous difference between (a) and (b) is 2oy and the amount of reversed flow

is estimated, as in Figure 9.11 by calculating the amount of forward flow for a yield
stress, 2oy

advanced dislocations, 0,. The applied shear stress, 7, and stresses from less
advanced dislocations, oy, are trying to move it forward. Thus

Tt UB:UY+0A (953)

On unloading, the dislocation tries to move in the opposite direction. The force
opposing reversed motion as unloading begins is (7 + o) plus the friction stress,
0y The force promoting reversed motion is the back-stress, 05, only. The net
resistance to motion is then'(7 + 0g) + 0y — 0, or using equation 9.5.3, 20y.
Again, the amount of reversed flow may be estimated for a non-hardening
material by calculating the crack tip opening displacement for a material of flow
stress 20y .

In plane strain, the dependency of (da/d V) on AK? is not only predicted for
a model involving the attainment of a critical value of Agy,, but also for situations
in which a fixed proportion of the alternating plastic displacement is prevented or
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even accentuated. So far, we have considered a relatively passive environment,
such as air, in which gas might adsorb onto a clean surface and prevent complete
reversibility of local slip mechanisms, much as it does on the surfaces of smooth
specimens. There is, indeed, evidence that growth rates are much reduced when
testing is carried out in a vacuum and that the usual ripples, characteristic of
stage Il propagation, are absent. Alternatively, it is possible that the environment
is aggressive and actually dissolves some of the clean surface, physically advancing
the crack tip by a stress-corrosion mechanism (see Section 9.10). Again we might
expect that the effect would be proportional to the amount of fresh surface pro-
duced, i.e. to the crack opening. Of course, the actual amount of opening in a
particular material under a particular stress cycle depends on the cyclic stress—
strain properties (the ‘fatigue hardening’) of the region immediately ahead of the
crack tip. The relationship between Ae, and AK and hence between da/dV and
AK may then depend on the cyclic work-hardening exponent, as it will if the
crack advance is controlled by alternating local stress rather than alternating
plastic strain'”.

As a base-line for fatigue crack growth in plane strain, a graph with slope
m =2-3, seems to be the best representation of the more recent experimental
results and plausible reversed plastic flow mechanisms. The exponent, 4, which
has been commonly quoted, represents an average value, including some contri-
butions from regions A or C (Figure 9.10), to which we now turn our attention.

Region A represents the initial stages of crack growth in a specimen. Consider
the ideal situation of a sharp starter crack in a material which has been fully
heat-treated after this pre-cracking. At extremely low values of AK, the local
stress intensity is just not high enough to produce an amount of dislocation
activity at the crack tip sufficient to develop any significant local slip-band
cracking, i.e. the local stresses are below the local endurance limit. Estimating
the scale of this activity is difficult but if a value of 1 um were taken for the
reversed plastic zone size (this corresponding to the size of the dislocation
cell structures observed close to the surface of a propagating crack'® | to about
one-twentieth of the grain size of normalised mild steel or to an associated
reversed crack tip opening of about 150 A) it could be deduced, from equation
9.5.2, that the absolute threshold value of AKX would be less than 1.5 MN m™/2,
assuming that the fatigue-hardened flow stress is about 200 MN m™2. Very low
threshold values, in the range 1—2 MN m™>/? have been observed and the
absolute limit does seem, therefore, to depend simply on creating sufficient
activity in the crack tip region. In normalised mild steel, values of AK lower than
about 6 MN m™*? confine the reversed plastic zone to less than a grain diameter:
there is evidence here that the fracture surface shows a number of grain-boundary
facets'®, perhaps because individual grains are hardened, leaving the boundaries
as rather weak paths.

In the majority of published results, however, region A does not represent a
genuine threshold. For a fully heat-treated pre-cracked specimen to which an
arbitrary value of AK has been applied, it is not reasonable to suppose that
crack propagation will ensue immediately. The local alternating plastic strain
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amplitude must produce local saturation hardening before cracking initiates.
This hardening gives a situation where further crack tip strain can be accom-
modated only by intensely localised shear along a slip-band: in annealed material,
the high work-hardening rate means that the strain is accommodated by general
deformation in the crack tip region. There will therefore be an initiation period
for any value of AK applied, although the higher that AK is, the shorter this
period will be. The situation is directly analogous to that of a conventional
fatigue test, where observations show that higher alternating stresses (plastic
strain amplitudes) produce initiation after fewer cycles. The effect will be

observable on curves of crack length versus number of cycles in terms of the
number of cycles preceding definite crack growth. On the conventional graph

of log (%) v. log AK, however, this absolute initiation period is lost. Until

a new crack initiates at the starter crack tip, (da/dN) is of course zero, so

that log (da/dNV) is —ee. If the value of AK has been sufficient to create
steady-state saturation hardening conditions, once crack extension has initiated
region A in an ideally homogenous material will consist simply of a vertical

line, whose abscissa is log (AK), and which rises until it intercepts the base-line
growth curve, region B. Different initial values of AK will give different
positions for this line.

The argument presupposes that the region ahead of the crack tip is initially
in a fully stress-relieved condition and that microstructural inhomogeneities do
not affect the behaviour. In many experiments, prestrain introduced by
machining starter notches or by pre-cracking techniques has not been removed
by subsequent heat-treatment and the initial stages of crack growth may be able
to proceed more rapidly through this worked region. Region A may then rise
vertically from —ee and show a region of steep slope followed by a decrease until
steady-state conditions are obtained. Again, in steels tested at very low initial
AK values, where the reversed plastic zone size is less than a grain diameter, the
incidence of grain-boundary fracture can affect the form of region A, apparently
increasing the exponent, m (equation 9.3.2) and presumably elevating the
whole level of that part of the growth-rate curve. This situation is similar to the
events to be described in the following section.

This first region can be said to be a ‘threshold” only if it is clear that lower
values of AK produce no growth whatsoever. The indications are that the
threshold levels of AK are very small, although it is possible that they are
increased somewhat in strain-ageing materials, by analogy with the sharp fatigue
limits observed in conventional S—V curves. In sharply notched specimens of
strain-ageing material, it is certainly possible to obtain non-propagating cracks.
Additionally, the threshold level appears to be sensitive to the testing

environment.
In region C of the crack growth-rate curve (Figure 9.10) higher slopes are

again observed. Problems of interpretation which arise with respect to this region
are two-fold. First, the high value of K,y , associated with high AK values, may
mean that the total plastic zone size, if not the reversed plastic zone size, has
become large with respect to the specimen dimensions, so that values of K

1
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obtained from the elastic compliance function are suspect. Secondly, these same
high K, values may have produced so much tensile stress or strain at the crack
tip that the total ‘fatigue’ crack growth contains contributions from ‘static’ or
monotonic modes of fracture in addition to the normal ripple mechanism, so that
the overall rate is accelerated.

Eventually, the fatigue crack reaches a length such that final fast fracture is
produced. The terminal value of K, at this point is sometimes found to equal
Kic, but is often found to exceed Ki¢. This enhancement of toughness by fatigue
has not been fully investigated, although it is clearly recognised in terms of
permissible fatigue levels for precracking standard toughness specimens (see
Section 5.13 and Figure 5.16). It does help to explain why substantial patches of
monotonic fracture may be seen on regions of a fatigue crack surface, where
K max Was close to, or greater than, K. The occurrence of monotonic modes
can also help to explain anomalies observed in region B of the crack growth-rate
curve.

9.6 Monotonic Modes of Fracture during Fatigue Crack Propagation

Two main problems encountered in trying to develop a single model for fatigue
crack propagation behaviour are, first, that some materials, particularly high-
strength steels and aluminium alloys, seem to possess growth rates which are
much more sensitive to AK than are those in the majority of other alloys, and,
secondly, that in some cases, the growth rates are markedly sensitive to the
mean stress level, where AK is constant. Results obtained for a variety of alloy
steels, where growth rates were measured by ultrasonic techniques?, are
indicated in Table 9.1.1t can be seen that some very high values of m can be
found (up to 10) and that high values tend to be associated with low fracture
toughness.

An important indication of the reasons for this behaviour is given by recent
studies made by Ritchie on the effect of mean stress on fatigue crack propagation

Table 9.1
Steel 0.2% Yield stress Y Exponent,

specification MN m™ & i m
Al1S11045 260 55 4
AlSI 1144 545 66 5
AlS1 4140 455 62 10
ASTM A533 Grade B

Class 1 475 210% 2.2
ASTM A216 WCC

grade 335 170* 3
ASTM A469 Class 4 520 100* 2.7
ASTM A470 Class & 650 60 6.7
ASTM A471 Class 4 790 220% 1.4

* Apparent toughness based on extrapolation of existing Ky data.
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in a medium strength (0.2% proof stress 750 MN m ™) alloy steel, which was
tested in a temper-embrittled condition and in the unembrittled state after temper-
ing'®. In these two conditions, uniaxial yield, flow and fracture properties were
identical, but the embrittled steel was subject to grain-boundary fracture in
notched tests. The curves of crack length z. number of cycles and associated crack
growth-rate curves for different mean stress levels (as characterised by the ratio
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Figure 9.13 (a) Effect of mean stress on fatigue crack length in low-alloy steel

(AK;=15MNm 3f"'). (b) Effect of mean stress on crack growth-rate and apparent

slope of growth-rate curve. Apparent slopes obtained by least mean squares
regression analysis (after Ritchie and Knott'?)
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R = K min/Kmax) at the same initial AKX value (15 MN m™>?2) are indicated in
Figures 9.13a and 9.13b. For the unembrittled condition, there is no apparent
effect of mean stress on growth rate and the average gradient of region B of the
growth-rate curve is close to 2, indicating that growth occurs mainly by a
reversed plastic flow mechanism. The fracture surface shows typical fatigue
striations or ripples (Figure 9.14a).

|
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()

o Rl 3 =, m- S,
Figure 9.14 (a) Fatigue striations typical of an unembrittled alloy steel (x 4000).
(b) Intergranular facets (I) and striations (S) in temper-embrittled alloy steel (x 35 0)

(courtesy of R. O. Ritchie)
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In the embrittled steel, very different behaviour is observed. The graph of
crack length versus number of cycles is markedly affected by the mean stress
level: higher mean stress both steepening the curve, and producing sharp discon-
tinuities in it (Figure 9.13). The discontinuities could be associated with rather
large ‘bursts’ of brittle intergranular fracture and the total ‘fatigue’ fracture
surface additionally showed a large number of isolated intergranular facets
(e.g. Figure 9.14b). The incidence of grain-boundary fracture had clearly
increased the overall crack growth-rate. A further effect was observed on examin-
ing the crack growth rate [log (da/dN) v. log AK] curves, Figure 9.13b. In
embrittled material at high mean stress (i.e. R = 0.50), the ‘bursts’ of intergranular
fracture give rise to a curve, which, in the fine detail resolved by very
sensitive crack-monitoring equipment, has a saw-tooth appearance, composed of
accelerated rates during each burst superimposed on the normal straight line
(which, in turn, has been raised slightly by the incidence of small amounts of
intergranular fracture). A conventional treatment of such a saw-tooth curve,
using fewer data points or less sensitive equipment, would tend to regard the
jagged distribution of points as scatter and would fit, by least mean squares
regression analysis, a single straight line to all points, as indicated in Figure 9.13b.
The effect would be to make the data appear as if the gradient of the graph of
log(da/dN) v log AK, i.e. the exponent m in equation 9.3.2, had also been
increased by mean stress, in addition to the fact that the absolute value of
(da/dN) at a given AK value had been increased.

It is plausible that an effect of this type on a more refined scale (smaller, but
more numerous, ‘bursts’) might be responsible for the high and variable values
of m observed generally in steels. The brittle cracking need not be intergranular:
in some ferritic steels, it is clear that cleavage fractures can contribute to the
overall growth rate in an analogous manner. It has, in fact, been possible to
show that the onset of a critical ‘burst’ of cleavage fracture during fatigue occurs
at a critical stress intensity corresponding to the attainment of a critical local
tensile stress, at a boundary carbide ahead of the crack tip?!, closely similar to
that required to produce total cleavage fracture under monotonic loading at low
temperatures (see Section 8.9). In other materials, it is possible that microvoid
coalescence adds to the overall growth rate?Z. In aluminium alloys, contributions
are to be expected from fracture processes involving the brittle, intermetallic
second-phase particles: either fracture of the particles themselves, or voiding
around them.

The occurrence of monotonic fracture modes also helps to explain otherwise
anomalous values of crack growth rate, obtained by measuring striation spacings
on a fracture surface and assuming a one-to-one relationship between the
number of striations and the number of cycles. At high AK values, it is often
found that the ‘striation-spacing’ growth-rate is substantially less than that
obtained using monitoring techniques. This is clearly to bé expected, if the total
‘fatigue” crack growth contains components of monotonic fracture.

The form of the monotonic mode will obviously vary from material to
material, but, in all cases, it is to be expected that the effects will be most clearly
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discernible if the material’s fracture toughness is low, because it is in such a
material that monotonic fracture can be produced at a low value of K, . Little
data on effects of mean stress on growth rate as a function of fracture toughness
exist, but Figure 9.15 shows the results of a large number of determinations of
m, plotted versus Kjg. High values of m are obtained only in materials of low
toughness, as expected, and, in high-toughness materials, m has a value close to 2.

It is generally concluded that the basic mechanism for fatigue crack propaga-
tion in region B is some form of reversed plastic flow, such that (da/dN)
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Figure 9.15 Variation of appareni slope, m, with monotonic fracture toughness, Kic,
for many steels and aluminium alloys (for sources of data see Ritchie and Knott'*)
Ritchie and Knott'?)

depends in many cases on AK 2. However, in detail, the behaviour must be
related to cyclic stress—strain behaviour and the value of the cyclic work-
hardening exponent will affect the power, m, to which AKX is raised'”. In many
experimental observations, high values of m may be attributed to the occurrence
of additional monotonic fracture modes. These will occur predominantly in low
toughness alloys and are discrete processes, so that it may be possible to detect
them as a series of pulses, if stress-wave emission equipment is used in conjunc-
tion with the normal crack-monitoring device. The occurrence of monotonic
modes will greatly enhance the effect of mean tensile stress on crack growth rate,
because they react to the increased value of K,,,.

From a metallurgical point of view, it is encouraging if high growth rates and
exponents can be related to the same microstructural parameters as those which
lead to poor fracture toughness, rather than to some mysterious feature of the
fatigue propagation itself. There is then hope, not perhaps of improving resist-
ance to crack propagation beyond that which is currently available in the
toughest materials, but of ensuring that structural materials in general do not
permit cracks to propagate at anomalously high rates. For example, by correct
heat-treatment after tempering, the properties of the otherwise temper-embrittled
alloy steel are markedly improved (Figure 9.14). 1t is obviously beneficial if the
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same measures improve both toughness and resistance to fatigue crack growth:
not only will the cracks propagate more slowly, but they will also have to grow to
greater lengths before final catastrophic failure occurs.

It is necessary to pursue these concepts in more detail, but it does seem that
an understanding of the factors governing propagation is being gained. The results
so far have, however, been concerned primarily with the central regions of thick
specimens and a further problem arises when the effect of testpiece thickness on
crack propagation is considered.

9.7 Effect of Thickness on Propagation

Some confusion exists in the literature as to the predominant effect of thickness
on propagation and to the reasons for the effects that have been observed?®24,
The present section will describe some of the main observations and will attempt
to give a coherent explanation for them.

First, it should be made clear that brittle monotonic fracture modes, as
described in the previous section, are not expected to occur in thin pieces,
because the hydrostatic stress state, needed to develop high crack tip tensile
stresses or strains (Sections 7.4 and 8.6), will not be present: it will be relieved
by through-the-thickness yielding (Section 2.11) when the size of the plastic zone
is comparable with the sheet thickness. If monotonic modes contribute to a
high rate of propagation in thick specimens, therefore, the rate in thin pieces will
be slower.

The same conclusion holds if flat, or square, fatigue crack propagation occurs
in thin sheet (true plane stress conditions), even if the propagation in thick speci-
mens occurs by a reversed plastic flow mechanism. The effect has been shown
clearly in thin bend specimens where the deformation is forced to remain
in-plane®®, A similar state of affairs is apparent if one examines the fracture
surface profile in a specimen of moderate thickness. Here, the fatigue in the mid-
thickness of a plate (under plane strain conditions) tunnels forward more rapidly
than that at the edges. Such behaviour can be explained if crack advance depends
on the attainment of a critical amount of plastic strain amplitude (giving satura-
tion hardening, slip-band cracking, etc.) in the region immediately ahead of the
crack tip, rather than on the reversible plastic zone size or COD as such. For a
given value of stress intensity, the size of plastic zone in plane stress may be
larger than that in plane strain but the strain is spread more diffusely through-
out it, so that more cycles are needed to develop the critical strain level
immediately in front of the crack tip. The effect of thickness is therefore
analogous to that on the initiation of fibrous fracture (see Section 6.4). It is
possible for a model for propagation under these conditions to be related to
prevention of reversibility of the opening displacement, but the relationship
between A and Ae, would not be the same in plane stress as it is in plane
strain.

The situation is, in any case, confused by the behaviour of precracked thin
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sheet tensile specimens. Here, the crack initially propagates on a plane
normal to the applied alternating tensile stress. As it grows, the plastic zone at
the crack tip becomes larger. At a critical size, related to the sheet thickness, the
fracture plane changes to 45° slanting through the thickness and the crack
growth rate accelerates markedly. This mode of fatigue should be regarded as
Mode III antiplane strain (see Sections 2.11 and 5.4) rather than plane stress
and will occur in situations where elastic buckling and bending of the sheet
allow the parts immediately above and below the crack tip to be displaced
laterally out-of-plane. The reversed plastic strain amplitude in the narrow pocket
of slip on the 45° plane can remain concentrated, rather than diffuse. The
relationship between crack tip displacement and Ae,, will be numerically
different from that in plane stress or in plane strain.

The events therefore depend on loading configuration in addition to the
geometry of the piece. If out-of-plane displacements occur by buckling or by,
for example, the bulging of a thin-walled pressure vessel, cracks may propagate
more rapidly in thin section than in thick, unless brittle monotonic modes are
highly significant in the thick piece: if out-of-plane displacements are restrained,
the cracks should propagate more slowly. Similarly, the static fracture toughness
of a thin sheet is much increased if buckling is restrained (see Section 5.4 and
Irwin, Kies and Smith?®).

Two types of model are used to describe fatigue crack propagation: one,
based on concepts derived from experience with stage Il propagation in generally
yielded specimens, referring to re-welding of freshly exposed faces at the crack
tip and thus depending on Ad; the other, relating to the accumulation of fatigue
damage ahead of the crack tip, and depending on Ae,. In a given state of stress,
if we regard the region ahead of the tip as a miniature tensile specimen cyclically
hardened by an amount dependent on Aey, it is clear that a constant relation-
ship between A6 and Ae,, will be obtained under steady-state conditions. How-
ever, the slower growths obtained in plane stress tend to indicate that Aej, is the
controlling factor and we are led to seek some form of localised slip-band crack
in the fatigue-hardened zone ahead of the crack tip as the main means of crack
extension. The role of an aggressive environment in promoting crack advance
could be related to preferential chemical dissolution at the active slip band: the
role of a passive environment might be, through adsorption on the generally
opened clean crack tip surface, to enable deformation to be localised to a narrow
slip-band, so that a single shear crack, rather than a number of slip steps is
produced. Events obviously need to be studied in materials of different slip
character and fatigue hardening behaviour to decide whether it is Ae,, or A$ that
is the ultimate factor in controlling propagation. Since AK, in fact, is a measure
of the crack tip alternating stress intensity rather than strain amplitude, it seems
reasonable that the exponent, m1, in equation 9.3.2 is dependent on the relation-
ship between the cyclic stress and the cyclic strain, i.e. on the cyclic work-
hardening exponent'”. This might explain the variation in m over the range 2—4,
but higher values are attributed to the additional modes of monotonic fracture
described in Section 9.6.
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9.8 Overload Effects and Random Fatigue

Once an understanding of the propagation of fatigue cracks under constant, or
‘steady-state’, AK conditions has been gained, the next problem to be faced is
how to characterise the rate of growth of cracks in situations where AK changes
rapidly. These may exist, in association with constant amplitude applied stress,
when the cracks are propagating very rapidly or the stress gradient is very steep,
but are more commonly found in practical applications, where the fatigue loads
themselves are variable. Although service loadings can be recorded on magnetic
or digital tape, (using strain gauges, load cells, or accelerometers attached to the
component of interest) and reproduced in servo-controlled machines, so that
actual components can be tested in the laboratory, general material assessment
and quality-control testing on less sophisticated machines demands that any
differences between variable-amplitude testing and constant amplitude testing
should be fully investigated. The aim is to be able to predict from simple data
the total life under a known, complex loading system.

Endeavours of this sort have met with some success, when dealing with
situations in which a specimen is subjected to general alternating plastic strain.
The total life appears to be predicted adequately by a ‘cumulative damage’ law
due to Miner?”, which states that failure occurs when the sum of the number of
cycles, n?, at each stress (or plastic strain) range expressed as a fraction of the
number of cycles required to cause failure at this stress range, n;;, becomes unity,
ie.

3— =1 (9.8.1)

In some versions, the figure 1 may be replaced by a constant.

Similar laws do not appear to hold for cracks propagating under quasi-linear-
elastic conditions, although the base-line data have usually been obtained under
steadily varying, rather than constant, alternating stress intensity. The applica-
tion of a single overload to a constant amplitude cycle in fact, initially decreases
the anticipated propagation rate over subsequent cycles. Contributions to this
effect could occur from several factors, such as the blunting of the crack tip
during overload, the production of high residual compressive stress on reducing
the overload, the destruction of the characteristic ‘steady-state’ dislocation sub-
structure, or from the ‘crack-closure’ mechanism?®® (the closing of the crack
faces whilst the applied stress is still tensile, due to the residual stresses produced
by the plastically deformed regions behind the crack tip). The point to make,
however, is that at present, prediction of quasi-linear-elastic behaviour under
variable or random amplitude fatigue loading from basic constant amplitude crack
growth-rate data, differs widely from experience with specimens subjected to
general plastic strains.

The quantitative treatment of subcritical crack growth by fatigue mechanisms
therefore seems amenable to treatment by linear elastic methods for basic
growth-rate information, although this may have to be modified for realistic
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application to service conditions. In subsequent sections, we shall see how frac-
ture mechanics may be applied to problems involving subcritical crack growth
by stress-corrosion mechanisms.

9.9 Stress—Corrosion Cracking

Up to now, we have discussed fracture events and mechanisms for crack propaga-
tion, which are essentially mechanical in nature, although it was clear that fatigue
crack growth processes cannot be fully explained unless some interaction with
the testing environment is considered. Situations involving stress corrosion include
a very broad range of material—environment interactions, many of which are
specific to the single system under study. It is not possible to give comprehensive
coverage to all possible interactions in the present work and descriptions will be
confined mainly to the general use of the fracture mechanics approach? and to
experimental methods.

A definition of stress-corrosion cracking may be taken as ‘a cracking process
caused by the simultaneous action of corrodent and stress’. This is, wisely, a
general statement, which ignores the specific reaction leading to the formation
or extension of cracks. It therefore includes both anodic dissolution processes,
which preferentially remove heavily stressed material by chemical means, and
cathodic processes such as the evolution of hydrogen, which can diffuse into a
material and cause fracture ahead of a crack tip by hydrogen embrittlement
mechanisms.

Traditional stress-corrosion testing is concerned with the initiation of cracks.
Testpieces are usually in the form of thin strips or wires and are stressed by
simple loading with weights or by being clamped in various configurations which
produce high bending stresses on parts of their surface. Some testpieces may be
profiled to maintain the macroscropic stress constant as the crack grows. Testing
variables are the chemical nature, pH and temperature of the environment and
the maximum stress level applied. In some cases, the testpiece is held at an anodic
potential to accelerate the corrosion processes. Information is presented as
graphs of applied stress v. time to failure for each testing condition. The times to
failure are usually dependent on the times required for initiation because the
applied stresses are relatively high and a crack, once initiated, propagates rapidly.

It is important that yielding should be activated on some part of the surface
to produce localised stress corrosion rather than general chemical dissolution®,
The initial attack usually produces some form of pitting and the pits can act as
stress concentrators, so that yield is produced locally under the action of the
applied stress. The corroding environment must also be such that metal is dis-
solved rather than a passivating film formed. If the microstructure contains
anodic phases, these are likely to be dissolved preferentially and, if these are
associated with soft precipitate free zones at grain boundaries, the alloy tends
to show pronounced cracking in the grain-boundary regions. In other alloys, the
corrodent may produce pitting in slip bands. There is evidence that altering the
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character of the slip deformation in the grains by varying the state of ageing of
precipitate-hardening particles can alter the resistance to stress-corrosion cracking:
the sharp slip bands associated with an underaged condition promoting more
rapid attack.

Resistance to stress-corrosion cracking in an initiation-controlled situation
generally depends on the preservation of an impervious protective film on a
metal surface. This may be an oxide, a paint or polymer coating, or a cladding
treatment, such as that given to high strength aluminium alloys, which are clad
with a dilute alloy, less prone to stress corrosion. The resistance of an alloy to
stress corrosion is deemed to be sufficient if there are no obvious signs of crack-
ing in laboratory tests unless the applied stress is greater than some 75% of the
yield stress.

However, it is not always possible to rely on protective coatings in service.
One case in point is that of an undercarriage forging on an aircraft. This is a
redundant member of the structure for all airborne purposes and so it is usually
made out of high-strength material to reduce its weight to a minimum; it can
be painted, but is difficult to clad, because of the complex shape. On landing on
a wet runway, it is quite possible for sharp stones to be flung up and penetrate
the coating, under wet conditions, which do not allow a protective oxide film
to form. The protection of the component then depends on whether or not
this crack nucleus grows rapidly under the operative service conditions to a
length such that fast fracture can occur. If it grows slowly, the presence of the
crack can be detected by the normal periodic inspections of the aircraft. If it
grows rapidly, and is not detected by cursory examination during flight stops,
the aircraft is likely to collapse on a subsequent landing or take-off. A further
example of a major application where stress-corrosion crack growth was critical
was found in a recent failure of a large turbo-generator forging where cracks grew
under wet steam conditions>.

We therefore now consider how fracture mechanics is employed to
characterise stress corrosion, in such a situation, where a crack is present from
the very beginning of the stress corrosion test.

9.10 The Application of Fracture Mechanics to Crack Growth by
Stress-Corrosion Mechanisms

The first investigations of stress-corrosion cracking in precracked specimens
simply employed testpieces of the standard fracture toughness geometries
(Figure 5.12) or the constant compliance geometry (Figure 9.5), subjected to
dead loading, in the appropriate environment. Typical results (e.g. Brown?®)
obtained from such tests are presented in Figure 9.16, where a graph is drawn of
the total time to failure for a particular initial stress intensity, K;. The intercept
at zero time is, of course, K.

The first point studied was the terminal toughness, i.e. to discover whether
the amount of crack growth under the initial load, corresponding to K;, was just
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sufficient to make the instantaneous value of K at fracture equal to the conven-
tional fracture toughness. In many broken alloys, the region of stress-corrosion
crack growth was clearly distinguishable from that of the final fracture, so that
the stress-corrosion crack length at final fracture could be measured directly on
the fracture surface. In some cases, good agreement between Ky and the calcu-
lated values (denoted by Kjg¢ to indicate that the ‘pre-crack’ is a stress-corrosion
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Figure 9.16 Typical behaviour in precracked stress-corrosion tests

crack) was obtained: in others, branching of the stress-corrosion crack led to the
occurrence of higher values for K.

In a number of alloys, a definite limiting value of K; was found, below
which a specimen appeared to last indefinitely (see Figure 9.16). This limit,
termed Kygee. is not, however, a feature of all alloys; at least, not at the com-
paratively high values of K observed (approx. 10—15 MN m 2 for medium-
strength steel).

It is clear that, if a definite Kjg¢c limit exists, resistance to stress-corrosion
failure can be guaranteed by ensuring that service stresses do not produce
values of K greater than Kigoc around flaws of the size likely to be encountered
in service. If no Kjgoc limit exists, or if it is so small that service stresses would
have to be held at an unrealistically low level, design against stress corrosion
must rely on the assurance that crack growth rates in service will be so slow that
the cracks can be detected and eliminated during the periodic inspections. Slip
activity on the scale envisaged for the fatigue ‘threshold’ limit (Section 9.5)
would, of course, imply extremely low values of Kigee-

A graph of the form shown in Figure 9.16 does not by itself give direct
information on the dependency of the rate of growth on K, although the final
failure line represents the integrated effect of crack growth to constant terminal
values (K g¢). The general lack of precision in the data points means that various
functional relationships between growth rate (da/d¢) and K could be derived,
each of which would appear to give an equally good fit. It is necessary to
measure the growth rates directly.
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Techniques®® considered for the measurement of growth rate have been
generally similar to those used in fatigue testing (see Section 9.4). The electrical
potential method has again been used widely, although there are serious doubts
as to the wisdom of measuring an absolute value of the rate of crack propagation
by passing some 30 A through the specimen, because it is felt that this may well
affect the anodic dissolution rate at the crack tip. Nevertheless, rates measured
by the electrical potential method are generally considered to agree well with
those determined in other ways. Measurements of the change in testpiece com-
pliance as the crack grows have also been used under stress-corrosion conditions.
The values of K are often small, so that the plastic zone size associated with the
growing crack is not large and changes in compliance can, experimentally, be
related to changes in crack length unambiguously.

Experimental determinations of the way in which growth rate depends on K give
results which can vary markedly with the metal—environment system studied.
Both exponential and linear relationships have been obtained and Figure 9.17
shows results®' for a high-strength aluminium alloy, subject to intergranular
stress corrosion, in which a linear dependence and a complete lack of dependence
on K can be obtained by modifying the structure of the grain boundary region
by heat-treatment, whilst maintaining the yield stress and matrix microstructure
constant.

In the light of this wide variation of experimental results, it is clearly not
possible to produce a single, unified theory to explain stress-corrosion crack
growth, particularly since the crack tip processes may be anodic dissolution in
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Figure 9.17 Variation of stress-corrosion crack growth-rate with stress intensity.
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some cases and cathodic hydrogen evolution in others. The operative process can
be detected by the sign of the potential which must be applied to a specimen to
accelerate or retard the stress-corrosion process: if the process is anodic dissolu-
tion and the specimen is made more anodic, the rate will accelerate, and vice
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versa. The difficulty of establishing a viable model is increased by two further
factors. First, the pH of the corrodent at the crack tip may not be equal to that
of the bulk solution. This has been demonstrated in an elegant manner by
removing a corroding specimen from solution and freezing it; the specimen may
then be broken in half whilst cold and the pH of the liquid frozen at the crack
tip is determined as it melts. Highly acidic crack tip environments are often
found, even when the bulk solution is neutral. The second factor affecting a
quantitative model is that the dissolving crack tip surface may be partially filmed
or that, at low K values, access of the corrodent to the crack tip may be blocked
by corrosion product. In some cases, this effect may be responsible for the Kig¢cc
lirnit.

One model which has been developed to explain stress-corrosion crack growth
assumes that propagation normally proceeds by internal necking between inclu-
sions, spaced at regular intervals ahead of the tip of the starter crack®2 The rate
of decrease of area between inclusions is then supposed to be the result of two
factors: one due to the simple (plastic) Poisson’s ratio effect as tensile strains are
produced ahead of the crack tip; the other due to the dissolution processes.
Internal necking (crack advance) is predicted to occur when an instability, as in
the uniaxial tensile test, is produced in the contracting ligament. The theory, as
put forward, makes a number of simplifying assumptions, which do not justify
its reproduction in quantitative detail, but the general physical picture seems to
be reasonable for some alloys. Even the intergranular stress-corrosion fractures,
whose growth rates are indicated in Figure 9.17, showed fine-scale dimples
centred around the grain boundary (MgZn,) particles, at least if the particles
were widely spaced. In this case, the lack of sensitivity of growth rate to stress
initensity could be well explained® by the fact that, because the particles were
so far apart, most of the life was spent in slow dissolution of large areas of
precipitate-free grain boundary: the role of stress then became significant only
when the growing crack tip came close to another particle. If the (readily
soluble) anodic particles were closely spaced, however, stress played a significant
part in the rupture of the regions between particles and a marked dependence on
K was obtained.

In other systems, internal necking cannot be contemplated as a reasonable
model for the crack growth and the cracks may follow ‘cleavage’ planes or active
slip planes. In all cases, the calculation of a dissolution rate will be difficult,
because the crack tip surface is likely to be partially filmed. The role of stress has
not been fully clarified and confusions arise between behaviour in plane strain
and in plane stress, where resistance to stress corrosion appears to be much
improved. Naively, since the size of the plastic zone is larger in plane stress, it
might be expected that more dissolution would occur under such conditions.
However, as with fibrous fracture (Section 6.4) and fatigue fracture (Section 9.7)
it may be that the important factor is the concentration of strain immediately
ahead of the crack tip, so that it may be the confinement of strain to a small
region, in the plane strain stress state, that produces the faster crack growth.

Since so many variables can contribute to stress-corrosion fracture mechanisms,
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it is clear that tests should be carried out under conditions which closely simulate
those in service. The acceleration of stress corrosion, e.g. by raising the tempera-
ture of the corrodent or applying a potential to the specimen, is a matter which
should be treated with great caution. If a material shows a definite X 1sce limit,
it may be that the limit is not affected by an alteration in conditions, but this
fact can only be established experimentally. It defeats the whole object to
measure growth rates under other than service conditions: corrections for effects
of temperature, assuming a constant activation energy for the process, are again
extremely dubious, unless experimental confirmation has been obtained.

9.11 Sub-critical Crack Growth — Conclusions

It is apparent that many attempts are being made to characterise suberitical crack
growth in terms of critical values of parameters which can be related to design
stresses. In many cases, the threshold, below which a sub-critical mechanism will
not operate (AKX threshold, K;gop), is so low that it may be unrealistic to con-
sider that a component can be stressed so that crack growth will not occur. The
minimum stress level is, of course, strongly dependent on the size of any defect
that may exist in a structure and emphasis is therefore placed yet again on the
need to design structures free from macroscopic stress raisers and to employ
fabrication techniques and materials which minimise internal defects. It must be
possible to measure the sizes of any defects that are present accurately by the
non-destructive-testing methods used. If reliance is to be placed on slow crack
growth rates, the periodic non-destructive-testing must also be thorough and
capable of detecting any growth that has occurred in service.

In terms of understanding the mechanisms of sub-critical crackin g, so that
laboratory data can be applied to service situations with confidence, more pro-
gress has been made with models of fatigue crack growth, where purely mechani-
cal considerations are involved, than with those for stress-corrosion, which is so
critically dependent on the interaction between a particular alloy and a particular
environment. Even so, there are still many unsolved problems in fatigue, concern-
ing effects of mean stress or variable stress amplitude. In general, it would appear
that development of high static fracture toughness gives good resistance to
fatigue crack propagation. Such alloys are not necessarily passive in service
environments and it seems likely that, unless environmental or potential control
can be exerted, there are many circumstances where a material’s resistance to
stress-corrosion crack growth will prove to be the ultimate factor in deciding
whether or not it will be selected for a particular application.
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Tracey, D. M. See Rice, J. R.
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fracture appearance (FATT), 177, 218,
220-226
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220
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Tresca yield criterion, 32
Triaxial stresses, 19, 23—25, 119
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Unstable crack propagation, 7
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Van der Veen test, 8
Virtual work principle, 107
Void growth, McClintock’s model, 206, 207
Rice and Tracey model, 207, 208
Thomason’s model, 208—211



Void initiation, 206, 212, 213
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Von Mises yield criterion, 36, 80
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Williams, M. L., polynomial stress function,
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Strain-hardening

Y-function (compliance), 132, 133, 245
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around crack tips, 6572
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