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Abstract

The Virtual Crack Closure Technique (VCCT) was first presented in 1977 for calculating

stress intensity factors of cracks in linear elastic, homogeneous and isotropic material. It

makes use of the Irwin crack closure integral to obtain values of the modes I, II and III

energy release rates from finite element data. Using the energy release rates, the stress

intensity factors may be obtained. In the literature, failure criteria make use of the stress

intensity factors. Thus, accurate values for the stress intensity factors are valuable. It was

seen in the literature that it was difficult to obtain accurate results for interface cracks

with VCCT. In Banks-Sills and Farkash (2016), a criterion was proposed to overcome

this difficulty for this method allowing accurate calculation of stress intensity factors

for two-dimensional problems of an interface crack between two dissimilar linear elastic,

homogeneous and isotropic materials with fine meshes. For this criterion, new energy

release rates were presented, namely, the dual energy release rates. The virtual crack

extension (VCE) consists of a number of elements rather than one element as was used in

previous studies. The new criterion indicates the optimal number of elements to be used

as the VCE.

It is found that although quarter-point elements are recommended for calculations of

the stress intensity factors using the J and M -integrals, it is not recommended for the

VCCT (Farkash and Banks-Sills, 2020). The VCCT is extended to two-dimensional in-

terface cracks between two anisotropic materials (Farkash and Banks-Sills, 2017). The

criterion using the dual energy release rates is extended for these interfaces. It is used

to determine the optimal number of elements for the numerical calculations which is pre-

sented here and shown to provide accurate results. In addition, the VCCT is extended

to three-dimensional problems containing a straight through finite length interface crack

and a penny-shaped interface crack in which many elements are used to represent the

VCE. Materials chosen for study include homogeneous and isotropic, as well as bimaterial

isotropic and anisotropic. In order to use conservative integrals, obtaining the auxiliary

solution is required. This task requires extensive mathematical developments, as well as
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great care to avoid errors. For VCCT, some of this work must be carried out to obtain the

relation between the interface energy release rate and the stress intensity factors, as well

as the oscillatory singularity. But this is much simpler than obtaining the first term of the

displacement fields for the auxiliary solution for the interaction energy integral. Excellent

results are obtained for the two and three-dimensional problems when compared to analyt-

ical solutions, as well as with comparison to results obtained with conservative integrals.

Hence, the VCCT may be used for new interfaces instead of conservative integrals. New

results are obtained for several problems.

In Liu and Hong (2015), a Clifford algebra (Clifford, 1873) was considered for solving three-

dimensional problems of anisotropic materials which is presented here. The eigenvalues

and eigenvectors are found for specific anisotropic materials. New stress functions and

stress vectors for this formalism are developed. In addition, a general solution, using the

Clifford formalism, for uniform stress problems is presented. Several problems are solved

using it. The results obtained by means of the Clifford formalism are validated by results

obtained by the finite element method. The initial hope was to use this formalism for

solving crack problems. This does not appear to be possible. This formalism may be

extended for other three-dimensional problems such as an ellipsoidal cavity subjected to

a uniform loading.
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Î 6× 6 matrix

I difference between II and III

Im (m = E, T ) difference between I(m)
I and I(m)

II

Im (m = I, II,III) dual energy release rates
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Chapter 1

Introduction

Fracture mechanics is an important subject in the field of failure of materials. It explores

propagation of cracks in a structure. A crack may initiate in a material as a result of an

overload or fatigue loading. It may then propagate during the lifetime of the structure

until it propagates catastrophically. The first milestone of fracture mechanics was achieved

by Griffith (1920) while investigating propagation of cracks in brittle materials. Griffith

(1920) developed a failure criterion based upon a new concept: the energy release rate.

Irwin (1958) used the work of Griffith (1920), and developed a new approach, based on

the stress intensity factor. Stress intensity factors depend upon the geometry and applied

tractions of the problem. By using the stress intensity factors, one may also predict

failure.

Fracture mechanics concepts have been applied to composite materials. Composite mate-

rials are lightweight and have desirable mechanical properties. Additionally, by changing

the direction of the fibers in various plies, tailorable properties may be obtained. Those

features satisfy the needs of the sporting, aircraft and aerospace industries. Thus, the use

of composite materials has been increasing in those industries with time. An example of

the need to understand the behavior and failure of composite materials is the crash of the

Airbus A300B4-605R. On November 12, 2001, the Airbus A300B4-605R crashed shortly

after takeoff. Two hundred and sixty-five people were killed, including all of the people

on board and five people on the ground. The investigation team found that the vertical

stabilizer separated from the fuselage causing the airplane to lose control and crash. One

of the reasons for the stabilizer separation was a prior delamination between composite

plies. The delamination was found by technicians after the crash.

Methods for calculating stress intensity factors numerically have been developed. Some of

the popular methods include the J-integral, M -integral and displacement extrapolation.

These methods make use of results obtained by means of finite element analyses (FEA).

The J and M -integrals are indirect methods, introduced by Rice (1968a), and Chen and

Shield (1977), respectively. The stress intensity factors are determined indirectly from

energy quantities. By using the J-integral, one may calculate stress intensity factors for
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pure mode problems. The M -integral allows calculation of two or three stress intensity

factors separately. Those problems are called mixed mode problems. The M -integral

requires derivation of the first term of the asymptotic expansion of the displacement field

and the stress field on a line ahead of the crack tip. In addition, complex computer

software must be developed. This method is considered very accurate. The displacement

extrapolation method, introduced by Chan et al. (1970), is a direct method. The stress

intensity factors are found by extrapolating the displacement components along the crack

faces. This method requires only the first term of the asymptotic expansion of the crack

face displacements and is easy to implement. It is considered less accurate than the

M -integral.

In this investigation, the Virtual Crack Closure Technique (VCCT), introduced by Rybicki

and Kanninen (1977), is considered. The VCCT uses data from a finite element solution

of the problem at hand to calculate the stress intensity factors. Only the first term of the

asymptotic expansion of the crack face displacements and the stresses on a line ahead of

the crack tip are required. In a recent paper (Banks-Sills and Farkash, 2016), it was found

that the VCCT allows accurate calculation of stress intensity factors for two-dimensional

problems with fine meshes. The goal of this study is to extend the VCCT method to three-

dimensional problems in composite materials. In addition, in this study, an extension of

Stroh (1958) and Lekhnitskii (1950,1963) formalisms to three-dimensional problems is

presented.

In Section 1.1, the basic equations related to a crack in a linear elastic, homogeneous

and isotropic material are presented. The equations for an interface crack between two

different linear elastic, homogeneous and isotropic materials are discussed in Section 1.2.

An overview of the J and M -integrals is presented in Section 1.3. In Section 1.4, the

Stroh (1958) and Lekhnitskii (1950,1963) formalisms are presented. Stroh (1958) and

Lekhnitskii (1950,1963) developed formalisms that describes mathematically the behavior

of anisotropic materials in two dimensions. In Section 1.5, a Clifford algebra is presented.

The VCCT, based on the Irwin (1958) crack closure integral, is presented in Section 1.6.

In Section 1.7, research objectives are discussed.

1.1 Crack in a linear elastic, homogeneous and isotropic

material

In linear elastic fracture mechanics, deformation of the crack faces is used to describe

three deformation modes, as shown in Fig. 1.1. In mode I, shown in Fig. 1.1a, the crack

faces open so that the displacements are perpendicular to the crack plane. In mode II,

the deformation is in the crack plane, as shown in Fig. 1.1b. In this mode, the crack faces

slide with respect to one another in the plane perpendicular to the crack plane. Mode

2
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(a) (b) (c)

Figure 1.1: Mode deformation: (a) Mode I, (b) Mode II and (c) Mode III.

III is shown in Fig. 1.1c. In this mode, the deformation is characterized by out-of-plane

sliding of the crack faces.

The asymptotic stress and displacement fields for mode I were found by Irwin (1957) and

Williams (1957). Explicit expressions for the first term in the asymptotic stress field for

mode I are given as


σ11

σ12

σ22

 =
KI√
2πr

cos
θ

2



1− sin
θ

2
sin

3θ

2

sin
θ

2
cos

3θ

2

1 + sin
θ

2
sin

3θ

2


, (1.1)

σ33 =

 2ν
KI√
2πr

cos
θ

2
plane strain

0 generalized plane stress

 (1.2)

and

σ13 = σ23 = 0 (1.3)

where σij (i, j = 1, 2, 3) are the stress components corresponding to Fig. 1.2 and ν is

Poisson’s ratio.

r

x1

x2

θ

Figure 1.2: Cartesian and polar coordinates systems emanating from the crack tip.
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In eqs. (1.1) to (1.3), KI is the stress intensity factor for mode I and r and θ are polar

coordinates emanating from the crack tip as shown in Fig. 1.2.

The first term of the asymptotic expansion for the displacement field for mode I is given

as {
u1

u2

}
=
KI

2µ

√
r

2π


cos

θ

2

(
κ− 1 + 2 sin2 θ

2

)
sin

θ

2

(
κ+ 1− 2 cos2

θ

2

)
 (1.4)

and

u3 = 0 (1.5)

where ui (i = 1, 2, 3) are the displacement components in the x1, x2 and x3-directions,

respectively; µ is the shear modulus and

κ =


3− 4ν , plane strain

3− ν

1 + ν
, generalized plane stress.

(1.6)

For mode II, the first term of the asymptotic expansion for the stress and displacement

components are given as


σ11

σ12

σ22

 =
KII√
2πr



− sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)
sin

θ

2
cos

θ

2
cos

3θ

2


, (1.7)

σ33 =

 −2ν
KII√
2πr

sin
θ

2
plane strain

0 generalized plane stress

 , (1.8)

σ13 = σ23 = 0, (1.9)

{
u1

u2

}
=
KII

2µ

√
r

2π


sin

θ

2

(
κ+ 1 + 2 cos2

θ

2

)
− cos

θ

2

(
κ− 1− 2 sin2 θ

2

)
 (1.10)

and

u3 = 0. (1.11)

In eqs. (1.7) to (1.11), KII is the stress intensity factor for mode II.
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For mode III, the first term of the asymptotic expansion for the stress and displacement

components are given as 
σ13

σ23

 =
KIII√
2πr


− sin

θ

2

cos
θ

2

 , (1.12)

σ11 = σ22 = σ33 = σ12 = 0, (1.13)

u3 = 2
KIII

µ

√
r

2π
sin

θ

2
(1.14)

and

u1 = u2 = 0 (1.15)

In eqs. (1.12) to (1.15), KIII is the stress intensity factor for mode III.

Irwin (1958) found the relation between the stress intensity factors and GT , the total

energy release rate, given as

GT =


1

Ē

(
K2
I +K2

II

)
+

1

2µ
K2

III , plane strain

1

Ē

(
K2
I +K2

II

)
, generalized plane stress

(1.16)

In eq. (1.16), Ē is given by

1

Ē
=


1− ν2

E
, plane strain

1

E
, generalized plane stress.

(1.17)

where E is Young’s modulus. The energy release rate is the energy that is required to

extend the crack by a length ∆a.

The stress intensity factors are the amplitude of the singularity at the crack tip and are

a function of the applied load and geometry.

The total energy release rate may be separated into three components according to the

three deformation modes given as

GT = GI + GII + GIII , (1.18)

where

GI =
1

Ē
K2
I , (1.19)

GII =
1

Ē
K2

II (1.20)

and

GIII =
K2

III

2µ
. (1.21)

The in-plane energy release rate is given as

G2D = GI + GII . (1.22)
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r

x1

x2

θ

material (1)

material (2)

Figure 1.3: Interface crack between two dissimilar materials.

1.2 Interface crack between two isotropic materials

In Fig. 1.3, a crack along an interface between two dissimilar materials is presented.

Williams (1959) investigated this problem for two dissimilar linear elastic, homogenous

and isotropic materials and found the stress and displacement fields around the crack tip.

The dependence of those fields on distance from the crack tip r, was shown to be

σ ∝ r−
1
2

{
sin (εlnr)

cos (εlnr)

}
(1.23)

and

u ∝ r
1
2

{
sin (εlnr)

cos (εlnr)

}
. (1.24)

The geometry of the problem and the coordinates are shown in Fig. 1.3, and ε, the

oscillatory parameter, is given as

ε =
1

2π
ln

(
κ1µ2 + µ1

κ2µ1 + µ2

)
. (1.25)

In eq. (1.25), the subscript k = 1, 2 denotes the upper and lower materials, respectively,

as shown in Fig. 1.3, µk are the shear moduli,

κk =

 3− 4νk , plane strain
3− νk
1 + νk

, generalized plane stress
(1.26)

and νk are the Poisson’s ratios. Near the crack tip, the asymptotic displacement field

shows interpenetration between the upper and lower crack faces which is not realistic.

An interface crack between two isotropic materials was considered by Comninou (1977,

1978) and Comninou and Schmueser (1979). Three regions along the interface and the

crack faces were assumed. In the first region, continuity of the traction and displacement

components was enforced. In the next region, there is frictionless contact. In the last

region, the crack faces are free from traction. Comninou (1977) considered an infinite

body containing a finite length crack along the interface. The body was loaded by far

field tension normal to the crack faces. The contact length was normalized as s/a, where

6
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s is the length of the contact zone and a is the half crack length. The normalized contact

length s/a was found to be O (10−4) to O (10−7), depending on the mechanical properties.

Thus, for applied tension, the contact zone is very small. For the same infinite body,

loaded with far field shear, Comninou (1978) found that for the side of the crack where

the shear stress is positive, s/a can reach 0.66. On the other side of the crack, s/a

was found to be less than O (10−7). Again, the value of s/a depends on the mechanical

properties. It may be pointed out that s/a = 0.66 is its greatest value.

Those investigations led to a return to the singular stress solution determined by Williams

(1959), Erdogan (1965), England (1965) and Rice and Sih (1965). In Rice (1988), an

approximate expression for the interpenetration zone length was found. It is given by

rc = L̂ exp

{
1

ε

[
−
(π
2
+ ψ̂

)
+ tan−1 2ε

]}
(1.27)

where rc is the length of the interpenetration zone, L̂ is an arbitrary length scale, ε > 0

and is the oscillatory parameter given in eq. (1.25) and ψ̂ is the normalized phase angle

given as

ψ̂ = tan−1

[
ℑ(KL̂iε)
ℜ(KL̂iε)

]
= tan−1

[
σ21
σ22

] ∣∣∣∣
θ=0,r=L̂

. (1.28)

In eq. (1.28), ℜ and ℑ denote the real and imaginary parts, respectively, of the parameters

in parentheses and K is the complex stress intensity factor given by

K = K1 + iK2. (1.29)

In eq. (1.29), K1 and K2 are real and are the stress intensity factors for modes 1 and 2,

respectively. Note that for an interface crack the stress intensity factors are not associated

with modes I and II deformation. The units of K are FL−iε/L3/2
, where L denotes a length

quantity and F denotes force. The complex stress intensity factor may be normalized as

K̂ = KL̂iε . (1.30)

The normalized stress intensity factor K̂ has regular stress intensity factor units of F/L3/2.

It was prescribed by Rice (1988) that if the contact zone of Comninou or the interpene-

tration zone in eq. (1.27) may be included within a small scale nonlinear zone, then the

singular crack tip solution may be used. Thus, it may be concluded that for large shear

deformation, the singular formulation is questionable.

For an interface crack between two dissimilar isotropic materials, the in-plane stress field

was presented in Rice et al. (1990). The in-plane stress field is given as

kσαβ =
1√
2πr

[
ℜ
(
Kriε

)
kΣ

(1)
αβ(θ, ε) + ℑ

(
Kriε

)
kΣ

(2)
αβ(θ, ε)

]
. (1.31)

In eq. (1.31), the subscripts k = 1, 2 denote the upper and lower materials, respectively,

as shown in Fig. 1.3, α, β = 1, 2 represent polar or Cartesian coordinates emanating from

7
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the crack tip, as shown in Fig. 1.3; ε is defined in eq. (1.25) and K is the stress intensity

factor given in eq. (1.29). The stress functions kΣ
(1)
αβ(θ, ε) and kΣ

(2)
αβ(θ, ε) are associated

with the real and imaginary parts of Kriε, respectively. These functions are given in

Rice et al. (1990) and Deng (1993) for polar and Cartesian coordinates, respectively. For

out-of-plane deformation, the stress components are given as

kσα3 =
KIII√
2πr

kΣ
(III )
α3 (θ) (1.32)

where KIII is the mode III stress intensity factor and kΣ
(III )
α3 (θ) is a known function of θ

given in Deng (1993). The stress intensity factor KIII has units of F/L3/2. The stress

functions kΣ
(1)
αβ(θ, ε), kΣ

(2)
αβ(θ, ε) and kΣ

(III )
α3 (θ) are dimensionless. The displacement field

is given in Deng (1993) in Cartesian coordinates as

kuα =

√
1

2πr

[
ℜ
(
Kriε

)
kU

(1)
α (θ) + ℑ

(
Kriε

)
kU

(2)
α (θ)

]
(1.33)

and

ku3 =

√
r

2π
KIII kU

(III )
3 (θ), (1.34)

where α = 1, 2 and kU
(1)
α (θ), kU

(2)
α (θ) and kU

(III )
α (θ) are known functions of θ and have

units of L2/F .

Using the crack closure integral (Irwin, 1958), the relation between the interface energy

release rate and the stress intensity factors was found as

Gi =
1

H1

(K2
1 +K2

2) +
1

H2

K2
III , (1.35)

where the subscript i represents interface. In eq. (1.35),

1

H1

=
1

2 cosh2 πε

(
1

Ē1

+
1

Ē2

)
(1.36)

and
1

H2

=
1

4

(
1

µ1

+
1

µ2

)
. (1.37)

In eqs. (1.36) and (1.37), the subscripts k = 1, 2 represent the upper and lower materials,

respectively; the parameters Ēk are defined in eq. (1.17). Malyshev and Salganik (1965)

were the first to develop the in-plane version of eq. (1.35). Note that for an interface

crack, there are no explicit expressions for GI and GII . The sum of GI and GII may be

shown to be

GI + GII =
1

H1

(K2
1 +K2

2). (1.38)

The parameter GIII is given by

GIII =
1

H2

K2
III . (1.39)

8
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Figure 1.4: (a) A contour for the line J-integral and (b) an integration area for the area
J-integral.

In addition to the phase angle in eq. (1.28), a second phase angle between K1 and K2

may be defined as

ψ = arctan

(
K2

K1

)
. (1.40)

For three-dimensional problems, a third phase angle is defined as

ϕ = tan−1

[√
H1

2H2

KIII√
K2

1 +K2
2

]
= tan−1

[√
H1

2H2

σ23√
σ2
22 + σ2

21

] ∣∣∣∣
θ=0,r=L̂

. (1.41)

1.3 J- and M-integrals

The J-integral was first introduced by Rice (1968a) for two-dimensional elastic, homoge-

neous, isotropic, linear and non-linear materials and assuming small strain. The integral

is given by

J =

∫
Γ

(
Wn1 − Ti

∂ui
∂x1

)
ds. (1.42)

In eq. (1.42), Γ is a contour starting from the lower crack face and ending at the upper

crack face as presented in Fig. 1.4a. The strain energy density for linear-elastic material

is given by

W =
1

2
σijεij. (1.43)

The parameter n1 is the component of the outward normal to Γ in the x1-direction; Ti is

the traction given as

Ti = σijnj; (1.44)

ui are the displacement components and ds is differential arc length. The J-integral is

independent of path on such a contour Γ.

9
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In the same year, Rice (1968b) proved that the J-integral and the energy release rate are

equal such that

J = G. (1.45)

By means of eqs. (1.16) and (1.45), J is related to the stress intensity factors; so that, the

J-integral allows calculation of the sum of squares of the stress intensity factors. Thus,

for pure mode problems, one may use the J-integral to determine a stress intensity factor.

For mixed mode problems, the M -integral or interaction energy integral was developed

which is presented below.

Using Green’s theorem, the line J-integral may be transformed to an area integral. The

area J-integral was presented by Li et al. (1985) as

J =

∫
A

(
σij

∂ui
∂x1

−Wδ1j

)
∂q1
∂xj

dA (1.46)

where δ1j is the Kronecker delta given by

δij =

 1 , i = j

0 , i ̸= j ,
(1.47)

q1 is a sufficiently smooth function in the area A in Fig. 1.4 defined as

q1 =

 1 , on C1

0 , on C2 .
(1.48)

The parameter q1 is a normalized virtual crack extension such that q1∆a is the virtual

crack extension. For further details the reader is referred to Banks-Sills (1991).

As mentioned previously, the interaction integral or M -integral was derived in order to

calculate stress intensity factors for mixed mode problems. It was firstly introduced by

Chen and Shield (1977) for linear elastic, homogenous and isotropic materials. In Yau

et al. (1980), the first application of the integral for a homogeneous, isotropic material

was presented. The integral was extended by Yau and Wang (1984) for an interface crack

between two homogeneous, isotropic materials. A three-dimensional M -integral was first

presented for a homogeneous isotropic material by Nakamura and Parks (1989); it was

extended to dissimilar monoclinic materials by Freed and Banks-Sills (2005).

In Banks-Sills (2010), a review of theM -integral was presented for isotropic and anisotropic

materials of two and three-dimensional mixed mode problems. TheM -integral for a three-

dimensional problem of a straight through crack in a homogeneous isotropic material is

given in Banks-Sills (2010) as

M
(1,2α)
N =

1

A1

∫
V

{
σ
(1)
ij

∂u
(2α)
i

∂x1
+ σ

(2α)
ij

∂u
(1)
i

∂x1
−W (1,2α)δ1j

}
∂q1
∂xj

dV. (1.49)
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x
1

x
3

x
3

Figure 1.5: Virtual crack extension along the crack front denoted on the finite element
mesh (from Banks-Sills, 2010).

In eq. (1.49), M
(1,2α)
N is the average value of M (1,2α) for the N th element along the crack

front, the superscript (1, 2α) represents the sought after solution, 1, and the three auxiliary

solutions 2α = 2a, 2b, 2c. The auxiliary solutions are obtained as the first term of the

asymptotic solution for the material under consideration in this case, homogeneous and

isotropic. Three sets of the stress intensity factors are substituted into these expressions

which are

K
(2a)
I = 1, K

(2a)
II = 0, K

(2a)
III = 0, (1.50)

K
(2b)
I = 0, K

(2b)
II = 1, K

(2b)
III = 0, (1.51)

and

K
(2c)
I = 0, K

(2c)
II = 0, K

(2c)
III = 1. (1.52)

In eq. (1.49), A1 is defined as

A1 =

∫ LN

0

ℓ
(N)
1 (x3)dx3, (1.53)

where ℓ
(N)
1 (x3) is the normalized virtual crack extension of element N in the x1-direction

as shown in Fig. 1.5; V is the volume of elements used in the finite element calculation.

The cross-section of these elements is shown in grey in Fig. 1.6. The volume is one element

First contour Second contour

Figure 1.6: Cross-sectional view of the first and second domains for the M -integral.
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thick; i, j = 1, 2, 3; W (1,2α) is the mutual strain energy density given by

W (1,2α) = σ
(1)
ij ε

(2α)
ij = σ

(2α)
ij ε

(1)
ij ; (1.54)

q1 is defined as

q1 =
20∑
m=1

Nm (ξ, η, ζ) q1m, (1.55)

where Nm (ξ, η, ζ) are the shape functions of a twenty noded, isoparametric element and

q1m is a vector which preserves the distance between the nodes after a virtual crack

extension.

On the other hand, in Banks-Sills (2010) it is shown that

M
(1,2α)
N =

2

Ē

[
K

(1)
IN
K

(2α)
IN

+K
(1)
IIN

K
(2α)
IIN

]
+

1

µ
K

(1)
IIIN

K
(2α)
IIIN

, (1.56)

where Ē is defined in eq.(1.17) and µ is the shear modulus; KiN for i = I, II, III are

the stress intensity factors for the N th element. By using the auxiliary solutions with

eqs. (1.50) to (1.52) and substituting them into eqs. (1.49) and (1.56), the stress intensity

factors for the N th element are given by

K
(1)
IN

=
Ē

2A1

∫
V

{
σ
(1)
ij

∂u
(2a)
i

∂x1
+ σ

(2a)
ij

∂u
(1)
i

∂x1
−W (1,2a)δ1j

}
∂q1
∂xj

dV, (1.57)

K
(1)
IIN

=
Ē

2A1

∫
V

{
σ
(1)
ij

∂u
(2b)
i

∂x1
+ σ

(2b)
ij

∂u
(1)
i

∂x1
−W (1,2b)δ1j

}
∂q1
∂xj

dV, (1.58)

and

K
(1)
IIIN

=
µ

A1

∫
V

{
σ
(1)
ij

∂u
(2c)
i

∂x1
+ σ

(2c)
ij

∂u
(1)
i

∂x1
−W (1,2c)δ1j

}
∂q1
∂xj

dV. (1.59)

For further details, the reader is referred to Banks-Sills (2010).

For an interface crack between two different isotropic materials, eq. (1.49) is modified as

M
(1,2α)
N =

1

A1

2∑
k=1

∫
Vk

{
kσ

(1)
ij

∂ ku
(2α)
i

∂x1
+ kσ

(2α)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2α)δ1j

}
∂q1
∂xj

dV , (1.60)

where the subscript k = 1, 2 denotes the upper and lower materials, respectively. On

the other hand, the connection between the M -integral and the stress intensity factors is

given by

M
(1,2α)
N =

2

H1

[
K

(1)
1N
K

(2α)
1N

+K
(1)
2N
K

(2α)
2N

]
+

2

H2

K
(1)
IIIN

K
(2α)
IIIN

(1.61)

where H1 and H2 are defined for an interface crack between two isotropic materials in

eqs. (1.36) and (1.37), respectively. The auxiliary solutions 2a, 2b, 2c for an interface crack

are obtained from the first term of the asymptotic solution of the stress and displacement

12
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Figure 1.7: An interface crack between two dissimilar linear elastic, transversely isotropic
and homogeneous materials.

fields with eqs. (1.50) to (1.52). By equating eqs. (1.60) and (1.61), with the use of

eqs. (1.50) to (1.52) the stress intensity factors for the N th element are found as

K
(1)
1 =

H1

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2a)
i

∂x1
+ kσ

(2a)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2a)δ1j

]
∂q1
∂xj

dV (1.62)

K
(1)
2 =

H1

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2b)
i

∂x1
+ kσ

(2b)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2b)δ1j

]
∂q1
∂xj

dV (1.63)

K
(1)
III =

H2

2A1

2∑
k=1

∫
Vk

[
kσ

(1)
ij

∂ ku
(2c)
i

∂x1
+ kσ

(2c)
ij

∂ ku
(1)
i

∂x1
− kW

(1,2c)δ1j

]
∂q1
∂xj

dV . (1.64)

For some pairs of different anisotropic materials, the formulation in eqs. (1.60) and (1.61)

may be used. For these pairs, the stress intensity factors are given in eqs. (1.62) to

(1.64). For these two different anisotropic materials, H1 and H2 depend on the mechanical

properties of each material and they are presented in Section 1.4. The asymptotic solution

for an interface crack between some anisotropic materials, based on the Stroh (1958) and

Lekhnitskii (1950) formalisms, is also presented in Section 1.4.

1.4 Stroh and Lekhnitskii Formalisms

In this investigation, an interface crack between two transversely isotropic and homoge-

neous materials, as shown in Fig. 1.7, is considered. The upper material is a unidirectional

composite with fibers in the x1- direction. The lower material is the same material as the

upper one, rotated about the x2-axis with fibers in the x3- direction. Effective mechanical

properties of graphite/epoxy AS4/3501-6 were used; the mechanical properties are shown

in Table 1.1.

For an interface crack between two different anisotropic materials, the singularities and

the eigenvalues take the form

δ1,2 = −1

2
± iε (1.65)
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Table 1.1: Effective mechanical properties of graphite/epoxy AS4/3501-6 (Banks-Sills and
Boniface, 2000).

EA (GPa) ET (GPa) νA νT GA (GPa)

138.2 10.4 0.3 0.55 5.5

and

δ3 = −1

2
. (1.66)

So that, there is a square-root singularity and an oscillatory, square-root singularity. The

oscillatory parameter ε is given in Ting (1996) by

ε =
1

2π
ln

(
1 + β

1− β

)
(1.67)

where

β =

[
−1

2
tr
(
S̆
)2]1/2

. (1.68)

In eq. (1.68), the 3× 3 matrix S̆ is given as

S̆ = D−1W, (1.69)

where

D = L−1
1 + L−1

2 , (1.70)

and

W = S1L
−1
1 − S2L

−1
2 . (1.71)

In eqs. (1.70) and (1.71), the subscripts 1 and 2 denote the upper and lower material,

respectively; Sk and Lk are the Barnett-Lothe (1973) second rank tensors and are real;

they may be calculated by using four 3× 3 matrices Ak and Bk and the relation

−AkB
−1
k = SkL

−1
k + iL−1

k (1.72)

where there is no summation on k.

The matrices Ak and Bk, are known and depend upon the mechanical properties and the

orientation of the transversely isotropic material. For the interface considered, the matri-

ces are given explicitly in Banks-Sills and Boniface (2000). The stress and displacement

functions ϕ and u are also presented in Banks-Sills and Boniface (2000). To obtain the

stress components, the stress function vector is differentiated as

σi1 = −ϕi,2 σi2 = ϕi,1 (1.73)

where i = 1, 2, 3.
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For the interface considered in this investigation, the in-plane stresses in the neighborhood

of the crack tip are given by

kσαβ =
1√
2πr

[
ℜ
(
Kriε

)
k
Σ

(1)
αβ(θ) + ℑ

(
Kriε

)
k
Σ

(2)
αβ(θ)

]
(1.74)

where k = 1, 2 denotes the upper and the lower materials, respectively; α, β = 1, 2

represent polar or Cartesian coordinates; ℜ and ℑ represent the real and imaginary parts

of the expression in parentheses, respectively. Explicit expressions for the stresses are

given in Banks-Sills and Boniface (2000).

For plane deformation, the tractions ahead of the crack tip along the interface and the

crack face displacement jumps are given as (Banks-Sills and Boniface, 2000)(√
D22

D11

σyy + iσyx

)∣∣∣∣∣
θ=0

=
Kxiε1√
2πx1

(1.75)

and √
D11

D22

∆u2 + i∆u1 =
2D11

(1 + 2iε) cosh πε

√
∆a− x1

2π
(∆a− x1)

iεK . (1.76)

respectively, where the coordinate system is shown in Fig. 1.7. In eqs. (1.75) and (1.76),

D11 and D22 are taken from the matrix D given in eq. (1.70), ε is defined in eq. (1.67)

and the complex stress intensity factor K is defined in eq. (1.29). In Chapters 2 and 3,

the VCCT is presented for two and three-dimensional problems, respectively. In order to

develop the method for the interface considered, eqs. (1.75) and (1.76) will be used.

1.5 Clifford algebra

Consider a planar crack in a three-dimensional body. Using the Stroh (1958) and Lekhnit-

skii (1950) formalisms for these problems, the assumption of plane deformation is made.

This is a good assumption for an internal crack. For one which intersects a free surface,

this is only an approximation. In order to solve this problem without this assumption,

another formalism is required. In Liu and Hong (2015), a derivation of Clifford algebra

(Clifford, 1873) that may be used for solving three-dimensional problems of anisotropic

materials is presented. In this investigation, this derivation will be extended to solve

uniform stress problems. Several cases are considered. It may be extended further for so-

lution of the three-dimensional problem of an ellipsoidal void or rigid inclusion. The basic

ideas of Clifford algebra for R3 (three-dimensional space) are presented in this section.

Clifford algebra is based upon quaternions (Hamilton, 1844) and exterior algebra (Grass-

mann, 1844). A quaternion is an extension of complex numbers given as

q = a0 + a1i+ a2j + a3k, (1.77)
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Figure 1.8: Bivectors of (a) u ∧ v and (b) v ∧ u and (c) a trivector u ∧ v ∧w.

where ai for i = 0, .., 3 are real numbers. The constant a0 is the real part of the quaternion

and a1i+ a2j + a3k is the imaginary part. The values of i, j and k are i = j = k =
√
−1

and the multiplication between them is given in Table 1.2.

The exterior algebra presented in Grassmann (1844) defines bivectors and trivectors that

are created using the exterior product. The exterior product between two vectors is the

area of the parallelogram defined by them with the orientation of the area, as shown in

Fig. 1.8a for u∧v, where u and v are vectors and ∧ is the symbol for an exterior product

denoted as wedge. The orientation is determined as the first vector is swept toward the

second one. Note that v ∧ u = −u ∧ v, since the orientation is reversed, as presented in

Fig. 1.8b. Clearly, u ∧ u = 0, since the area of the parallelogram is zero. The exterior

product of three vectors u ∧ v ∧ w is the volume of the parallelepiped that they define

with its orientation determined by the bivector u ∧ v as shown in Fig. 1.8c.

The sybolism Cℓ3(R) is used where Cℓ is Clifford algebra, the subscript 3 denotes grade

3 of Clifford algebra and R represents the set of real numbers. The basic elements of

Cℓ3(R) are scalars (grade 0), vectors (grade 1), bivectors (grade 2) and trivectors (grade

3). Thus, a Clifford number, sometimes called a multivector, in Cℓ3(R) is given as

a = a0 + a1e1 + a2e2 + a3e3 + a4e23 + a5e31 + a6e12 + a7e123, (1.78)

Table 1.2: Multiplication table of quaternions.

× 1 i j k

1 1 i j k
i i -1 k −j
j j −k -1 i
k k j −i -1
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Table 1.3: Multiplication table of reduced biquaternions.

× 1 e i ie

1 1 e i ie
e e 1 i ie
i i ie -1 −e
ie ie i −e 1

where ai for i = 0...7 are real scalars, e1, e2 and e3 are the orthonormal unit base vectors

of R3, e23, e31 and e12 are bivectors and e123 is a trivector.

Clifford algebra extends the ideas of exterior algebra such that multiplication between

two vectors is defined as

a b = a · b+ a ∧ b, (1.79)

where · is the usual dot product. It may be noted that a b is a bivector. Bivectors and

trivectors are not multiplied. The multiplication rule of the Clifford algebra used in this

investigation for two unit vectors (grade 1) yielding a bivector (grade 2) is given by

eiej =

 1 , i = j

−ejei , i ̸= j
, (1.80)

where i, j = 1, 2, 3. Using eq. (1.79),

e23 = e2 ∧ e3, e31 = e3 ∧ e1, e12 = e1 ∧ e2 , (1.81)

since ei · ej = 0 for i ̸= j. The trivector in eq. (1.78), arising from the three unit vectors,

is given by

e123 = e1 ∧ e2 ∧ e3 , (1.82)

which is unity with the orientation of e1 ∧ e2.

In Liu and Hong (2015), it is suggested to use reduced biquaternions which use the basis

1, e, i and ei. The multiplication between these coefficients for this basis is given in

Table 1.3.

The eigenvalue problem for a three-dimensional anisotropic material was derived in Liu

and Hong (2015). This derivation is presented next. In order to develop the eigenvalue

problem, the stress-strain law is given by

σij = Cijklϵkl , (1.83)

where i, j, k, l = 1, 2, 3 and repeated indices obey the summation convention. Equa-

tion (1.83) may be rewritten using the strain-displacement equations

ϵij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.84)
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so that

σij = Cijkl
∂

∂xl
uk . (1.85)

The stiffness tensor C satisfies the symmetry conditions

Cijkl = Cklij , Cijkl = Cjikl , Cijkl = Cijlk . (1.86)

The equilibrium equations are given as

∂σji
∂xj

= 0 . (1.87)

The governing equations of anisotropic elasticity are derived by substituting eq. (1.85)

into eq. (1.87) and noting that σji = σij as

Cijkl
∂

∂xj

∂

∂xl
uk = 0 . (1.88)

Next, the displacements are defined as a function of the coordinates x1, x2 and x3 as

uk = akf(y) , (1.89)

where k = 1, 2, 3, ak are unknown constants to be determined, f(y) is an arbitrary function

and

y = P11x1 + P12x2 + P13x3. (1.90)

In eq. (1.90), P1j for j = 1, 2, 3 are quaternions that will be defined in the sequel. It

may be noted that the relation in eq. (1.89) will be defined more precisely in Section 4.3.

Substituting eq. (1.89) into the governing equations in eq. (1.88) results in

CijklP1jP1lakf
′′(y) = 0 , (1.91)

summation is used on repeated indices, and the prime denotes differentiation with respect

to the argument y. Since f ′′(y) is not identically zero,

CijklP1jP1lak = 0 . (1.92)

The non-trivial solution for ak must satisfy

det (CijklP1jP1l) = 0 . (1.93)

For completeness, eq. (1.92) is given by

(C11P
2
11 +C12P11P12 +C13P11P13

+C21P12P11 +C22P
2
12 +C23P12P13

+C31P13P11 +C32P13P11 +C33P
2
13) a3×1= 03×1 ,

(1.94)
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where Cjl are 3× 3 matrices given by

(C11)ik = Ci1k1 , (C12)ik = Ci1k2 , (C13)ik = Ci1k3 ,

(C21)ik = Ci2k1 , (C22)ik = Ci2k2 , (C23)ik = Ci2k3 ,

(C31)ik = Ci3k1 , (C32)ik = Ci3k2 , (C33)ik = Ci3k3 ,

(1.95)

and the vector a is composed of the constants ak in eq. (1.92). For example, the matrix

C11 is given as 
C1111 C1121 C1131

C2111 C2121 C2131

C3111 C3121 C3131

 . (1.96)

Equation (1.94) is the eigenvalue problem of the anisotropic elasticity problem. This

equation may be rewritten as

(N1 + P12N2 + P13N3)d = 0 , (1.97)

where, without lost of generality, setting P11 to unity, and

N1 =


C11 0 0

C21 −I 0

C31 0 −I

 ,N2 =


C12 I 0

C22 0 0

C32 0 0

 , N3 =


C13 0 I

C23 0 0

C33 0 0

 . (1.98)

In eq. (1.97), the vector d9×1 is defined as

d =


a

b

g

 , (1.99)

where

b = (C21 + P12C22 + P13C23)a , (1.100)

g = (C31 + P12C32 + P13C33)a . (1.101)

Equation (1.97) allows solution of three-dimensional problems for anisotropic materials.

The eigenvector is d, defined in eq. (1.99), and the eigenvalues are P12 and P13 which are

determined from

det(N1 + P12N2 + P13N3) = 0. (1.102)

One of the issues will be to determine the function f(y). Simple problems will be pursued

before attempting to solve a crack problem.
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Figure 1.9: (a) Crack of length a and (b) crack of length a+∆a.

1.6 Virtual crack closure technique (VCCT)

In this section, the virtual crack closure technique (VCCT), first presented by Rybicki and

Kanninen (1977) for two dimensions, is described. In addition, this method is presented

for three dimensions relying on papers in which it was extended. In Section 1.6.1, the

calculation of the energy release rates for the three deformation modes using the VCCT

is discussed. The equations needed in order to extract the stress intensity factors from

the calculated energy release rates are presented is Section 1.6.2

1.6.1 Calculation of the energy release rates using the virtual
crack closure technique

The Irwin (1958) crack closure integral is given in three dimensions as

G = lim
∆a→0

1

2∆a

∫ ∆a

0

[σ22(x1)∆u2(∆a− x1) + σ21(x1)∆u1(∆a− x1)

+σ33(x1)∆u3(∆a− x1)] dx1.

(1.103)

The energy release rate is calculated from this integral as the work done to close a crack

which underwent a virtual crack extension of length ∆a as shown in Fig. 1.9b. The

tractions ahead of the crack tip as illustrated in Fig. 1.9a for σ22 are applied in the

opposite direction in order to close the extended crack whose displacement is ∆u2. The

displacement in the x2-direction is shown in Fig. 1.9b. Equation (1.103) may be separated

into three equations as

GI = lim
∆a→0

1

2∆a

∫ ∆a

0

[σ22(x1)∆u2(∆a− x1)] dx1, (1.104)

GII = lim
∆a→0

1

2∆a

∫ ∆a

0

[σ21(x1)∆u1(∆a− x1)] dx1 (1.105)

and

GIII = lim
∆a→0

1

2∆a

∫ ∆a

0

[σ23(x1)∆u3(∆a− x1)] dx1. (1.106)
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The energy release rates for the three deformation modes, mode I, II and III, respectively,

may be calculated by means of eqs. (1.104) to (1.106).

Equations (1.104) to (1.106) should be calculated numerically with two finite elements

analyses. The nodal point forces are used to approximate σ22(x1), σ21(x1) and σ23(x1) for a

crack of length a as presented in Fig. 1.9a for σ22(x1) and in Figs. 1.10a and 1.10b for F
(m)
2 ;

the second analysis provides values for ∆u2(∆a−x1), ∆u1(∆a−x1) and ∆u3(∆a−x1) for
the extended crack as presented in Fig. 1.9b for ∆u2(∆a− x1). In Rybicki and Kanninen

(1977), Ramamurthy et al. (1986) and Raju (1987), only one FEA for a crack of length a

was carried out. The elements in the vicinity of the crack tip have the same length ℓ, as

shown in Figs. 1.10a and 1.10b. An approximation is obtained for the displacement jumps

from the element behind the virtual crack extension (VCE). This is reasonable when ∆a

is sufficiently small and ℓ is constant in all elements that participate in the calculations.

In Rybicki and Kanninen (1977), the integrals in eqs. (1.104) and (1.105) were calculated

numerically using four-noded isoparametric elements. Use of higher order elements was

first suggested in Ramamurthy et al. (1986) and Raju (1987). Analytical derivations were

presented for VCCT with four-noded elements, eight-noded regular and singular elements,

and twelve-noded regular and singular elements. The equations for calculating the modes

I and II energy release rates using four-noded and eight-noded regular elements are given

as

GI =
1

2∆a

M∑
m=1

F
(m)
2 ∆u

(m′)
2 (1.107)

GII =
1

2∆a

M∑
m=1

F
(m)
1 ∆u

(m′)
1 . (1.108)

In eqs. (1.107) and (1.108), for the nodal point forces F
(m)
p and the displacement jumps

∆u
(m′)
p , the subscript represents the xp-direction and the superscript denotes the node

number as illustrated in Figs. 1.10a and 1.10b. For four-noded elements M = 1 and for

eight-noded elements M = 2, as shown in Figs. 1.10a and 1.10b, respectively.

Numerical results were presented in Rybicki and Kanninen (1977) for double cantilever

beam (DCB) and central crack (CC) specimens. Differences of up to 0.5% were obtained

when compared to results obtained with the J-integral for ∆a/a < 0.1. Poor results were

achieved for larger values of ∆a. If the lengths of the elements before and after the crack

tip are different, eqs. (1.107) and (1.108) cannot be used. For this case, modified equations

were derived in Rybicki and Kanninen (1977) and Krueger (2004) for four-noded elements.

As one may see from eq. (1.1), the stresses in the vicinity of the crack tip are square-root

singular. Barsoum (1974) and Henshell and Shaw (1975) proposed a method for achieving

this behavior using eight-noded quadrilateral elements; the former also suggested use of

six and eight-noded triangular elements. In both cases, it was suggested to move the
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Figure 1.10: Nodal point forces and displacement jumps for (a) four-noded elements and
(b) eight-noded elements for VCCT following Ramamurthy et al. (1986) and Raju (1987).

mid-side nodes on the edges of the element emanating from the crack tip to a quarter

distance from the crack tip, as shown in Fig. 1.11a for a quadrilateral element. This

element is called a quarter-point (QP) element. Henshell and Shaw (1975) showed that

the stresses are square-root singular on these edges. In Banks-Sills and Bortman (1984),

it was shown that the stresses are square-root singular on all rays emanating from the

crack tip in a small region close to it, illustrated as the shaded area in Fig. 1.11b. It was

shown also that a square quarter-point element captures the square-root singular stresses

more accurately. For an interface crack, the stress singularity is in the form of r−1/2+iε.

In Banks-Sills et al. (1999), it was shown that use of the quarter-point element leads to

reliable results. In the three-dimensional case, a quarter-point element is achieved using

a 20-noded element, as shown in Fig. 1.12. In Banks-Sills (1988), a proof for the singular

behavior of the stresses in a quarter-point, 20-noded element is presented. The stresses

are square-root singular on all rays emanating from the crack front in every x1x2-plane

(orthogonal to the crack front), as presented in Fig. 1.11b.

x
2

x
1

x
2

x
1

(a) (b)

Figure 1.11: (a) Quarter-point element and (b) schematic description of the singularity
area of it.
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Figure 1.12: Quarter-point twenty-noded element.

The equations for calculating the modes I and II energy release rates using a quarter-point

element are given by (Raju, 1987)

GI =
1

2∆a

3∑
m=1

3∑
n=1

tnmF
(n)
2 ∆u

(m′)
2 (1.109)

and

GII =
1

2∆a

3∑
m=1

3∑
n=1

tnmF
(n)
1 ∆u

(m′)
1 (1.110)

where

t11 = 14− 66π

16
t12 = −52 +

264π

16
t13 = 39− 198π

16

t21 = −3.5 +
21π

16
t22 = 17− 84π

16
t23 = −12.5 +

63π

16

t31 = 8− 42π

16
t32 = −32 +

168π

16
t33 = 25− 126π

16
.

(1.111)

The nodal point forces and displacement jumps in the x2-direction from eq. (1.109) are

presented in Fig. 1.13. In order to calculate the work done to close the crack extension ∆a,

points 2 and 2′ should be the same distance from points 1 and 1′, respectively. This case

occurs in the four and eight-noded elements. Thus, each force corresponds to a displace-

ment jump in the same relative position in adjoining elements as shown in Figs. 1.10a

and 1.10b. In the QP-element, node 2′ is located at x1(node 1′)+3∆a/4, whereas, node 2

is located at x1(node 1) +∆a/4. To overcome this problem, a derivation was carried out

in Raju (1987) leading to eqs. (1.109) and (1.110) in which each nodal force is distributed

at each of the displacement jumps, through the factors tij. Since the displacement jumps

u
(3′)
1 and u

(3′)
2 are zero, the final equations for the QP element are given by

GI =
1

2∆a

2∑
m=1

3∑
n=1

tnmF
(n)
2 ∆u

(m′)
2 (1.112)
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Figure 1.13: The nodal point forces and displacement jumps for VCCT using QP-elements.

and

GII =
1

2∆a

2∑
m=1

3∑
n=1

tnmF
(n)
1 ∆u

(m′)
1 (1.113)

where tij for i = 1, 2, 3 and j = 1, 2 are given in eqs. (1.111).

Numerical results were presented for a homogenous center cracked tension (CCT) spec-

imen and an edged notched (EN) specimen, as well as an infinite body subjected to

crack face pressure. The normalized crack tip element size for the interface crack was

∆a/a = 0.05; for the former examples, it was ∆a/a = 0.0625. This element size for the

homogeneous problem should be sufficient to obtain good results. For the CCT speci-

men, the error with eight-noded elements was −3.0%; for that of the QP-elements, it

was −1.7%. For the EN specimen, with eight-noded elements, the error was −10% and

−6.5% with QP-elements. It is worth noting that the meshes exterior to the crack tip

region were quite coarse. It may be recalled that this investigation was published in 1987.

The larger errors for the EN specimen may be related to the large value of a/W = 0.8

where a is the crack length and W is specimen width. It is possible that there are errors

in the comparative results. For the interface crack, only QP-elements were used with

errors in Gi ranging from 0.9% to 5.2%. The finite element model was not sufficiently

large to model well an infinite body and the comparative solution was numerical. For the

homogenous bodies, the QP-elements produced more accurate results.

The VCCT uses two elements for the displacements jumps, element (1), presented in

Fig. 1.14, and the element directly below it, which is not shown in Fig. 1.14. The forces

are taken from the nodes in element (2), as shown in Fig. 1.14. The force F
(1)
2 in the

x2-direction is the sum of F
(1L)
2 and F

(1R)
2 , where F

(1L)
2 and F

(1R)
2 are the forces which are

determined from elements (1) and (2), respectively. The superscripts L and R denote the

left and right sides, respectively, of node 1. Similarly, the force F
(3)
2 is the sum of F

(3L)
2
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Figure 1.14: The forces obtained at nodes 1 and 3 from the finite elements analysis.

and F
(3R)
2 . The force in node 2, F

(2)
2 , is not shown in Fig. 1.14. It was pointed out in

Narayana et al. (1990) with an excellent discussion in Narayana and Dattaguru (1996),

that for the forces, only elements (1) and (2) should participate in the calculations. The

same discussion applies to the forces and displacements in the x1-direction. Thus, F
(3)
i ,

i = 1, 2, are calculated only from the nodal forces from element (2), i.e. only using F
(3L)
i .

It was shown in Narayana and Dattaguru (1996), that by taking the nodal point forces

only from elements (1′) and (1) and not from (2), the errors obtained in Sethuraman

and Maiti (1988) and Pang et al. (1990) for the CCT specimen decreased from 5.9% to

less than 1.6%. In Sethuraman and Maiti (1988), use was made of F
(3)
i . Results with

up to a 7% error as compared to analytical solutions were obtained. Therefore, it was

demonstrated that only F
(3L)
i should be used in the calculations of the energy release rate.

It may be noted that in Raju (1987), the nodal point forces were taken only from elements

(1′) and (1).

In Nairn (2011), general expressions for the energy release rates were introduced for placing

the mid-side node of an eight-noded element at an arbitrary location. In addition, the

nodal point forces were replaced by nodal edge forces and the energy release rate results

were extrapolated for values of ∆a → 0. For a DCB specimen, numerical results were

obtained using eight-noded regular elements. This result was used for comparison. When

using QP-elements and global nodal point forces with eqs. (1.109) and (1.110), differences

of up to 2.8% were found. It may be noted that the nodal point force at node 3 in Fig. 1.14

was calculated from elements (2) and (3). When using QP-elements, nodal edge forces and

extrapolation, the results differed by up to 0.44%. But plane stress elements with reduced

integration were used. When using 3×3 integration points, as calculated here, a difference

of -1.42% was found. Therefore, it is not possible to categorically recommend use of QP-

elements. In fact, using the results from eight-noded regular elements as the standard for

comparison in Nairn (2011) demonstrates that the premise that these elements produce

the most accurate results appears to be supported. Although the numerical results for

the energy release rates when using VCCT with QP-elements were not found to produce

more accurate results than regular eight-noded elements, they have been used extensively

(Jimenez and Miravete, 2004; Chen et al., 2005; Chiu et al., 2008; Chen et al., 2008; Chiu

and Lin, 2009; Wahab, 2015; Peixoto and de Castro, 2016; Khaldi et al., 2016; Burlayenko
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Figure 1.15: The elements used for calculation of the energy release rates when using two
elements ahead and four elements behind the crack tip (the two lower elements not shown)
for (a) four-noded and (b) eight-noded elements, using the approach of Beuth (1996).

et al., 2016; Salem et al., 2018 and Di Stasio and Ayadi, 2019).

Beuth (1996) and Oneida et al. (2015) suggested use of many elements to calculate

energy release rates. In Banks-Sills and Farkash (2016), this method was implemented for

an interface crack between two isotropic materials. The elements in the calculations are

the same width ℓ, as shown in Fig. 1.15. The equations for calculating the modes I and II

energy release rates are given in eqs. (1.107) and (1.108) where M is the number of nodes

ahead of the crack tip that participate in the calculations. An example of the elements that

are used for the calculation of the energy release rates when the virtual crack extension

consists of two elements ahead of the crack tip, is presented in Figs. 1.15a and 1.15b, for

four-noded and eight-noded elements, respectively. Note that for eight-noded elements,

the number of nodes ahead of the crack tip that participates in the calculation, M , is

even. No numerical comparisons were made in Beuth (1996). In Oneida et al. (2015),

results were presented for an interface crack problem with errors of less than 0.65%, as

compared to an analytical solution. Although eqs. (1.107) and (1.108) are for regular

elements, QP-elements were used in the finite element analyses.

In Fig. 1.16a, an example for which the virtual crack extension consists of three elements

ahead of the crack tip is illustrated. Elements (3’) and (1) are QP-elements. The forces

at the nodal points of element (i), i = 1, 2, 3, are used to close the displacement jumps

at the nodal points of element (i′). In Fig. 1.16b, the primed elements were moved to

the right in order to be below their corresponding elements. As may be observed, nodes

2′ and 6′ are not located below their corresponding nodes 2 and 6. A basic assumption

in eqs. (1.107) and (1.108) is that force F
(m)
p , m = 1, ...,M and p = 1, 2, closes the

corresponding displacement jump ∆u
(m′)
p . When using QP-elements, this assumption

does not hold for the second and the last nodes that are used in the calculations. Oneida

et al. (2015) suggested that since many small elements are used, the effect of the QP-

elements is negligible. It may be noted that Oneida et al. (2015) carried out two finite

element analyses, one with the original crack length and the second with the extended

crack. To deal with this problem, Raju (1987) derived eqs. (1.112) and (1.113) with the

coefficients tij presented in eq. (1.111). The coefficients tij determine how the nodal point
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Figure 1.16: (a) The elements used for calculation of the energy release rates when using
three elements ahead of the crack tip. (b) The (i′ th) element located below the (ith)
element for i = 1, 2, 3.

forces are distributed to close the displacement jumps when using QP-elements. Note

that Raju (1987) derived these coefficients only for the case when one QP-element ahead

of the crack tip is used in the calculations.

Next, the VCCT for three-dimensional problems is considered. The VCCT was first

extended to three-dimensional problems, using eqs. (1.104) to (1.106), by Shivakumar et

al. (1988). For eight-noded brick elements, the equations are given as

G(N)
I =

1

2∆A(N)

N+1∑
n=N

c(n)F
(1,n)
2 ∆u

(1′,n)
2 (1.114)

G(N)
II =

1

2∆A(N)

N+1∑
n=N

c(n)F
(1,n)
1 ∆u

(1′,n)
1 , (1.115)

G(N)
III =

1

2∆A(N)

N+1∑
n=N

c(n)F
(1,n)
3 ∆u

(1′,n)
3 , (1.116)

where ∆A(N) is the area of the virtual crack extension, presented in Fig. 1.17 as the shaded

region; it is given by

∆A(N) = ℓ1 · ℓ(N)
3 . (1.117)

In eq. (1.117), ℓ1 is the length of virtual crack extension in the x1-direction. It is also the

length of each element in the vicinity of the crack front. The parameter ℓ
(N)
3 is the depth

of the N th element in the x3-direction; it may vary between rows as shown in Fig. 1.17.

In eqs. (1.114) to (1.116), for the nodal point forces F
(m,N)
p and the displacement jumps

∆u
(m′,N)
p , the subscript represents the xp-direction. The first superscript, for the nodal

point forces, represents the number of the column proceeding from the crack front; for the

displacement jumps, the first superscript is primed denoting the corresponding column
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Figure 1.17: Upper view of the nodal point forces and displacement jumps for eight-noded
brick elements following Shivakumar et al. (1988).

on the crack surface. The second superscript denotes the row of the node. Shivakumar

et al. (1988) assumed that the nodal point force F
(1,n)
p is distributed between rows n− 1

and n. The nodal point force F
(1,n)
p is partitioned proportionally by means of the depth

ℓ3 of elements n − 1 and n in the x3-direction. To this end, a ratio c(n) is defined such

that

c(n) ≡ ℓ
(n−1)
3

ℓ
(n)
3 + ℓ

(n−1)
3

. (1.118)

This ratio appears as a multiplicative constant in eqs. (1.114) to (1.116). If ℓ3 is constant,

eqs. (1.114) to (1.116) become

G(N)
I =

1

4∆A(N)

N+1∑
n=N

F
(1,n)
2 ∆u

(1′,n)
2 (1.119)

G(N)
II =

1

4∆A(N)

N+1∑
n=N

F
(1,n)
1 ∆u

(1′,n)
1 , (1.120)

G(N)
III =

1

4∆A(N)

N+1∑
n=N

F
(1,n)
3 ∆u

(1′,n)
3 , (1.121)

The total energy for each row of elements is given as

G(N) = G(N)
I + G(N)

II + G(N)
III . (1.122)

With the approach of Shivakumar et al.(1988), the average value of the energy release

rates over the element is calculated and it is define to occur in the middle of the depth of

the element along the crack front.
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The energy release rates for twenty-noded brick elements are calculated in Shivakumar et

al. (1988) as

G(N)
I =

1

2∆A(N)

[(
2∑

m=1

c(N−1)F
(m,N−1)
2 ∆u

(m′,N−1)
2 + c(N+1)F

(m,N+1)
2 ∆u

(m′,N+1)
2

)

+ F
(1,N)
2 ∆u

(1′,N)
2

]
,

(1.123)

G(N)
II =

1

2∆A(N)

[(
2∑

m=1

c(N−1)F
(m,N−1)
1 ∆u

(m′,N−1)
1 + c(N+1)F

(m,N+1)
1 ∆u

(m′,N+1)
1

)

+ F
(1,N)
1 ∆u

(1′,N)
1

]
,

(1.124)

G(N)
III =

1

2∆A(N)

[(
2∑

m=1

c(N−1)F
(m,N−1)
3 ∆u

(m′,N−1)
2 + c(N+1)F

(m,N+1)
3 ∆u

(m′,N+1)
3

)

+ F
(1,N)
3 ∆u

(1′,N)
3

]
,

(1.125)

where ∆A(N) is the area of the virtual crack extension, presented in Fig. 1.18 as the

shaded region and given in eq. (1.117). The parameter N defines a row of nodes in the

x3-direction. Equations (1.123) to (1.125) are only for even N . The average value of

the energy release rates for each row of elements is defined to occur in row N along the

crack front. The nodal point forces and the displacement jumps used in eq. (1.124), are

shown in Fig. 1.18. Each nodal point force F
(m,n)
p , in eqs. (1.123) to (1.125), multiplies

its corresponding displacement jump ∆u
(m′,n)
p . For example, for N = 4 in eq. (1.124), the

nodal point force in the last term F
(1,4)
1 multiplies its corresponding displacement jump

∆u
(1′,4)
1 . Similar to eqs. (1.114) to (1.116), the nodal point forces F

(m,N−1)
p and F

(m,N+1)
p

are distributed between two adjacent rows using the ratio c(n), given as

c(n) ≡ ℓ
(n−1)
3

ℓ
(n+1)
3 + ℓ

(n−1)
3

(1.126)

where ℓ
(N)
3 is shown in Fig. 1.18. The nodal point forces F

(1,N)
p are affected only by the

element in row N and, therefore, are not multiplied by c(N). Note that Shivakumar et al.

(1988) does not mention how to treat the nodal point forces at the surface of the body. It

would appear that the ratio c(n) is equal to unity for those nodal point forces.

Shivakumar et al. (1988) presented results for three finite element models. The VCCT

results were compared graphically to the crack opening displacement (COD) method

(Barsoum, 1974) and the force method (Raju and Newman, 1977). The results were

very similar. For example, the first model that was examined is a semicircular surface

crack in a single edge notched tension specimen, shown in Fig. 1.19a. Eight-noded brick

elements were used for the VCCT calculations. The dimension of the problem are given
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Figure 1.18: Upper view of the nodal point forces and displacement jumps for twenty-
noded brick elements following Shivakumar et al. (1988).

as a/t = 0.2, a/c = 1.0, t/b = 0.09 and R/t = 2.78. Comparative results of a normalized

(a) (b)

Figure 1.19: (a) Specimen configuration and loading for a/t = 0.2, a/c = 1.0, t/b = 0.09
and R/t = 2.78 and (b) comparison of normalized K calculated from three-dimensional
VCCT, force and COD methods for a semicircular surface crack in a single edge notched
tension specimen from Shivakumar et al. (1988).
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(a) (b)

a

Figure 1.20: (a) DCB specimen dimensions and loading and (b) comparison of G/Gpε cal-
culated from three-dimensional VCCT, COD method and two-dimensional finite element
model from Raju, Shivakumar and Crews (1988).

K are shown in Fig. 1.19b. Shivakumar et al. (1988) concluded that the VCCT for three-

dimensional problems is an accurate and simple method to use. Additionally, the method

does not require singular elements.

In eqs. (1.123) to (1.125), the nodal point forces F
(m,N−1)
p and F

(m,N+1)
p are distributed

between the N − 2, N and N + 2 rows using c(n). It was suggested in Raju, Shivakumar

and Crews (1988) that for the calculations of the energy release rates of row N , the nodal

point forces F
(m,N−1)
p and F

(m,N+1)
p should be taken only from the elements in row N .

In that way, there is no need to use the ratio c(n). Results were presented graphically

for a DCB specimen in Raju, Shivakumar and Crews (1988). The specimen consisted

of 24 plies of a unidirectional (UD) T300/5208 carbon/epoxy laminate cocured with a

thin resin layer in the middle of the specimen. A crack was located in the middle of

the resin. The fibers were in the longitudinal direction of the specimen. The dimensions

of the specimen shown in Fig. 1.20a are a = 50.8 mm, W = 25.4 mm, h = 1.65 mm

and 2t = 0.01 mm. The specimen was loaded as shown in Fig. 1.20a with P = 1 N/m.

Collapsed twenty-noded elements were used along the crack front. The VCCT results were

compared graphically to the COD method (Barsoum, 1974) and to results obtained from

a two-dimensional plane strain finite element model. The graph is shown in Fig. 1.20b.

The maximum difference between results obtained by means of the VCCT and the COD

methods was 3%. The integrated average value of the VCCT results over the crack front

is greater by 1% than the two-dimensional plane strain value. It was concluded that the

VCCT, three-dimensional method may be used confidently.

A different approach for a twenty-noded brick elements was presented in Whitcomb (1988).

In this approach, the energy release rates are calculated only at the corner nodes of

elements along the crack front. For those corner nodes within the body, when N in
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Figure 1.21: Upper view of the nodal point forces and displacement jumps for corner nodes
of twenty-noded brick elements along the crack front using the approach of Whitcomb
(1988).

Fig. 1.21 is odd, the equations are given by

G(N)
I =

1

2∆A(N)

[(
2∑

m=1

F
(m,N)
2 ∆u

(m′,N)
2

)
+

1

2

(
F

(m,N−1)
2 ∆u

(m′,N−1)
2 + F

(m,N+1)
2 ∆u

(m′,N+1)
2

)]
(1.127)

G(N)
II =

1

2∆A(N)

[(
2∑

m=1

F
(m,N)
1 ∆u

(m′,N)
1

)
+

1

2

(
F

(m,N−1)
1 ∆u

(m′,N−1)
1 + F

(m,N+1)
1 ∆u

(m′,N+1)
1

)]
(1.128)

G(N)
III =

1

2∆A(N)

[(
2∑

m=1

F
(m,N)
3 ∆u

(m′,N)
3

)
+

1

2

(
F

(m,N−1)
3 ∆u

(m′,N−1)
3 + F

(m,N+1)
3 ∆u

(m′,N+1)
3

)]
(1.129)

where ∆A(N) is the area of the virtual crack extension, given as

∆A(N) =

(
ℓ
(N−1)
3 + ℓ

(N+1)
3

2

)
ℓ1. (1.130)
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The area of the virtual crack extension in eq. (1.130) is found by multiplying the length

between rows N − 1 and N + 1 in the x3-direction and ℓ1; it is illustrated for N = 5

as the shaded area ∆A(5) in Fig. 1.21. In eqs. (1.127) to (1.129), the nodal point forces

at even rows are multiplied by 1/2. They are distributed equally between two energy

release rate calculations; for example, the nodal point force F
(1,6)
1 is distributed between

the energy release rate calculations of N = 5 and N = 7. The nodal point forces and the

displacement jumps used in eq. (1.128) for N = 5, are shown in Fig. 1.21.

For N = 1, the energy release rates are given by

G(N)
I =

1

2∆A(N)

[(
2∑

m=1

F
(m,N)
2 ∆u

(m′,N)
2

)
+

1

2
F

(m,N+1)
2 ∆u

(m′,N+1)
2

]
(1.131)

G(N)
II =

1

2∆A(N)

[(
2∑

m=1

F
(m,N)
1 ∆u

(m′,N)
1

)
+

1

2
F

(m,N+1)
1 ∆u

(m′,N+1)
1

]
(1.132)

G(N)
III =

1

2∆A(N)

[(
2∑

m=1

F
(m,N)
3 ∆u

(m′,N)
3

)
+

1

2
F

(m,N+1)
3 ∆u

(m′,N+1)
3

]
(1.133)

where ∆A(N) is illustrated as the shaded area ∆A(1) in Fig. 1.21 and is given by

∆A(N) =
1

2
ℓ
(N+1)
3 ℓ1 . (1.134)

The second term in eqs. (1.131) to (1.133) is multiplied by 1/2 similar to that of eqs. (1.127)

to (1.129). The nodal point forces and the displacement jumps used in eq. (1.132) for

N = 1, are presented in Fig. 1.21. For calculations of the energy release rates at the corner

node at the second edge of the crack front, the term N + 1, in eqs. (1.131) to (1.134), is

replaced with N − 1. No comparative results were presented.

In Raju et al. (1996), graphical comparisons were made between the approaches described

in Raju, Shivakumar and Crews (1988) and Whitcomb (1988); the latter is presented in

eqs. (1.127) to (1.134). Recall that in Raju et al. (1996), eqs. (1.127) to (1.134) are also

relied upon, with c(n) = 1; additionally for each energy release rate calculation at row N ,

the nodal point forces are taken only from the elements in row N . The approaches were

found to produce very similar results. For example, a comparison was presented for a

stiffener debonded from a skin as shown in Fig. 1.22a. The dimensions and loading are

l1 = l2 = 1 in, b = 1 in, h = 0.09 in, a = 0.4 in and Q = 60 lb/in. This configuration

consists of a [0]36 graphite/epoxy laminate divided evenly between the skin and the flange.

A comparison of the energy release rates is shown in Fig. 1.22b. Recall that G is the total

energy release rate defined in eq. (1.122). It was concluded that either approach may be

used. In Kruger (2004), the approaches of Shivakumar et al. (1988) and Whitcomb (1988)

were presented as one method. The approach of Shivakumar et al. (1988), presented in

eqs. (1.123) to (1.126), produces results at the mid-nodes of elements along the crack fronti;

the approach of Whitcomb (1988), presented in eqs. (1.127) to (1.134), is for corner nodes
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(a) (b)

G (in-lb/in2)

Figure 1.22: (a) Skin-stiffener debonded configuration and (b) comparison between Raju,
Shivakumar and Crews (1988) and Whitcomb (1988) approaches presented in Raju et al.
(1996).

of elements along the crack front. It was suggested to use the approach described in Raju,

Shivakumar and Crews (1988) when elements on the plane of the crack face and along its

front are not rectangular; for example, when the crack front is not straight. No numerical

comparisons were presented in Kruger (2004).

It may be recalled that Shivakumar et al. (1988) presented results for mode I deformation

of a semi-circular surface crack, as shown in Fig. 1.19. In addition, results for mode I

deformation of a semi-elliptical crack were also presented. The method for carrying out

the calculations of the energy release rates was not described.

In Whitcomb (1988), a method was suggested for obtaining separately the energy release

rates GI , GII and GIII for circular and elliptic cracks. Use of a local coordinate system, as

shown in Fig. 1.23, was suggested. In the new coordinate system, the x′1-axis is tangent

x
1

x'
1

x'
3

x
3

crack

 front

θ
θ = 0°

θ = -90°

Figure 1.23: Original and transformed coordinate systems.
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to the crack front, the x′3-axis is normal to the crack front in its plane and the x′2-axis is

normal to the crack plane as is the original x2-axis. Thus, the transformed nodal point

forces are given by

F ′
1 = F1 cos θ + F3 sin θ, (1.135)

F ′
2 = F2 (1.136)

and

F ′
3 = −F1 sin θ + F3 cos θ, (1.137)

where θ is presented in Fig. 1.23. Note that θ is between −90◦ to 0◦. The same transfor-

mation is used for the displacement jumps. In order to use the transformation correctly,

it was recommended to use a mesh whose elements are orthogonal to the crack front. A

definition of the virtual crack extension ∆A was presented only for a straight through

crack.

In Smith and Raju (1998), results were presented for a straight through the thickness

crack, an elliptical crack and a semi-elliptical surface crack using orthogonal and non-

orthogonal meshes. Eight-noded isoparametric elements were used. It was suggested to

determine ∆A using the element ahead of the crack tip. In order to present the approach

of Smith and Raju (1998), a mesh of a quarter of a penny-shaped crack is illustrated in

Fig. 1.24. The rays are numbered using the perimeter coordinate s and the number of

the ray N . The distance between rays is defined with ℓ
(n,p)
s , where n is the arc number

and p is the ray number. The coordinate r emanates from the center of the penny-shaped

crack. The distance between arcs 1’ and 1, ℓr, is equal to the distance between arcs 1 and

2. The area ∆A(N) for ray N is given as

∆A(N) =

(
ℓ
(1,4)
s + ℓ

(2,4)
s

2

)
ℓr. (1.138)

In Smith and Raju (1998), new equations were introduced for meshes in which elements

near the crack front did not have orthogonal edges. Those meshes will not be discussed.

Results for an elliptical crack in a large body, as shown in Fig. 1.25, using an orthogonal

mesh were presented. It is not clear how ∆A in Fig. 1.25 is defined for this case. The

dimensions are a/t = 0.2, a/h = 0.01, h/W = 0.5 and a/c = 0.2. The body was subjected

to a remote tensile stress. As a result of symmetry, one-eighth of the body was modeled.

The crack consisted of nine rays. The mesh that was used for carrying out the calculations

was not presented. The results were compared to an analytical solution from Green and

Sneddon (1950). Except for the last two rays next to the x1-axis, the errors were less

than 1.7%. It was pointed out that close to the x1-axis, the crack front was not modeled

well. It was concluded that orthogonal meshes produced accurate results except where

the crack front curvature changed rapidly or where the crack front coincides with a body

surface.
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Figure 1.24: Mesh of a quarter of a penny-shaped crack and ∆A following Smith and
Raju (1998).

In Okada et al. (2005), new derivations for elements with non-orthogonal edges to the

crack front were presented. The crack fronts were circular or elliptical. Further details of

this work are shown only for orthogonal meshes. Twenty-noded isoparametric elements

were used. Two requirements for creating a mesh were proposed. First, the lines that

intersect the crack front should be straight. For example, the lines between nodes (1′, 7)

2W 2t

2h

x
3

x
1

ra

c

(a) (b)

φ

Figure 1.25: (a) A body with an embedded elliptic crack and (b) the embedded crack
parameters.
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Figure 1.26: A mesh of a quarter of an elliptical crack and ∆A following Okada et al.
(2005)

.

and (3,7) and between nodes (1′, 9) and (3,9), in Fig. 1.26, should be straight and or-

thogonal to the crack front. In Fig. 1.26, point O is located at the intersection of those

lines. For the case of a penny-shaped crack, this point is at the center of the circle. For

an elliptical crack, this point will differ for each pair of elements on either side of the

crack front. The angle θ is a polar coordinate, where the angle of ray N is denoted as

θN . The parameter R(θ) defines the distance between point O and the crack front as

function of θ. The coordinates s and r are local coordinates tangent and perpendicular,

respectively, to the crack front; the x2-axis is perpendicular to the crack surface. For the

second requirement, the radial distance ℓr(θ), shown in Fig. 1.26, should be the same for

elements on the crack surface and that ahead of it. The parameters R(θ) and ℓr(θ) are

constant for a penny-shaped crack and vary with respect to θ for an elliptical crack. It is

not clear how R(θ) and ℓr(θ) are found for the latter case. The equations for calculating
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the energy release rates are similar to eqs. (1.123) to (1.125) presented in Shivakumar et

al. (1988) and are given by

G(N)
I =

1

2∆A
(N)

[(
2∑

m=1

c(m,N−1)F
(m,N−1)
2 ∆u

(m′,N−1)
2 + c(m,N+1)F

(m,N+1)
2 ∆u

(m′,N+1)
2

)

+ F
(1,N)
2 ∆u

(1′,N)
2

]
,

(1.139)

G(N)
II =

1

2∆A
(N)

[(
2∑

m=1

c(m,N−1)F (m,N−1)
s ∆u(m

′,N−1)
s + c(m,N+1)F (m,N+1)

s ∆u(m
′,N+1)

s

)

+ F (1,N)
s ∆u(1

′,N)
s

]
,

(1.140)

G(N)
III =

1

2∆A
(N)

[(
2∑

m=1

c(m,N−1)F (m,N−1)
r ∆u(m

′,N−1)
r + c(m,N+1)F (m,N+1)

r ∆u(m
′,N+1)

r

)

+ F (1,N)
r ∆u(1

′,N)
r

]
,

(1.141)

where ∆A
(N)

is found analytically to be

∆A
(N)

=
1

4
∆A(1′,N) +

3

4
∆A(1,N). (1.142)

The areas ∆A(1′,N) and ∆A(1,N) are shown in Fig. 1.26 for N = 8. After some analysis,

they may be expressed as

∆A(1,N) =

∫ θN+1

θN−1

(
ℓr(θ)R(θ) +

ℓ2r(θ)

2

)
dθ (1.143)

and

∆A(1′,N) =

∫ θN+1

θN−1

(
ℓr(θ)R(θ)−

ℓ2r(θ)

2

)
dθ. (1.144)

In eqs. (1.139) to (1.141), the ratio c(m,n) is given as

c(m,N−1) =

∫
∆A(1,N)

W (m,N−1)dA∫
∆A(1,N)

W (m,N−1)dA+

∫
∆A(1,N−2)

W (m,N−1)dA

(1.145)

and
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c(m,N+1) =

∫
∆A(1,N)

W (m,N+1)dA∫
∆A(1,N)

W (m,N+1)dA+

∫
∆A(1,N+2)

W (m,N+1)dA

(1.146)

where W (m,p) is the shape function at node (m, p) of the element where integration takes

place. For example, for N = 8 and m = 2, the force F
(2,7)
r in eq. (1.141) is multiplied

by c(2,7). The ratio c(2,7) is the ratio between the integral of the shape function W (2,7) in

the virtual crack extension area ∆A(1,8) and the sum of the integrals of W (2,7) in areas

∆A(1,8) and ∆A(1,6). The virtual crack extension areas ∆A(1,8) and ∆A(1,6) are shown in

Fig. 1.26. Note that the shape function is different in each virtual crack extension area.

In effect, the factors in eqs. (1.145) and (1.146) are used to weight the value of the force

at the nodal point.

Results were presented for a through crack, a semi-circular surface crack and a semi-

elliptical surface crack in an infinite thin plate subjected to a tensile load far from the

crack. The results of the semi-circular and semi-elliptical surface cracks were compared

to solutions presented in Newman and Raju (1979). Results obtained differed by no more

than 3% from those presented by Newman and Raju (1979).

In this section, the equations for calculating the energy release rates using VCCT were

presented. Equations for extracting the stress intensity factors from the energy release

rates are presented in the next section.

1.6.2 Extraction of the stress intensity factors from the energy
release rates

For problems of linear elastic, homogeneous and isotropic material, the relations between

the energy release rates GT ,GI ,GII and GIII and the stress intensity factors KI , KII and

KIII are presented in eqs. (1.16) to (1.21). The relation between the interface energy

release rate Gi and the stress intensity factors K1, K2 and KIII for an interface crack

between two dissimilar isotropic materials is presented in eq. (1.35); the relations between

the energy release rates GI , GII and GIII to those stress intensity factors is presented in

eqs. (1.38) and (1.39). In those equations, explicit expressions for the stress intensity

factors are not presented.

For linear elastic, homogeneous and isotropic material, explicit expressions for the stress

intensity factors may be found by using eqs. (1.19) to (1.21) as

KI =
√
ĒGI (1.147)

KII =
√
ĒGII (1.148)
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Figure 1.27: The oscillatory behaviour of GI and GII for (a) ε = 0.01 and (b) ε = 0.1
(adapted from Toya, 1992).

and

KIII =
√

2µGIII (1.149)

where Ē is given in eqs. (1.17) and µ is the shear modulus.

For an interface crack between two dissimilar isotropic materials, the stress and displace-

ment fields were introduced in eqs. (1.31) to (1.34). Using these equations, the tractions

along the interface ahead of the crack tip and the crack face displacement jumps are given

by

σ22 + iσ21

∣∣∣
θ=0

=
Kxiε1√
2πx1

(1.150)

and

∆u2 + i∆u1 =
8 cosh πε

(1 + 2iε)H1

√
∆a− x1

2π
(∆a− x1)

iεK , (1.151)

respectively, where the coordinate system is shown in Fig. 1.9, ε is defined in eq. (1.25),

H1 is defined in eq. (1.36) and the complex stress intensity factor is defined in eq. (1.29).

The behavior of the energy release rates GI and GII for an interface crack between two

dissimilar materials was investigated in Raju, Crews and Aminpour (1988), Sun and

Manoharan (1989), Toya (1992), Chow and Atluri (1995), Beuth (1996) and Agrawal and

Karlsson (2006). By substituting eqs. (1.150) and (1.151) into the integrals of eqs. (1.104)

and (1.105) and integrating them, it was shown that the energy release rates, GI and GII

oscillate as a function of ∆a2iε. In Raju, Crews and Aminpour (1988), the oscillating

behavior was presented for an interface crack between two isotropic materials, two trans-

versely isotropic materials and two monoclinic materials. The numerical results verified

the oscillatory behavior. The same oscillatory behavior was shown for an interface crack

between two orthotropic materials in Sun and Manoharan (1989). In Toya (1992), the

dependence of the energy release rates on ε was illustrated for different values of ε. Nu-

merical results of an interface crack between two isotropic materials in an infinite body

subjected to a remote tensile load are presented in Fig. 1.27. The parameter G2D in

Fig. 1.27 is defined in eq. (1.22). In Fig. 1.27a, for ε = 0.01 the energy release rates GI
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and GII are almost constant. Increasing ε to 0.1 leads to large oscillations of GI and GII ,

as shown in Fig. 1.27b. In Toya (1992), new equations were derived, showing the relation

between the energy release rates and the stress intensity factors; but no calculations of

the stress intensity factors were carried out.

Numerical calculations of the stress intensity factors for an interface crack were presented

first in Chow and Atluri (1995). New sets of equations were derived for an interface crack

between two dissimilar isotropic materials, two dissimilar orthotropic materials and two

dissimilar generally anisotropic materials. A coupled energy release rate was introduced,

given as

GI−II = lim
∆a→0

1

2∆a

∫ ∆a

0

[σ22(x1)∆u1(∆a− x1) + σ21(x1)∆u2(∆a− x1)] dx1. (1.152)

The set of equations for an interface crack between two dissimilar isotropic materials is

given by[
a11a21 + a212 a22a11 − a212

a22a21 − a212 a11a21 + a212

] {
K2

1

K2
2

}
= λ

{
a21GI − a21GI−II
a21GII − a12GI−II

}
. (1.153)

In eq. (1.153), the constants aij for i, j = 1, 2 are functions of ε and ∆a. The parameter

λ depends on the mechanical properties. For an interface crack between two dissimilar

orthotropic materials, the set of equations is similar to eq. (1.153), but with additional

constants that depend upon the mechanical properties. For an interface crack between

two dissimilar generally anisotropic materials, a 6 × 6 matrix which replaces the 2 × 2

matrix in eq. (1.153) is obtained. Three additional energy release rates are calculated,

the energy release rate for mode III, GIII , and two coupled energy release rates GI−III and
GII−III .

New equations for the relation between the energy release rates and the stress intensity

factors were also derived in Beuth (1996). In Agrawal and Karlsson (2006), it was shown

that the different equations in Toya (1992), Chow and Atluri (1995) and Beuth (1996)

are mathematically identical. A new quadratic algebraic equation was derived in order to

determine the normalized phase angle, ψ̂, given in eq. (1.28). The new quadratic equation

is given by

κ2 [(Ic + 2εIs)(1 + g) + I0(g − 1)] + κ [(4εIc − 2Is)(1 + g)]

− [(Ic + 2εIs)(1 + g)− I0(g − 1)] = 0,
(1.154)

where

ψ̂ = tan−1(1/κ) (1.155)

and

κ =
K1

K2

. (1.156)

41



Sunday 8th May, 2022

The integrals Ic, Is and I0 in eq. (1.154) are given as

Ic =
1

∆a

∫ ∆a

0

cos

[
ε ln

(
r(∆a− r)

L̂2

)]√
r

∆a− r
dr, (1.157)

Is =
1

∆a

∫ ∆a

0

sin

[
ε ln

(
r(∆a− r)

L̂2

)]√
r

∆a− r
dr (1.158)

and

I0 =
1

∆a

∫ ∆a

0

cos

[
ε ln

(
(∆a− r)

r

)]
− 2ε sin

[
ε ln

(
(∆a− r)

r

)]
dr =

π (1 + 4ε2)

2 cosh(πε)
.

(1.159)

In eqs. (1.157) to (1.159), ∆a is the virtual crack extension, ε is the oscillatory parameter, r

is shown in Fig. 1.3 and L̂ is an arbitrary length scale presented in eqs. (1.27) and (1.30).

The values of the integrals in eqs. (1.157) and (1.158) were obtained by carrying out

numerical integration, with L̂ = 2a. In Toya (1992), the values of eqs. (1.157) to (1.158)

were found in terms of the special function Gamma which is tabulated. In eq. (1.154),

the parameter g is given as

g ≡ GII

GI
. (1.160)

Using eqs. (1.154) and (1.155), two solutions are found for ψ̂. In order to eliminate the

extraneous solution, it was suggested to use an approximation of ψ̂. The approximation

was derived by combining equations from Smelser (1979) and Matos et al. (1989), and

given by

ψ̂ ∼= tan−1

(
∆u1(r)

∆u2(r)

)
+ tan−1(2ε)− ε ln

(
r

L̂

)
. (1.161)

For a detailed explanation to choose r in eq. (1.161), the reader is referred to Agrawal

and Karlsson (2006). The stress intensity factors are found using the relations

|K| =
√
G2DH1, (1.162)

and

K = |K|L̂−iεeiψ̂. (1.163)

The energy release rate G2D is given in eq. (1.22) and H1 is defined in eq. (1.36).

In Agrawal and Karlsson (2006), two problems were considered. The first problem is that

of an interface crack between two linear elastic, homogeneous and isotropic materials in

an infinite body subjected to a remote tensile stress, as shown in Fig. 1.28. The upper

and lower materials are denoted as (1) and (2), respectively. The second problem does

not have an analytical solution and, therefore, will not be described. The mechanical

properties used were E1 = 200 GPa, E2 = 5 GPa, and ν1 = ν2 = 0.25. To model an

infinite body, the dimensions of the body in the finite element analysis were taken to be

2h = 2w = 400 mm and 2a = 10 mm, as shown in Fig. 1.28. The analytical solution for

the infinite body problem is given in Rice (1988) as

K = (σ22 + iσ12)(1 + 2iε)
√
πa(2a)−iε. (1.164)
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Figure 1.28: Interface crack in an infinite body subjected to remote tensile and shear
stresses.

In order to maintain displacement continuity along the interface, stresses σ
(1)
11 and σ

(2)
11

are applied parallel to the interface, as shown in Fig. 1.28. The relation between those

stresses is given as

σ
(2)
11 =

Ē2

Ē1

σ
(1)
11 +

ν2
1− ν2

[
1− ν1 E2

ν2 E1

1 + ν1
1 + ν2

]
σ22, (1.165)

where Ēi is defined in eq. (1.17). The remote stresses in the analysis were assumed to be

σ22 = 100 MPa, σ21 = σ
(1)
11 = 0. So that, for plane strain conditions, from eq. (1.165),

σ
(2)
11 = 32.5 MPa. The analysis was carried out with the four-noded element CPE4R (4-

node bilinear plane strain quadrilateral element with reduced integration) using ABAQUS

(2003). Note that reduced integration was used in the calculations and is not recommended

for this type of problem. The percent errors for the stress intensity factors were obtained

using

% error =
K̂i − K̂i,analytical

|K̂analytical|
· 100 (1.166)

for i = 1, 2, where K̂ is defined in eq. (1.30) and

|K̂analytical| =
√
K̂2

1,analytical + K̂2
2,analytical. (1.167)

In this study, the percent errors are calculated as

% error =
K̂i − K̂i,analytical

K̂i,analytical

· 100. (1.168)

This is a more precise error calculation for small values of K̂i. The numerical errors

obtained in Agrawal and Karlsson (2006) for the infinite body were 0.51% and 2.59% for
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K̂1 and K̂2, respectively. Using eq. (1.168), the errors are 0.52% and −12.64% for K̂1 and

K̂2, respectively.

In Banks-Sills and Farkash (2016), new equations were derived in order to determine the

stress intensity factors for an interface crack between two dissimilar isotropic materials.

The equations were derived by using the integrals

A =
1

2∆a

∫ ∆a

0

[
σ22(x1) + iσ21(x1)

][
∆u2(∆a− x1)− i∆u1(∆a− x1)

]
dx1(1.169)

D =
1

2∆a

∫ ∆a

0

[
σ22(x1) + iσ21(x1)

][
∆u2(∆a− x1) + i∆u1(∆a− x1)

]
dx1 ,(1.170)

where the coordinate system and the virtual crack extension ∆a are shown in Fig. 1.9.

The integrals are obtained as

A =
1

H1

(K2
1 +K2

2) (1.171)

D =
cosh πε

πH1

PK2∆a2iε , (1.172)

where H1 is given in eq. (1.36) and

P =
Γ
(

1
2
+ iε

)
Γ
(

1
2
+ iε

)
Γ
(
2 + 2iε

) . (1.173)

In eq. (1.173), Γ(·), is the special function Gamma.

Noting that

ℑ{A} = 0 , (1.174)

from eq. (1.169), one may write

II = III , (1.175)

where

II =
1

2∆a

∫ ∆a

0

σ22(x1)∆u1(∆a− x1)dx1 (1.176)

III =
1

2∆a

∫ ∆a

0

σ21(x1)∆u2(∆a− x1)dx1. (1.177)

By considering the expressions in eqs. (1.104) and (1.105) for GI and GII , respectively, and

manipulating the integrals A and D in eqs. (1.169) and (1.170), respectively, the relations

between them are found as

GI =
1

2
lim

∆a→0

[
ℜ(A) + ℜ(D)

]
(1.178)

GII =
1

2
lim

∆a→0

[
ℜ(A)−ℜ(D)

]
. (1.179)
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Using eqs. (1.178) and (1.179) and manipulating eqs. (1.171) and (1.172), the phase angle

ψ defined in eq. (1.40) is determined as

ψ =
1

2
cos−1

(
1

C

1− g

1 + g

)
− 1

2
tan−1

(
PI
PR

)
− ε ln∆a. (1.180)

In eq. (1.180), the parameter C is defined as

C =
cosh πε

π

√
P 2
R + P 2

I , (1.181)

where the parameters PR and PI are the real and imaginary parts of P given in eq. (1.173)

and g is defined in eq. (1.160).

The stress intensity factors may be found by manipulating eqs. (1.22), (1.38) and (1.40)

as

K1 = ±
√
H1G2D cosψ . (1.182)

and

K2 = K1 tanψ . (1.183)

Two pairs of stress intensity factors are found using eqs. (1.182) and (1.183). The valid

pair satisfies the inequality

−π
2
< tan−1

(
K2

K1

)
− tan−1 2ε+ ε ln r <

π

2
, (1.184)

where r was chosen as a/100.

In order to calculate the stress intensity factors, a finite element analysis is carried out.

The two-dimensional analyses were performed with the eight-noded isoparametric element

using Abaqus/CAE (2016). The energy release rates are calculated using eqs. (1.107) and

(1.108). Recall that in Section 1.6.1, the virtual crack extension, ∆a, consisting of more

than one element was suggested, as shown in Fig. 1.15. After the energy release rates are

calculated, the phase angle is found by using eq. (1.180). The stress intensity factors are

found by using G2D, given in eq. (1.22), and eqs. (1.182) and (1.183). The parameters II
and III are calculated as

II =
1

2∆a

M∑
m=1

F
(m)
2 ∆u

(m′)
1 , (1.185)

III =
1

2∆a

M∑
m=1

F
(m)
1 ∆u

(m′)
2 , (1.186)

where the nodal point forces and displacements jumps are the same as those used in

eqs. (1.107) and (1.108).

Numerical results were presented for an interface crack between two dissimilar isotropic

materials in an infinite body, as shown in Fig. 1.28. The body was subjected to a remote
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Table 1.4: Data for an interface crack in an infinite body analysis carried out with the
finer mesh in Banks-Sills and Farkash (2016).

no. of elements in ∆a 1 2 3 6 20 40

percent error K1 0.9 0.3 0.4 0.3 0.22 0.22

percent error K2 -0.2 -0.5 0.5 0.2 0.06 0.06

I 9.7 5.4 3.8 2.0 0.6 0.4

tensile stress of σ22 = 1 MPa. The mechanical properties of the materials used were E1 =

1 GPa, E2 = 0.1 GPa and ν1 = ν2 = 0.3. Using eq. (1.165) and plane strain condition,

the stresses parallel to the interface crack were σ
(1)
11 = 1 MPa and σ

(2)
11 = 0.486 MPa. The

dimensions of the body in the finite element analysis were taken to be a/w = 0.05 and

w/h = 1 where 2a = 1 mm, as shown in Fig. 1.28. The percent difference between II and
III is defined as

I =
II − III

II
· 100 . (1.187)

In Banks-Sills and Farkash (2016), two finite element analyses were carried out with two

different meshes; the stress intensity factor errors and the value of I for the finer mesh are

shown in Table 1.4 . The percent errors were calculated using eq. (1.168). When using

one element for the virtual crack extension ∆a, the percent errors of the stress intensity

factors are 0.9% and -0.2% for K1 and K2, respectively. By using more than 6 elements

in ∆a, the percent errors of the stress intensity factors are less than 0.3%. The percent

error decreases to 0.22%, when using more than 20 elements. The value of I is 9.7% when

using one element in ∆a. By increasing the number of elements in ∆a, the value of I
decreases. When using 40 elements in ∆a, the value of I is 0.4%.

1.7 Research objectives

One of the aims of this research investigation is to explore and extend the VCCT approach

to two and three-dimensional problems, as presented in Banks-Sills and Farkash (2016).

Using QP-elements is shown to be unappropriate for VCCT. Equation (1.180) was pre-

sented here for extracting the phase angle ψ. This equation is shown to lead to erroneous

results for some cases and a new equation with new insights is developed. The extension

of VCCT is proposed for an interface crack between two transversely isotropic materi-

als. The Stroh (1958) and Lekhnitskii (1950) formalisms may be used in the analysis of

this problem for plane deformation. New equations using VCCT for three-dimensional

straight through and penny-shaped cracks are presented. A second aim of this study is to

extend the Stroh (1958) and Lekhnitskii (1950) formalisms for a fully three-dimensional

description of anisotropic material. This is done by considering a Clifford formalism (Liu
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and Hong, 2015). An initial step was taken here to solve the problem of a uniform stress

state in a three-dimensional homogenous, anisotropic material.

In Section 1.1, the basic concepts of fracture mechanics for linear elastic, homogeneous

and isotropic material were presented. The concepts of fracture mechanics for an interface

crack between two dissimilar linear elastic, homogenous and isotropic materials were de-

scribed in Section 1.2. The conservative J and M -integrals were discussed in Section 1.3.

It was shown that by using the M -integral, the individual stress intensity factors may be

determined for an interface crack. The conservative integrals, J andM , are considered to

be very accurate methods. The VCCT is much simpler to derive for a specific interface

compared to the conservative integrals. Thus, the accuracy of results obtained here will

be examined. In Section 1.4, the Stroh and Lekhnitskii formalisms for problems involving

anisotropic material and plane deformation were briefly presented. The delamination face

displacement jumps and the tractions along the interface ahead of the delamination front,

for the delamination considered in this study (a delamination between two transversely

isotropic materials) were developed using the mentioned formalisms. In Section 1.5, a

Clifford algebra was presented. In Section 1.6, the VCCT method was presented. Differ-

ent approaches to calculate the energy release rates were described in Section 1.6.1. In

Section 1.6.2, it was shown how the individual stress intensity factors may be determined

by using the energy release rates. The stress intensity factors KI , KII and KIII may be

extracted from GI ,GII and GIII , respectively, for linear elastic, homogeneous and isotropic

material in three-dimensional problems. For an interface crack or a delamination, the

complex stress intensity factor K, given in eq. (1.29), may be found by using GI and GII

and KIII may be determined directly from GIII .

In order to explore and extend the VCCT approach presented in Banks-Sills and Farkash

(2016), new derivations will be described in Chapters 2 and 3. In Chapter 2, two-

dimensional problems will be presented. An extension of the VCCT for three-dimensional

problems will be discussed in Chapter 3. In order to demonstrate that QP-elements

are not appropriate for VCCT, the expressions for calculating the energy release rates

from VCCT are rederived in Section 2.1. In Section 2.2, several problems are solved by

means of the finite element method to examine the various approaches for calculating

the energy release rates with VCCT. The effect of mesh refinement is considered. Use

of QP-elements for VCCT is shown to be less accurate than that of eight-noded regular

elements and, therefore, not recommended. In Section 2.3, a new equation for extraction

of the phase angle is presented. The differences between the numerically calculated dual

energy release rates are examined in Section 2.4. In Section 2.5, an extension of the VCCT

for an interface crack between two transversely isotropic materials is presented. For this

extension, three problems are solved: a crack in an infinite body, a CCT specimen and a

DCB specimen.

The equations for determining the energy release rates in Banks-Sills and Farkash (2016)
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were developed only for two-dimensional problems. New equations for a straight through

crack and a penny-shaped crack will be derived in Section 3.1. In Section 3.2, numerical

results for a straight through finite length crack and a penny-shaped crack in an infinite

body of isotropic, homogeneous material are presented. Numerical results for an inter-

face crack between two dissimilar linear elastic, homogeneous and isotropic materials are

shown in Section 3.3. In Section 3.4, numerical results for an interface crack between two

dissimilar transversely isotropic materials are considered.

In Chapter 4, the Clifford formalism is discussed. In Section 4.1, The eigenvalue problem

for various anisotropic materials is presented. The eigenvectors for various anisotropic

materials are found in Section 4.2. In Section 4.3, a three-dimensional Clifford formalism

is extended in an explicit manner. Analytical results using the three-dimensional Clifford

formalisms are presented in Section 4.4. In this section, a general solution for a uniform

stress field is found. The results are checked by means of finite element analyses. A

summary and conclusions are given in Chapter 5.
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Chapter 2

VCCT for two-dimensional problems

In this chapter, the VCCT is presented for two-dimensional problems. In Section 2.1,

equations for calculating the energy release rates are rederived. The suitability of the

VCCT for an eight-noded element, a quarter-point (QP) element, as well as a new element

that is suggested, is considered. Numerical results, considering the different element types,

are presented in Section 2.2. A new equation for calculating the phase angle, is given in

Section 2.3. In Section 2.4, the dual energy release rates are considered. An extension of

the VCCT for an interface crack between two transversely isotropic materials is presented

in Section 2.5.

2.1 Derivations of equations for calculating the en-

ergy release rates

The VCCT was reviewed in Section 1.6.1. In Raju (1987), the first full mathematical

derivation for the equations of the VCCT was presented for various element types. Four-

noded, eight-noded, QP-elements and also higher order elements were considered. In

Bueth (1996), it was suggested to use more than one element for calculating the energy

release rates. A simple extension of the four-noded and eight-noded element equations

was presented, as shown in eqs. (1.107) and (1.108), where M is the number of nodes in

the calculation, and illustrated in Figs. 1.15a and 1.15b, respectively.

Next, the VCCT is reconsidered for both eight-noded regular and QP-elements. The equa-

tions for calculating the energy release rates by means of VCCT are rederived. Additional

insight is gained from the derivations. It is shown that QP-elements are not appropri-

ate for the VCCT. In Section 2.2, numerical results comparing use of eight-noded and

QP-elements are presented.

The rederivation of the VCCT makes use of the basic concepts of the finite element method

presented in Hughes (1987). The derivation is presented for GI using σ22, F2 and ∆u2,

where σ22 is the stress ahead of the crack tip, F2 is the nodal point force also ahead of
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Figure 2.1: (a) The lower edge of an eight-noded isoparametric element using its natural
coordinate ξ. For eight-noded regular elements: (b) the crack before and (c) after the
VCE in Cartesian coordinates.

the crack tip and ∆u2 is the crack faces opening in the x2-direction behind the crack tip.

The derivation for GII is similar and final expressions will be given. The lower edge of

an eight-noded element using its natural coordinate is illustrated in Fig. 2.1a. The nodes

are located permanently at ξ = −1, 0, 1, respectively. The lower edges of two eight-noded

regular elements in the vicinity of the crack tip in Cartesian coordinates before and after

the VCE are presented in Figs. 2.1b and 2.1c, respectively. Two finite element analyses

are considered in Figs. 2.1b and 2.1c: one before the VCE and the second after the VCE.

The origin of the x1, x2 coordinate system is located at the crack tip before the VCE in

Fig. 2.1b.

The shape functions N (m) for m = 1, 2, 3 may be used to interpolate the displacement

components that are obtained from the FEA. For an eight-noded isoparametric element,

they are given for nodes 1 to 3 as

N (1)(ξ) =
ξ

2
(ξ − 1) N (2)(ξ) = 1− ξ2 N (3)(ξ) =

ξ

2
(ξ + 1) . (2.1)

Consider element (1) in Figs. 2.1b and 2.1c. For an isoparametric element, the mapping

between Cartesian coordinates and natural coordinates is given by

x1(ξ) =
3∑

m=1

N (m)(ξ)x
(m)
1 (2.2)

where x1(ξ) is the mapped coordinate in the x1-direction, and x
(m)
1 is the coordinate of

node m in the physical space. The derivative of x1(ξ) with respect to ξ is given by

x1,ξ(ξ) =
3∑

m=1

N
(m)
,ξ (ξ)x

(m)
1 (2.3)

where a comma represents differentiation. The total force F2 in the x2-direction on the

lower edge of the element in front of the crack tip is given by

F2 =

∫ 1

−1

[
σ22(x1(ξ))

]
x1,ξ(ξ) dξ (2.4)

where σ22(x1) is the stress acting on the element edge in front of the crack tip in Fig. 2.1b

and x1,ξ is the Jacobian of the transformation between ξ and x1. The total force F2 may
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be divided into three forces at nodes 1 to 3 using the shape functions by (Hughes, 1987,

p. 67)

F
(m)
2 =

∫ 1

−1

[
σ22(x1(ξ))N

(m)(ξ)
]
x1,ξ(ξ) dξ (2.5)

where N (m) are the shape functions given in eqs. (2.1). The crack face opening displace-

ment in natural coordinates is given by

∆u2(∆a− x1(ξ)) =
3∑

m=1

N (m)(ξ)∆u
(m)
2 (2.6)

where ∆u
(m)
2 is the displacement jump at node m of the VCE in the x2-direction. The

displacement jumps are calculated in element (1) in Fig. 2.1c.

Equation (1.104) for the mode I energy release rate may be rewritten in natural coordi-

nates as

GI = lim
∆a→0

1

2∆a

∫ 1

−1

[
σ22(x1(ξ))∆u2(∆a− x1(ξ))

]
x1,ξ dξ. (2.7)

As mentioned in Section 1.6, the Irwin crack closure integral represents the work done to

close the VCE. Substituting eq. (2.6) into eq. (2.7) results in

GI = lim
∆a→0

1

2∆a

3∑
m=1

∫ 1

−1

[
σ22(x1(ξ))N

(m)(ξ)∆u
(m)
2

]
x1,ξ dξ. (2.8)

Since element (1) is used to calculate both the stress, in Fig. 2.1b, and displacement

jumps, in Fig. 2.1c, and node 2 remains in the same location before and after the VCE,

there is no ambiguity with respect to x1,ξ. The displacement jumps at the nodes are found

from an FEA, so that eq. (2.8) may be rewritten as

GI = lim
∆a→0

1

2∆a

3∑
m=1

∆u
(m)
2

∫ 1

−1

[
σ22(x1(ξ))N

(m)(ξ)
]
x1,ξ dξ. (2.9)

Substituting eq. (2.5) into eq. (2.9) and omitting the limit yields

GI =
1

2∆a

3∑
m=1

F
(m)
2 ∆u

(m)
2 . (2.10)

Since node 3 is at the crack tip in Fig. 2.1c, ∆u
(3)
2 = 0 and

GI =
1

2∆a

2∑
m=1

F
(m)
2 ∆u

(m)
2 . (2.11)

This derivation is based on two FEAs.

For one FEA, the crack face opening displacements at the nodal points in element (1) in

Fig. 2.1c, may be approximated from element (1′) in Fig. 2.1b, so that eq. (1.107) with
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Figure 2.2: For a QP-element: (a) the crack before and (b) after the VCE. (c) IQP-element
containing node 2′ and QP-element containing node 2.

M = 2 is found. For the mode II energy release rate, a similar derivation may be carried

out beginning with eq. (1.105). Equation (1.108) is found with M = 2.

To the best of the authors’ knowledge, this development does not appear in the literature.

In Ramamurthy et al. (1986), Raju (1987) and Nairn (2011), the first three terms of

the asymptotic expansion for the stress on the element edge ahead of the crack tip in a

linear elastic and homogeneous material was used to obtain eqs. (1.107) and (1.108) for

eight-noded elements. This is seen to be unnecessary as shown here. The derivation of

eqs. (1.107) and (1.108) is independent of the stress distribution ahead of the crack tip

and, hence, also applicable to interface cracks.

For a QP-element, difficulties arise when using the VCCT. The location of node 2 is

not the same in element (1) before and after the VCE as shown in Figs. 2.2a and 2.2b,

respectively. Node 2 is at x1 = ℓ/4 in Fig. 2.2a and at x1 = 3ℓ/4 in Fig. 2.2b. Note

that for two FEAs, the displacement jump at node 2 in Fig. 2.2b which is at x1 = 3ℓ/4

is closed by the force at node 2 in Fig. 2.2a which is at x1 = ℓ/4. Using eq. (2.11) with

QP-elements implies that the nodal point force at nodal point 2 in Fig. 2.2a closes the

displacements jump at nodal point 2 in Fig. 2.2b. This is not possible. Hence, this method

is problematic with QP-elements.

In Ramamurthy et al. (1986) and Raju (1987), a different approach was taken. Equa-

tion (1.104) was calculated using the analytic stress distribution from element (1) in

Fig. 2.2a. The displacement jumps were taken from element (1′) in Fig. 2.2a. To account

for the fact that the nodal point force F
(2)
2 is not located in the same relative position

as the displacement jump ∆u
(2′)
2 , the nodal point forces were distributed by means of

the weights tnm in eq. (1.111). It may be noted that for an interface crack other weights

tnm are required. In Nairn (2011), in addition to the weights tnm, nodal edge forces were

used in order to obtain more accurate results. The accuracy of those approaches will be

examined in Section 2.2.

Another possibility for using a QP-element ahead of the crack tip with eqs. (1.107)

and (1.108), is to change the position of node 2′ in element (1′). For this element, called

the inverse quarter-point (IQP) element, node 2′ is located at x
′ (2′)
2 = ℓ/4, as shown in

Fig. 2.2c. Note that for the primed nodes, use is made of the x′1, x
′
2 coordinate system
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Figure 2.3: Geometry for (a) a CCT specimen, (b) a DCB specimen and (c) a pure mode
II beam specimen.

with its origin located at node 1′, as shown in Fig. 2.2c. In this way, node 2 in the

QP-element and node 2′ in the IQP-element are at the same relative distance ℓ/4 within

their respective elements. The stress singularity of the QP-element ahead of the crack tip

is not influenced by the change of the location of node 2′. The stress singularity of the

IQP-element is also of order 1/2 but at node 1′.

Equation (2.11) is presented for two FEAs using eight-noded elements. It also may be used

for two FEAs, where for the first FEA, a QP-element is used as shown in Fig. 2.2a. For

the second FEA, element (1) in Fig. 2.2b may be an IQP-element with node 2 moved to

x1 = ℓ/4. Comparison of the numerical results using eight-noded elements, QP-elements

and IQP-elements will be presented in Section 2.2.

2.2 Numerical results for different types of elements

In this section, three problems are solved by means of an FEA using a commercial finite

element program Abaqus/CAE (2016). All bodies are linear elastic, homogeneous and

isotropic. The material of the bodies is taken to be aluminium where E = 70 GPa and

ν = 0.3. The first problem is a CCT specimen, as shown in Fig. 2.3a. A double cantilever

beam (DCB) specimen subjected to mode I loading as shown in Fig. 2.3b, is the second

problem. The third problem is a pure mode II beam specimen shown in Fig. 2.3c. These

problems are solved to compare the different approaches of calculating the energy release

rates and stress intensity factors.
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(a)

(b)

Figure 2.4: Schematic view of (a) the mesh and (b) focused mesh in the crack tip region
that is used to carry out the FEA of the CCT specimen for a VCE of 0.5 µm.

The CCT specimen is subjected to a remote tensile traction, as shown in Fig. 2.3a. The

length of the crack is 2a = 10 mm. The width and height of the body are 2w =

2h = 20 mm. The applied tensile traction is σ∞
22 = 1 MPa and plane strain condi-

tions are imposed using CPE8 elements of Abaqus/CAE (2016). It is noted that these

are eight noded isoparametric bi-quadratic elements. The finite element method is used

to determine the crack face displacement jumps and the nodal point forces ahead of the

crack tip. As a results of symmetry, only one-quarter of the body is modeled. The FEAs

are carried out with four different element lengths in the vicinity of the crack tip: 1 mm,

0.5 mm, 50 µm and 0.5 µm. For the first three lengths, uniform meshes are used with all

elements being square. For the element length of 0.5 µm, a focused mesh in the vicinity

of the crack tip is used. A schematic view of the mesh of the body and the focused

mesh in the vicinity of the crack tip are shown in Figs. 2.4a and 2.4b, respectively. In

the schematic view, there are only twenty elements ahead of the crack tip. In the actual

mesh, the element size in the vicinity of the crack tip is 0.5× 0.5 µm2 with 100 elements

of this size ahead, behind, above and below the crack tip. ee elements are surrounded by

a focused mesh. Ahead, behind, above and below the focused mesh there is a transition

mesh. The greatest aspect ratio of these elements is 50.

The normalized stress intensity factor for mode I is defined as

K̂I =
KI

σ∞
22

√
πa

. (2.12)

The solution for this CCT problem is given in Isida (1971) as

K̂
(ex)
I = 1.334. (2.13)

Note that in Isida (1971), the stress intensity factors are found from a convergent series

54



Sunday 8th May, 2022

0.96

0.97

0.98

0.99

1.00

1.01

0.0005 0.2 0.4 0.6 0.8 1

1 Eight-noded elements

2a QP-element, global forces

2b QP-element, without element (2)

3 QP-element, nodal edge forces

4 QP and IQP-elements

K̂ I

K̂ I
(ex)

∆a(mm)

σ∞
22

Figure 2.5: The normalized stress intensity factors obtained by the different approaches
divided by the analytical solution for the CCT specimen. Solid black line is the exact
solution.

solution using boundary collocation. This solution is thought to be exact up to four

significant figures.

The normalized stress intensity factors are obtained by five approaches. Use of two eight-

noded elements with eq. (1.107) andM = 2, is the first approach. In the second approach,

the two elements adjacent to the crack tip are replaced by QP-elements and use is made

of eq. (1.109). Recall that eq. (1.109) corrects for the mismatch between nodes 2 and 2′ in

Fig. 2.2a. For the second approach, the results are shown for two options. The first option,

2a (Sethuraman and Maiti, 1988; Pang et al., 1990), uses the global nodal point forces

from elements (1′), (1) and (2) in Fig. 2.2a; in the second approach, 2b (Ramamurthy et

al., 1986; Raju, 1987), use is made only of elements (1′) and (1) without element (2) in

Fig. 2.2a. In the third approach (Nairn, 2011), QP-elements and nodal edge forces are

used, together with eq. (1.109). The fourth approach presented here consists of using one

QP-element and one IQP-element, as shown in Fig. 2.2c and eq. (1.107) with M = 2.

For each of the approaches, FEAs are carried out for the different element sizes. The

values of GI are obtained and the normalized stress intensity factors are calculated using

eqs. (1.147) and (2.12).

The values obtained for K̂I are normalized by the comparison solution in eq. (2.13) and

presented in Fig. 2.5. The errors for K̂I are shown in Table 2.1. The first and the fourth

approaches converge to excellent results. Recall that ∆a is the VCE and is also the length

of the elements adjacent to the crack tip. For the first approach, the errors converge from

-2.3% for ∆a = 1 mm to -0.06% for ∆a = 0.5 µm, as shown in Table 2.1. Using more

elements as the VCE, as done in Banks-Sills and Farkash (2016), did not improve the
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Table 2.1: Errors of the normalized stress intensity factors obtained by the different
approaches for the CCT specimen.

approach 1 2a 2b 3 4
element type eight-noded QP QP QP QP and IQP

∆a K̂I (%) K̂I (%) K̂I (%) K̂I (%) K̂I (%)

1.0 (mm) -2.32 0.17 -0.98 -1.32 -2.56
0.5 (mm) -1.12 0.47 -0.63 -0.95 -1.27
50 (µm) -0.13 0.63 -0.42 -0.73 -0.21
0.5 (µm) -0.06 0.70 -0.35 -0.66 -0.04

results. For the fourth approach, the errors converge from -2.6% for ∆a = 1 mm to

-0.04% for ∆a = 0.5 µm. The behavior of the results for eight-noded elements and a pair

of IQP and QP-elements is very similar, as presented in Fig. 2.5. The similar results and

behavior show that for the VCCT, nodes 2 and 2′ should indeed be located at the same

relative location with respect to nodes 1 and 1′, respectively, as shown in Fig. 2.2c. Since

an IQP-element requires modification of the mesh that is generated by the finite element

program, use of eight-noded elements is preferred. When using only QP-elements, the

results are less accurate. For the global nodal point forces for approach 2a, the results

diverge from 0.2% for ∆a = 1 mm to 0.7% for ∆a = 0.5 µm. The good result for the

coarse mesh seems random. If element (2) in Fig. 2.2a is not used as in option 2b, the

results converge to -0.35% for ∆a = 0.5 µm. For the third approach of Nairn (2011) using

nodal edge forces, the results converge to -0.66% for ∆a = 0.5 µm. For QP-elements,

using approach 2b is found to be the most accurate, but the eight-noded elements are still

preferred. From this particular problem, one may conclude that using QP-elements for

VCCT results in unnecessary inaccuracy as ∆a approaches zero. Moreover, there is no

obvious benefit to using a QP approach which involves additional actions during meshing

and post-processing.

Two additional FEAs are carried out on CCT specimens with crack lengths of a = 3 mm

and a = 7 mm. The comparison solution for these problems also may be found in Isida

(1971) with K̂
(ex)
I = 1.123 for a/w = 0.3 and K̂

(ex)
I = 1.680 for a/w = 0.7. The same

behavior of the different approaches is observed as for that of the crack of length a = 5 mm.

For a crack length a = 3 mm, all of the errors for the finest mesh converge to the same

errors as for a = 5 mm with a difference of 0.06%. For example, for the first approach the

error of the finest mesh is 0.00% instead of -0.06%, and for the fourth approach, the error

is 0.02% instead of -0.04%. For a crack length a = 7 mm, the errors for the finest mesh

converge to the same errors, once again, but with a difference of -0.13% as compared to

that of a/w = 0.5.

Next, the DCB specimen shown in Fig. 2.3b is discussed. This problem was solved in
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Nairn (2011). From simple beam theory (SBT) and plane stress conditions

GSBT =
12P2a2

B2h3E
(2.14)

where P is the applied load, a is the crack length, B and h are the specimen depth and

half-height and E is Young’s modulus. Accounting for shear deformation and crack root

rotation as presented in Williams (1989)

GI =

(
1 + 0.67

h

a

)2

GSBT . (2.15)

In the FEA, the DCB specimen is subjected to an applied load P = 1 N, as shown in

Fig. 2.3b; a = 20 mm; 2h = 4 mm, and the length of the body is 2w = 40 mm. Plane

stress conditions are imposed using CPS8 elements of Abaqus/CAE (2016). It is noted

that these are eight noded isoparametric bi-quadratic elements. The FEAs are carried out

with four different element lengths in the vicinity of the crack tip: 1 mm, 0.5 mm, 100 µm

and 0.5 µm. For the first three lengths, uniform meshes were used with all elements

being square. For the element length of 0.5 µm, a focused mesh is used, similar to that

in Fig. 2.4b. In Nairn (2011), ten different element lengths which were not explicitly

specified were used, with a size between 1 mm and 0.1 mm with uniform meshes.

For the DCB specimen investigated here and in Nairn (2011), using eq. (2.15),

GI = 1.1385 GSBT . (2.16)

The result for eight-noded elements converged in Nairn (2011) to

GI = 1.1392 GSBT . (2.17)

The other approaches used there were compared to this latter result. Recall that in Nairn

(2011), the results were extrapolated to ∆a = 0. It may also be noted that although in

Nairn (2011), results for quadratic elements appear to be constant for all element sizes,

this is an illusion created by the large scale used to plot the results. The values obtained

here for GI are normalized by GSBT and are presented in Fig. 2.6. The errors for GI are

shown in Table 2.2. But the ratio using eight-noded elements with the element length of

0.5 µm was found here to be 1.1385; the same as the result presented in eq. (2.16). The

errors here are compared to that solution and the value of the solid black line in Fig. 2.6 is

1.1385. For the third approach (Nairn, 2011), results are also shown for CPS8R elements.

It appears that in Nairn (2011), CPS8R elements with reduced integration were used,

resulting in a difference of less than -0.33% for the smallest elements as observed in

Table 2 column 6. In Nairn (2011), for eight-noded regular elements, the results were

extrapolated without that at ∆a = 0.5 µm in Table 2.2 to obtain the ratio between GI

and GSBT as 1.1392. Note that in Nairn (2011), the results were extrapolated to ∆a = 0,

whereas here in Fig. 2.6 and Table 2.2 results are shown for ∆a = 0.5 µm. In Fig. 2.6, the
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Figure 2.6: The mode I energy release rates GI obtained by the different approaches
normalized by GSBT for the DCB specimen in eq. (2.14). Solid black line is the comparison
solution.

Table 2.2: Errors of GI obtained by the different approaches for the DCB specimen.

approach 1 2a 2b 3 3 4
element type eight-noded QP QP QP QP QP and IQP

CPS8 CPS8R

∆a GI (%) GI (%) GI (%) GI (%) GI (%) GI (%)

1.0 (mm) -1.03 0.27 0.49 0.76 0.52 0.28
0.5 (mm) -0.46 1.11 0.72 0.70 1.08 1.00
0.1 (mm) -0.04 1.17 -0.50 -0.97 -0.05 0.23
0.5 (µm) 0.00 1.30 -0.81 -1.42 -0.33 -0.05

results for ∆a = 0.5 µm appear to be on the ordinate because of the relatively large scale

of the abscissa. The results for the eight-noded elements of approach 1 are the same when

using either CPS8 or CPS8R elements. There does not appear to be any justification for

using reduced integration. The CPS8 elements are preferred for the problems investigated

here.

Next, the results obtained here with CPS8 elements are discussed. The first and the

fourth approaches converge again to excellent results. For the first approach, the errors

converge from -1.03% for ∆a = 1 mm to 0.00% for ∆a = 0.5 µm, as shown in Table 2.2.

For the fourth approach, the errors converge from 0.28% for ∆a = 1 mm to -0.05% for

∆a = 0.5 µm. The behavior of the results for eight-noded elements and a pair of IQP

and QP-elements are not similar, as may be observed for the DCB specimen in Fig. 2.6.

When using only QP-elements, the results are less accurate. When using the global nodal

point forces for approach 2a, the results diverge from 0.27% for ∆a = 1 mm to 1.30% for

∆a = 0.5 µm. If element (2) in Fig. 2.2a is not used as in option 2b, the results diverge
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Figure 2.7: The mode II energy release rates GII obtained by the different approaches
normalized by GII (SBT ) for the pure mode II beam specimen. Solid black line is the
solution in eq. (2.20).

from 0.49% for ∆a = 1 mm to -0.81% for ∆a = 0.5 µm. For the third approach in Nairn

(2011), the results diverge to -1.42% for ∆a = 0.5 µm. When using only QP-elements,

approach 2b is found to be the most accurate. Nonetheless, the eight-noded elements lead

to the best results.

The pure mode II beam specimen shown in Fig. 2.3c is discussed next. This problem was

also solved in Nairn (2011). From SBT and plane stress conditions

GII (SBT ) =
9P2a2

B2h3E
(2.18)

where P is the applied load, a is the crack length, B and h are the specimen depth and

half-height and E is Young’s modulus. Accounting for shear deformation and crack root

rotation presented in Wang and Williams (1992)

GII =

(
1 + 0.67

√
11

63

h

a

)2

GII (SBT ). (2.19)

In the FEA, the pure mode II beam specimen is subjected to an applied load P = 1 N,

as shown in Fig. 2.3c. The dimensions of the body and the meshes are the same as those

for the DCB specimen. For the pure mode II beam specimen, using eq. (2.19),

GII = 1.0568 GII (SBT ) . (2.20)

The values obtained here for GII are normalized by GII (SBT ) and are presented in Fig. 2.7.

The errors for GII are shown in Table 2.3. When compared to the solution in eq. (2.20),

approaches 1, 2b and 3 converge to similar results with errors between −1.1% and -1.4%.

Approaches 2a and 4 converge to similar results with errors of 0.9% and 1.0%, respectively.
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Table 2.3: Errors of GII obtained by the different approaches for the pure mode II beam
specimen in Fig. 2.3c as compared to eq. (2.20); errors in parenthesis obtained as compared
to the J-integral result in eq. (2.21).

approach 1 2a 2b 3 4
element type eight-noded QP QP QP QP and IQP

∆a GII (%) GII (%) GII (%) GII (%) GII (%)

1.0 (mm) -3.0 (-1.6) -5.0 (-3.7) -5.9 (-4.6) -7.1 (-5.9) -5.2 (-3.9)
0.5 (mm) -2.2 (-0.81) -0.3 (1.1) -1.7 (-0.32) -1.9 (-0.57) -1.0 (0.39)
0.1 (mm) -1.5 (-0.16) 0.9 (2.3) -1.0 (0.33) -1.0 (0.35) 0.6 (2.0)
0.5 (µm) -1.4 (0.00) 0.9 (2.4) -1.1 (0.24) -1.2 (0.20) 1.0 (2.4)

Using the J-integral with either eight-noded regular elements or QP-elements and the

finest mesh, eq. (2.20) was found to be

GII = 1.0423 GII (SBT ) . (2.21)

This is the same value found in Nairn (2011) by means of VCCT and eight-noded elements.

The errors as compared to the J-integral result in eq. (2.21) are presented in parenthesis

in Table 2.3. The errors for the finest mesh as compared to the J-integral for approaches 1,

2b and 3 are 0.0%, 0.24% and 0.20%, respectively. For the other two approaches, the error

is 2.4%. It would appear that the results in eqs. (2.19) and (2.20) are only approximate.

Thus, the most consistent approach with the best results for all three problems is the

first approach of eight-noded regular elements, which is clearly preferred. Using an IQP-

element was found to be accurate here only for mode I problems. For the mode II problem,

using an IQP-element produces poor results. Recall that the stress singularity of the IQP-

element is of order 1/2 but at node 1′ in Fig. 2.2c. Perhaps this is the reason for the poor

results. Thus, QP and IQP-elements used together, as well as QP-elements used alone

are not recommended. Part of this section appears in Farkash and Banks-Sills (2020).

2.3 A new equation for calculation of the phase angle

In Banks-Sills and Farkash (2016), the relations between the complex stress intensity factor

for an interface crack between two linear elastic, isotropic and homogeneous materials and

the energy release rates were found. The stress intensity factors are related to the energy

release rates through the phase angle. In this section, first, the relations between the stress

intensity factors for a crack in a linear elastic, isotropic and homogeneous material and

the energy release rates and the dual energy release rates are found. Second, new relations

between the energy release rates and the complex stress intensity factor for an interface

crack between two linear elastic, isotropic and homogeneous materials and new relations

between the energy release rates and the phase angle of the complex stress intensity factor
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are determined. It will be shown that one of the new relations for the phase angle is valid

for any value of the phase angle whereas, others, of which one of them was found in

Banks-Sills and Farkash (2016), are not.

For a crack in a linear elastic, homogeneous and isotropic material, explicit expressions

for the in-plane stress intensity factors are given in eqs. (1.147) and (1.148). The relation

between the dual energy release rates and the stress intensity factors for a crack in this

material is obtained. Using eqs. (1.1) and (1.7), the stress components ahead of the crack

tip are given by {
σ22

σ21

}
=


KI√
2πx1

KII√
2πx1

 . (2.22)

Using eqs. (1.4) and (1.10), the crack face displacement jumps are given as{
∆u2

∆u1

}
=

8

Ē

√
−x1
2π

{
KI

KII

}
, (2.23)

where Ē is defined in eq. (1.17). Substituting the stresses ahead of the crack tip and the

crack face displacement jumps into eqs. (1.176) and (1.177) results in

II = lim
∆a→0

1

2∆a

∫ ∆a

0

(
KI√
2πx1

8KII

Ē

√
∆a− x1

2π

)
dx1 (2.24)

III = lim
∆a→0

1

2∆a

∫ ∆a

0

(
KII√
2πx1

8KI

Ē

√
∆a− x1

2π

)
dx1. (2.25)

In eqs. (2.24) and (2.25), II and III are defined as the dual energy release rates. From

eqs. (2.24) and (2.25) it may be observed that

II = III . (2.26)

From Gradshteyn and Ryzhik (2015, p. 318) it may be shown that∫ ∆a

0

(√
∆a− x1

x1

)
dx1 =

π∆a

2
. (2.27)

Substituting the expression in eq. (2.27) into eqs. (2.24) and (2.25) and using the equality

in eq. (2.26) leads to

II = III =
KIKII

Ē
. (2.28)

Noting eqs. (1.152), (1.176) and (1.177)

GI−II = II + III . (2.29)
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Using the relation between GI−II and II and III given in eqs. (2.29), (1.147), (1.148) and

(2.28) results in

GI−II = 2II = 2III =
2KIKII

Ē
= 2
√

GIGII . (2.30)

Noting eqs. (1.22) and (2.30)

G2
I−II + (GI − GII )

2 = G2
I + G2

II + 2 GIGII = (GI + GII )
2 = G2 (2.31)

where in this section G is equal to the in-plane energy release rate, G2D. From Gradshteyn

and Ryzhik (2015, p. 59) it may be shown that

tan−1

(
2xy

x2 − y2

)
= 2 tan−1(y/x) . (2.32)

Noting eqs. (1.19), (1.20) and (2.30) and using the identity from eq. (2.32), the angle

between GI−II and (GI − GII ) is given as

tan−1

(
GI−II

GI − GII

)
= tan−1

(
2KIKII

K2
I −K2

II

)
= 2 tan−1

(
KII

KI

)
(2.33)

From eqs. (2.31) to (2.33), it is found that

ψ = tan−1

(
KII

KI

)
=

1

2
tan−1

(
GI−II

GI − GII

)
(2.34)

where ψ is the phase angle related to the mode mixity ratio KII/KI . From eqs. (2.31)

and (2.34)2, GI−II and (GI − GII ) are the sides of a right triangle, 2ψ is the angle between

(GI − GII ) and G where the latter is the hypotenuse.

Next, an interface crack between two dissimilar isotropic materials is considered. For

clarity, some of the equations from Section 1.6.2 are repeated here. Using the stress

and displacement fields from Rice et al. (1990) and Deng (1993), the tractions along the

interface ahead of the crack tip and the crack face displacement jumps are found and given

in eqs. (1.150) and (1.151), respectively. The coordinate system is shown in Fig. 1.9a; the

complex stress intensity factor is given in eq. (1.29). In eqs. (1.150) and (1.151), the

oscillatory parameter is given in eq. (1.25).

In order to relate the stress intensity factors K1 and K2 to the energy release rates, two

auxiliary integrals were considered in Banks-Sills and Farkash (2016) and Farkash (2016),

namely,

A =
1

2∆a

∫ ∆a

0

[
σ22(x1) + iσ21(x1)

][
∆u2(∆a− x1)− i∆u1(∆a− x1)

]
dx1 (2.35)

D =
1

2∆a

∫ ∆a

0

[
σ22(x1) + iσ21(x1)

][
∆u2(∆a− x1) + i∆u1(∆a− x1)

]
dx1 . (2.36)

These integrals are repeated from eqs. (1.169) and (1.170), respectively. Using the real

and imaginary parts of the auxiliary integrals, it may be shown that

Gi = GI + GII = lim
∆a→0

ℜ(A) (2.37)
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GI − GII = lim
∆a→0

ℜ(D) (2.38)

GI =
1

2
lim

∆a→0
ℜ(A+D) (2.39)

GII =
1

2
lim

∆a→0
ℜ(A−D) (2.40)

GI−II = II + III = lim
∆a→0

ℑ(D) (2.41)

III − II = lim
∆a→0

ℑ(A) (2.42)

where Gi is the interface energy release rate, and ℜ(·) and ℑ(·) represent the real and

imaginary parts of the quantity in parentheses.

It was shown in Banks-Sills and Farkash (2016) that the two auxiliary integrals are ob-

tained as

A =
1

H1

(K2
1 +K2

2) = Gi (2.43)

D =
cosh πε

πH1

PK2∆a2iε (2.44)

where H1 is given in eq. (1.36) and P is given in eq. (1.173). The expressions for A and

D are from eqs. (1.171) and (1.172), respectively.

Since A is real and noting eq. (2.42)

II = III . (2.45)

By using the expressions found for the auxiliary integrals in eqs. (2.43) and (2.44), the

values for eqs. (2.38) to (2.41) are obtained as

GI − GII = ℜ(D) = CGi cosψD (2.46)

GI =
1

2
ℜ(A+D) =

1

2
Gi (1 + C cosψD) (2.47)

GII =
1

2
ℜ(A−D) =

1

2
Gi (1− C cosψD) (2.48)

GI−II = ℑ(D) = CGi sinψD (2.49)

where, the parameter C is defined in eq. (1.181) and

ψD = tan−1

[
ℑ(D)

ℜ(D)

]
= 2ψ + ψP + 2ε ln∆a . (2.50)

The last equality in eq. (2.50) is obtained from eq. (2.44), where ψ is the phase angle of

the complex stress intensity factor, namely

ψ = tan−1

(
K2

K1

)
(2.51)

and ψP is the phase angle of P defined as

ψP = tan−1

(
PI
PR

)
. (2.52)
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Noting eqs. (2.50) to (2.52), the phase angles ψ and ψP are constants for each specific

problem; however, the phase angle ψD is a function of ∆a through the term 2ε ln∆a. By

using eqs. (2.41), (2.45) and (2.49), the dual energy rates are found to be

II = III =
1

2
GI−II =

1

2
CGi sinψD. (2.53)

Since the stress intensity factors K1 and K2 are unknown, eq. (2.51) may not be used for

determining the phase angle. However, it may be obtained by rearranging eq. (2.50) as

ψ =
1

2
ψD − 1

2
ψP − ε ln∆a. (2.54)

Note that ψD was found in Banks-Sills and Farkash (2016) and Farkash (2016) as

ψD = cos−1

(
1

C

1− g

1 + g

)
(2.55)

where g is defined in Agrawal and Karlsson (2006) and is given in eq. (1.160). Substituting

eq. (1.160) into eq. (2.55) or noting eq. (2.46) results in

ψD = cos−1

(
GI − GII

CGi

)
. (2.56)

From eq. (2.49), ψD may also be defined as

ψD = sin−1

(
GI−II
CGi

)
. (2.57)

Finally, using eqs. (2.46) and (2.49),

ψD = tan−1

(
GI−II

GI − GII

)
. (2.58)

Noting eq. (2.56), ψD is the angle between GI −GII and CGi in a right triangle. The length

CGi is the hypotenuse of the right triangle. The side opposite ψD, from eq (2.57), is GI−II .
From eqs. (2.46) and (2.49), it may be shown that CGi is the magnitude of D. It may

be pointed out that for a crack in a linear elastic, homogeneous and isotropic material,

ε = 0, so that P in eq. (1.173) is real, equal to π, and from eq. (2.52), ψP = 0. Moreover,

from eq. (1.181), C = 1. Thus, using eq. (2.50)

ψD = 2ψ (2.59)

and G, the total energy release rate for this crack, is the hypotenuse of the right triangle.

Equation (2.59) is compatible with eq. (2.34).

In eqs. (2.56) and (2.57), the inverse trigonometric functions cos−1(·) and sin−1(·) produce
the correct angle ψD only for 0 ≤ ψD ≤ π and −π/2 ≤ ψD ≤ π/2, respectively. The angle

ψD, may be less than −π/2 or greater than π. For these cases, eqs. (2.56) and (2.57) are

not useful. Therefore, use is made of eq. (2.58) which produces the correct value of ψD in
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material (1)

material (2)
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Figure 2.8: An interface crack of length 2a between two dissimilar linear elastic, isotropic
and homogeneous materials in an infinite body subjected to tension σ22 and shear σ12
stresses. The width and height of the body 2w/2a = 2h/2a = 40, respectively, are used
in the finite element analysis.

the range −π ≤ ψD ≤ π up to ψD ± 2πk for k = ... − 1, 0, 1, ... . It may be pointed out

that eq. (1.180) which appears in Banks-Sills and Farkash (2016) should be replaced by

ψ =
1

2
tan−1

(
GI−II

GI − GII

)
− 1

2
tan−1

(
PI
PR

)
− ε ln∆a. (2.60)

The stress intensity factors are obtained in Banks-Sills and Farkash (2016) and Farkash

(2016) as

K1 = ±
√
H1Gi cosψ K2 = K1 tanψ (2.61)

where ψ is calculated from eq. (2.60). In eq. (2.61), two pairs of values for K1 and K2

are obtained. An assumption was made in Banks-Sills and Farkash (2016) that the crack

is open; so that, the valid pair satisfies the inequality in eq. (1.184). The applicability of

eqs. (2.56) to (2.58) is examined below.

Next, a problem in which ψD in eqs. (2.56) and (2.57) may not be found by using the

inverse trigonometric functions cos−1(·) and sin−1(·) is presented. In Banks-Sills and

Farkash (2016), the inverse trigonometric function cos−1(·) from eq. (2.55) was used to

obtain ψD. Recall that cos−1(·) produces the correct value of ψD for 0 ≤ ψD ≤ π. In

Banks-Sills and Farkash (2016), the problem of a finite length interface crack between

two dissimilar linear elastic, homogeneous and isotropic materials was considered. In that

case, the oscillatory parameter ε = −0.0758 and 0.1π ≤ ψD ≤ 0.5π. Recall that GI , GII ,

GI−II and ψD depend on ∆a, the VCE.
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Table 2.4: Data for the solved problem in Fig. 2.8.

E1 E2 ν1 ν2 σ22 σ12 σ
(1)
11 σ

(2)
11

(GPa) (GPa) (MPa) (MPa) (MPa) (MPa)

0.1 1 0.3 0.3 1 -1 1 6.143

Here, a different problem of a finite length interface crack between two dissimilar linear

elastic, isotropic and homogeneous materials in an infinite body is considered, as illus-

trated in Fig. 2.8. This problem is solved by means of the finite element method using

ABAQUS/CAE (2017). The analytical solution for the complex stress intensity factor is

given in Rice (1988) as

K = (σ22 + iσ21)(1 + 2iε)
√
πa(2a)−iε (2.62)

where σ22 and σ21 are the far field tension and shear stresses given in Table 2.4 and shown

in Fig. 2.8. The mechanical properties of the upper (1) and lower (2) materials are Young’s

moduli, E1 = 0.1 GPa and E2 = 1 GPa, respectively, and Poisson’s ratios ν1 = ν2 = 0.3;

these are also given in Table 2.4. In order to maintain displacement continuity along the

interface, tractions are applied in the far field in the x1-direction. The traction in the

upper material σ
(1)
11 is chosen as unity and σ

(2)
11 is defined in eq. (1.165) for plane strain

conditions. The values of σ
(1)
11 and σ

(2)
11 are given in Table 2.4. Using eqs. (2.51) and (2.62),

the stress intensity factors and the phase angle ψ are found as K1 = 1.9594 N/mm3/2+iε,

K2 = −1.6088 N/mm3/2+iε and ψ = −0.2π, respectively. The analytical value of C in

eq. (1.181) is C = 1.0074. The length of the crack is 2a = 2 mm. To model the infinite

body for the finite element analysis, w/a is taken to be 40 and h/w is taken to be unity.

A schematic illustration of the mesh is shown in Fig. 2.9. A schematic view of the focused

mesh in the vicinity of the crack tip and above the crack is shown in Fig. 2.4b. Outside

Figure 2.9: A schematic view of the mesh that was used to carry out the finite element
analysis for the body in Fig. 2.8.
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Table 2.5: Numerical values for the energy release rates and ψD using the inverse trigono-
metric functions in eqs. (2.56) to (2.58).

GI (N/m) GII (N/m) II (N/m) III (N/m) CGi(N/m) GI−II(N/m) GI − GII (N/m)

3.9 26.6 -10.3 -10.3 30.7 -20.6 -22.7

analytic value cos−1(·) sin−1(·) tan−1(·)

ψD -0.8π 0.8π -0.2π -0.8π

the refined sections of the mesh, the element size is 1 × 1 mm2. The element size in the

vicinity of the crack tips is 0.5×0.5 µm2. There are 50 elements of this size ahead, behind,

above and below the crack tip. Those elements are surrounded by a focused mesh. Ahead,

behind, above and below the focused mesh there is a transition mesh. The greatest aspect

ratio of these elements is 50.

A finite element analysis was carried out for this problem. The energy release rates, GI

and GII , are found using eqs. (1.107) and (1.108), respectively; the dual energy release

rates, II and III , are found using eqs. (1.185) and (1.186), respectively. The interface

energy release rate is the sum of GI and GII . The difference between II and III , I, was
calculated using eq. (1.187). The values of the numerically calculated energy release rates

are presented in Table 2.5 for a VCE consisting of 24 elements where ∆a = 12 µm. Values

of II and III are also presented in Table 2.5. This value of ∆a produced the lowest value

of I = 0 to a high degree of accuracy. Value of CGi from eq. (2.37) and (1.181), GI−II
from eq. (2.41) and GI − GII are also presented in Table 2.5. In order to determine the

stress intensity factors, the value of ψ in eq. (2.54) is required. To this end, eqs. (2.56)

to (2.58) may be used to calculate ψD. These values are also shown in Table 2.5. From the

-25
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-15
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-5
-25 -20 -15 -10 -5 5 10 15 20 25 30 (N/m)
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G
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I
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2

Figure 2.10: An illustration of the energy release rates and the phase angles obtained
numerically.

67



Sunday 8th May, 2022

analytical solution, ψD is found and presented in Table 2.5. It may be observed that only

the tan−1(·) function yields the correct results. The purpose of this numerical exercise

was to show that functions cos−1(·) and sin−1(·) cannot be used in the calculation of ψD.

A graphical illustration of the values from Table 2.5 is shown in Fig. 2.10. On the abscissa,

the energy release rates GI , GII , Gi and GI − GII related to the real parts of A and D,

from eqs. (2.46) to (2.48) are plotted. The coupled energy release rate GI−II and the dual

energy release rates II and III are related to the imaginary part of D in eqs. (2.49) and

(2.53)1; they are plotted parallel to the ordinate in Fig. 2.10. Recall that the analytically

calculated value of the phase angle ψ from eq. (2.51) is −0.2π. The numerical values

of the terms ψP and 2ε ln∆a from eq. (2.50), are −0.1π and −0.3π, respectively. The

relation between ψ and ψD = −0.8π is presented in Fig. 2.10.

In order to calculate ψD, eqs. (2.56) to (2.58) were used. The values of CGi , GI−II and

GI − GII used in these equations are also shown in Table 2.5. In the fourth row of Ta-

ble 2.5, values obtained for ψD are shown. As mentioned earlier, the inverse trigonometric

functions cos−1(·) and sin−1(·) may be used to produce the correct value of ψD for various

ranges of −π/2 ≤ ψD ≤ π. The function cos−1(·) produced ψD with an error in sign, as

shown in Table 2.5. The function sin−1(·) produced a value of ψD which also differed from

the exact value. When the signs of the numerator and dominator of the argument of the

function tan−1(·) are considered properly, the correct value of ψD is produced. Thus, the

function tan−1(·) is recommended in these calculations.

2.4 The coupled energy release rate and the dual en-

ergy release rates

In this section, analytic expressions for the crack face opening displacement jumps and

the nodal point forces on the line ahead of the crack tip for a crack in a linear elastic,

homogeneous and isotropic material are found. These will enable comparison of the dual

energy release rates in eqs. (1.176) and (1.177), and their numerically calculated values,

given in eqs. (1.185) and (1.186). It may be pointed out that analytically, the dual energy

release rates are equal. It has been observed in Banks-Sills and Farkash (2016) that they

are not equal when calculated numerically. The aim here is to shed light on this difference.

The crack face displacement jumps in the neighborhood of the crack tip are given in

eq. (2.23). The normalized crack face displacement jumps will be used below and may be

defined as

∆û1 =
Ē∆u1

8
√

ℓ
2π
KII

∆û2 =
Ē∆u2

8
√

ℓ
2π
KI

(2.63)

where ℓ is the length of the element and Ē is given in eq. (1.17).
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For the comparison mentioned above, the nodal point forces ahead of the crack tip are

required. Details are given for obtaining the nodal point forces in the first two elements

ahead of the crack tip. In a similar manner, one may obtain the additional nodal point

forces ahead of the crack tip. The first ten nodal point forces are tabulated at the end of

this section. The first term of the asymptotic expansion for the stresses ahead of the crack

tip are given in eq. (2.22). Here, element (1) in Fig. 2.1b is considered. Using eqs. (2.2)

and (2.3) and noting that x
(i)
1 = 0, ℓ/2, ℓ for i = 1, 2, 3, the mapping of the element and

its derivative are given by

x1(ξ) =
ℓ

2
(1 + ξ) x1,ξ =

ℓ

2
. (2.64)

The total force F2 may be found by substituting σ22 from eq. (2.22) and x1,ξ from

eq. (2.64)2 into eq. (2.4) as

F2 =

√
2ℓ

π
KI . (2.65)

The nodal point forces in element (1) in Fig. 2.1b may be found using eq. (2.5). For

example, for F
(1)
2 , substituting σ22 from eq. (2.22), N (1)(ξ) from eq. (2.1)1 and x1,ξ from

eq. (2.64)2 into eq. (2.5) results in

F
(1)
2 =

2

5

√
2ℓ

π
KI . (2.66)

By substituting eqs. (2.1)2 or (2.1)3 into eq. (2.5) instead of eq. (2.1)1, the nodal point

forces F
(2)
2 and F

(3)
2 are found as

F
(2)
2 =

8

15

√
2ℓ

π
KI F

(3)
2 =

1

15

√
2ℓ

π
KI . (2.67)

As expected, the sum of F
(1)
2 , F

(2)
2 and F

(3)
2 is F2.

For the second element ahead of the crack tip, element (2) in Fig. 1.10b, the mapping of

this element and its derivative are given by

x1(ξ) =
ℓ

2
(3 + ξ) x1,ξ =

ℓ

2
. (2.68)

By substituting eqs. (2.22)1, (2.1) and (2.68)2 into eq. (2.5), the nodal point forces are

found to be

F
(3)
2 =

(88− 61
√
2)

15

√
ℓ

π
KI F

(4)
2 =

8(3
√
2− 4)

15

√
ℓ

π
KI

F
(5)
2 =

2(19− 13
√
2)

15

√
ℓ

π
KI .

(2.69)

The total force at node 3 is the sum of the forces at that node from elements (1) and (2),

so that

F
(3)
2 =

(88− 60
√
2)

15

√
ℓ

π
KI . (2.70)
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Table 2.6: The analytic expressions for the normalized nodal point forces at nodes i = 1
to 10 ahead of the crack tip in the xp-direction (p = 1, 2).

i F̂
(i)
p i F̂

(i)
p

1 2
√
2

5
6

(21
√
6−52)8
15

2 8
√
2

15
7

(−56+144
√
2−60

√
6)

5

3
(88−60

√
2)

15
8

(51
√
6−88)8
15

4
(3
√
2−4)8
15

9
(−240

√
2−87

√
6+175

√
10)2

15

5
2(−120−13

√
2)

15
10

8(56−25
√
10)

15

Additional analytically obtained nodal point forces at consecutive nodes are found in the

same way. The normalized nodal point forces may be defined as

F̂1 =
F1√
ℓ
π
KII

F̂2 =
F2√
ℓ
π
KI

(2.71)

where ℓ is the length of the element and they are tabulated in Table 2.6. It may be noted

that elements (3) to (5) are not shown in Fig. 1.10b; they are the succeeding elements

after element (2). From eq. (2.22)2, the nodal point forces in the x1-direction may be

obtained by replacing KI by KII . The normalized nodal point forces are the same for

both directions xp, p = 1, 2.

It has been shown at the end of Section 1.6.2 that the lowest value of I may be used for

choosing the best length of the VCE for a problem of an interface crack. In addition, it has

been shown that although the dual energy release rates are analytically equal, numerically

they differ. In Section 2.2, it was shown that only one element is required as the VCE in

homogeneous material. Hence, there is no need to calculate II and III for this problem

type. Nonetheless, a problem of a finite length crack in a linear elastic, homogeneous and

isotropic infinite body is solved next. This allows use of the analytical expressions of the

normalized nodal point forces in Table 2.6 and normalized crack face displacement jumps

in eq. (2.63), to examine the behavior of II and III .

The problem of a finite length crack in a linear elastic, homogeneous and isotropic in-

finite body, shown in Fig. 2.11 is solved by means of the finite element method using

ABAQUS/CAE (2017). This problem is solved to examine the numerical and analytical

difference between the dual energy release rates. The material of the body is taken to

be aluminium where E = 70 GPa and ν = 0.3. To model the infinite body for the finite

element analysis, w/a is taken to be 40 and h/w is taken to be unity. The dimensions of

the body and the mesh used in the finite element analysis are identical to those used in
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2a

2h

2w

σ
22
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21

Figure 2.11: A crack of length 2a in a linear elastic, homogeneous and isotropic infinite
body subjected to remote tensile and shear tractions. The width and height w/a = h/a =
40, respectively, are used in the finite element analysis.

Section 2.3 for the problem of an interface crack in an infinite body. A schematic view of

the mesh of the body is shown in Fig. 2.9. Recall that in the vicinity of the crack tips, the

element size is 0.5×0.5 µm2. The remote tensile and shear tractions are σ22 = 1 MPa and

σ21 = 1 MPa, respectively, and plane strain conditions are imposed. The finite element

method is used to determine the crack face displacement jumps behind the crack tip and

the nodal point forces ahead of the crack tip.

The normalized stress intensity factors are defined as

K̂I =
KI

σ22
√
πa

K̂II =
KII

σ21
√
πa

. (2.72)

The analytical solution for this problem is given in Irwin (1957), so that

K̂I = K̂II = 1. (2.73)

Noting eqs. (1.147), (1.148), (2.28) and (2.29), the normalized energy release rates are

found to be

ĜI = 1 ĜII = 1 (2.74)

ÎI = ÎII = 1 ĜI−II = 1 (2.75)

where

ĜI =
ĒGI

σ2
22πa

ĜII =
ĒGII

σ2
21πa

ÎI =
ĒII

σ22σ21πa
ÎII =

ĒIII

σ22σ21πa
ĜI−II =

ĒGI−II
2σ22σ21πa

.

(2.76)
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Table 2.7: Percent errors of the normalized energy release rates obtained with eight-noded
isoparametric elements.

∆a(µm) ĜI (%) ĜII (%) ĜI−II(%) ÎI (%) ÎII (%) I (%)

0.5 0.15 0.05 -0.69 -5.41 4.04 -9.99
1.0 0.15 0.05 0.06 -2.69 2.82 -5.65
1.5 0.15 0.05 0.10 -1.85 2.03 -3.96
2.0 0.15 0.05 0.10 -1.34 1.54 -2.92
2.5 0.15 0.05 0.10 -1.06 1.25 -2.33
3.0 0.15 0.05 0.10 -0.86 1.06 -1.94
3.5 0.15 0.05 0.10 -0.73 0.92 -1.66
4.0 0.15 0.05 0.10 -0.62 0.82 -1.45
4.5 0.15 0.05 0.10 -0.54 0.74 -1.29
5.0 0.15 0.05 0.10 -0.48 0.67 -1.16
10.0 0.15 0.05 0.10 -0.19 0.38 -0.58
15.0 0.15 0.05 0.10 -0.10 0.29 -0.38
20.0 0.15 0.05 0.10 -0.05 0.24 -0.29
25.0 0.15 0.05 0.10 -0.02 0.21 -0.23

The differences between the numerically calculated normalized dual energy release rates

are considered using the first approach from Section 2.2. For this approach, only eight-

noded elements are used to calculate GI , GII , II and III with eqs. (1.107) and (1.108),

(1.185) and (1.186), respectively. The coupled energy release rate GI−II is calculated using

eq. (2.29) and the differences between the dual energy release rates, I, are calculated

using eq. (1.187). The energy release rates are normalized using eqs. (2.76).

The percent errors of the normalized energy release rates and the values of I are pre-

sented in Table 2.7. The first column, in Table 2.7, presents the length of the VCE with

increments of 0.5 µm. In the next columns, the errors of ĜI , ĜII , ĜI−II , ÎI , and ÎII and the
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Figure 2.12: Numerical results of the energy release rates for the problem in Fig. 2.11.
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value of I are shown, respectively. The values of the normalized energy release rates are

shown in Fig. 2.12. The errors of ĜI and ĜII are 0.15% and 0.05%, respectively, and they

are constant for all values of ∆a. These results illustrate once again that only one element

is required to calculate the energy release rates. The errors of ĜI−II are -0.69% and 0.06%

for a VCE consisting of one and two elements, respectively. For a VCE that consists of

more than two elements, the error is 0.10%. The errors of the dual energy release rates

ÎI , and ÎII for a VCE that consists of one element are greater than 4% in absolute value.

As the number of elements of the VCE increases, the errors decrease. For a VCE that

consists of 50 elements, the errors are -0.02% and 0.21% for ÎI and ÎII , respectively. The

value of I decreases from -9.99% to -0.23% as the errors of ÎI and ÎII decrease. It may

be noted that the errors of the normalized dual energy release rates are of opposite sign,

so that for ∆a > 0.5 µm, the errors of ĜI−II are low.

The energy release rates are obtained using the nodal point forces and the crack face

displacement jumps as shown in eqs. (1.107), (1.108), (1.185) and (1.186). In order to

understand the difference between the excellent results obtained for the modes I and II

energy release rates and the poor results for the dual energy release rates, the nodal point

forces and the crack face displacement jumps are considered next. The analytical values

of the normalized nodal point forces are tabulated in Table 2.6. In eq. (2.23), analytical

expressions for the crack face displacement jumps are given. The normalized crack face

displacement jumps and the normalized nodal point forces are given in eqs. (2.63) and

(2.71), respectively.

The values of F̂
(m)
i and ∆û

(m′)
i for i = 1, 2 and m = 1, ..10, obtained for ten nodal points

are considered, i.e. node 1′ is the tenth node behind the crack tip on the crack face; nodes

10′ and 1 coincide and are located at the crack tip; node 10 is the tenth node ahead of the

crack tip (see Fig. 2.13). The VCE ∆a = 2.5 µm and ℓ = 0.5 µm where ℓ is the length of

each element. Note that in the calculation of the energy release rates, node m pairs with

node m′. The crack face displacement jumps at node 10′ are zero. The percent errors

of the normalized nodal point forces and normalized crack face displacement jumps are

tabulated in Table 2.8; their values are illustrated in Figs. 2.13a and 2.13b, respectively.

In Table 2.8, the first column is the node number. The next two pairs of columns present

the errors of the normalized nodal point forces and normalized crack face displacement

jumps, respectively. The errors in the elements adjacent to the crack tip are large. Note

that the elements adjacent to the crack tip consist of nodes 1, 2, 3, for the nodal point

forces, and nodes 8′ and 9′ for the displacement jumps. The errors of the normalized

nodal point forces in the first element ahead of the crack tip are 76%, -52% and 36% for

F̂
(1)
1 , F̂

(2)
1 and F̂

(3)
1 , respectively, and the errors for F̂

(1)
2 , F̂

(2)
2 and F̂

(3)
2 are 45% , -26% and

1.9%. The errors of the normalized crack face displacement jumps in the element behind

the crack tip are -7.1% and -27% for ∆û
(8′)
1 and ∆û

(9′)
1 , and the errors of ∆û

(8′)
2 and ∆û

(9′)
2

are -6.1% and -14%. These errors are caused by the stress singularity at the crack tip.
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Figure 2.13: Numerical results and analytical values of the (a) normalized nodal point
forces and (b) normalized crack face displacement jumps.

The positive errors in nodes 1 and 3 and the negative errors in the remaining nodes appear

to cancel each other when the modes I and II energy release rates are calculated. Indeed,

it is surprising that even when only one element is used as the VCE, excellent results

Table 2.8: Percent errors of the normalized nodal point forces and normalized crack face
displacement jumps.

m,m′ F̂
(m)
1 (%) F̂

(m)
2 (%) ∆û

(m′)
1 (%) ∆û

(m′)
2 (%)

1 76 45 -1.9 -1.2
2 -52 -26 -2.1 -1.3
3 36 1.9 -2.4 -1.5
4 -7.5 -1.2 -2.8 -1.7
5 -0.2 -4.8 -3.3 -2.1
6 -5.0 -1.6 -4.1 -2.8
7 -1.2 -0.6 -4.6 -3.4
8 -2.3 -1.3 -7.1 -6.1
9 -1.5 -1.3 -27 -14
10 -1.7 -0.9 - -
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are obtained as shown in Table 2.7, despite the large errors in the nodal point forces and

displacement jumps. It may be pointed out that by adding more significant figures to

the results for GI and GII , the errors shown in Table 2.7 remain the same. Apparently,

there is energy conservation that produces excellent results for the modes I and II energy

release rates. Recall that in the finite element method, the potential energy is minimized.

The same constant behavior found for the results of the energy release rates is not main-

tained for the dual and coupled energy release rates. When calculating ÎI , the nodal

point forces in the x2-direction are multiplied by the crack face displacement jumps in the

x1-direction as shown in eq. (1.185) instead of those in the x2-direction as for ĜI . The

values of ∆û
(8′)
1 and ∆û

(9′)
1 are less than the values of ∆û

(8′)
2 and ∆û

(9′)
2 , as illustrated in

Fig. 2.13b, and thus ÎI is less than ĜI , as shown in Fig. 2.12 by the green curve. For ÎII ,

the nodal point forces in the x1-direction are multiplied by the crack face displacement

jumps in the x2-direction as shown in eq. (1.186) instead of those in the x1-direction as

for ĜII ; thus its numerically obtained value is greater than ĜII , as shown in Fig. 2.12 by

the red curve. When using many elements in the VCE, the significant errors caused by

the stress singularity in the neighborhood of the crack tip become negligible, as shown in

Fig. 2.12 for large values of ∆a and the errors in the first two elements are minimized.

With the high errors in F̂
(m)
i and ∆û

(m′)
i , it is surprising that the VCCT produces such

accurate results.

In Banks-Sills and Farkash (2016), coarse and finer finite element meshes were employed

for an interface crack between two dissimilar linear elastic, isotropic and homogeneous

materials. For coarser meshes, the best results were obtained for the VCE producing the

lowest value of I in eq. (1.187), i.e., the lowest difference between ÎI and ÎII (or II and

III ). For finer meshes, excellent results were obtained even when I was large. But for

the smallest value of I, accurate energy release rates values were also found. Thus, it

was proposed to use Imin as a criterion for choosing the number of elements in the VCE.

It is shown here, that for a fine mesh with a crack in a linear elastic, homogeneous and

isotropic material, excellent results are obtained for GI and GII with a VCE consisting of

one element but resulting in a large value of I. From this investigation, it is understood

that the reason for the difference between the dual energy release rates II and III is the

stress singularity at the crack tip. For coarser meshes, with interface cracks when the

dual energy release rates converge nearly to the same value, the errors resulting from the

stress singularity at the crack tip have been overcome. In addition, it was shown here that

the dual energy release rates are analytically equal with analytical expressions given in

eqs. (2.28) and (2.53), for a crack in a linear elastic, homogeneous and isotropic material

and an interface crack between two dissimilar linear elastic, isotropic and homogeneous

materials, respectively.
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2.5 VCCT for an interface crack between two trans-

versely isotropic materials

In this section, an interface crack between two dissimilar linear elastic, transversely

isotropic and homogeneous materials, as shown in Fig. 1.7, is investigated. The upper

material is a unidirectional composite with fibers in the x1- direction. The lower material

is the same material as the upper one, rotated about the x2-axis with fibers in the x3-

direction. The interface energy release rate is given in eq. (1.35) where KIII = 0 and

1

H1

=
D11

4 cosh2 πε
. (2.77)

In eq. (2.77), D11 is taken from the matrix D and is given explicitly as (Banks-Sills and

Boniface, 2000)

D11 =
β1 + β2
EA

(
1− ν2A

ET
EA

)
+

1 + 2κ

4GT

, (2.78)

where iβ1 and iβ2 are eigenvalues of the compatibility equations; i =
√
−1; EA and ET are

the Young’s moduli in the axial and transverse directions, respectively; GT is the shear

modulus in the transverse direction given by

GT =
ET

2(1 + νT )
; (2.79)

νA and νT are the Poisson’s ratios in the axial and transverse directions, respectively; and

κ is given by

κ =
3− νT − ν2AET/EA

2(1 + νT )
. (2.80)

The oscillatory parameter ε is defined in eq. (1.67).

In order to determine the phase angle ψ, defined in eq. (1.40), two new auxiliary integrals

are presented

AT =
1

2∆a

∫ ∆a

0

[√
D22

D11

σ22(x1) + iσ21(x1)

][√
D11

D22

∆u2(∆a− x1)− i∆u1(∆a− x1)

]
dx1 ,

(2.81)

DT =
1

2∆a

∫ ∆a

0

[√
D22

D11

σ22(x1) + iσ21(x1)

][√
D11

D22

∆u2(∆a− x1) + i∆u1(∆a− x1)

]
dx1 ,

(2.82)

where the subscript T denotes transversely isotropic material, D22 is taken from the matrix

D and is given explicitly as (Banks-Sills and Boniface, 2000)

D22 =
β1β2(β1 + β2)

EA

(
1− ν2A

ET
EA

)
+

1 + 2κ

4GT

. (2.83)
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The coordinate system and the virtual crack extension, ∆a, are shown in Figs. 1.7 and 1.9,

respectively. Noting the expressions for A andD in eqs. (1.169) to (1.172) and substituting

eqs. (1.75) and (1.76) into eqs. (2.81) and (2.82), it may be shown that

AT =
1

H1

(
K2

1 +K2
2

)
(2.84)

and

DT =
cosh πε

πH1

PK2∆a2iε , (2.85)

where H1 is defined in eq. (2.77) and P is defined in eq. (1.173).

Noting that AT is real, one may write√
D22

D11

II =
√
D11

D22

III , (2.86)

where II and III are defined in eqs. (1.176) and (1.177), respectively. The dual energy

release rates for this interface crack may be redefined, following eq. (2.86), as

I(T )
I =

1

2∆a

√
D22

D11

M∑
m=1

F
(m)
2 ∆u

(m′)
1 (2.87)

I(T )
II =

1

2∆a

√
D11

D22

M∑
m=1

F
(m)
1 ∆u

(m′)
2 . (2.88)

The coupled energy release rate in eq. (2.41) for two isotropic materials is extended here

to be

G(T )
I−II = I(T )

I + I(T )
II . (2.89)

The percent difference between the left and the right hand sides of eq. (2.86) is defined as

IT =
I(T )
II − I(T )

I

I(T )
I

· 100 . (2.90)

The phase angle of DT may be extracted from eq. (2.82) as

ψDT
= tan−1

[
ℑ(DT )

ℜ(DT )

]
= tan−1

(
G(T )
I−II

GI − GII

)
. (2.91)

From eq. (2.85), it may also be written as

ψDT
= 2ψ + ψP + 2ε ln∆a , (2.92)

where ψP is define in eq. (2.52) and ψ is the phase angle of the stress intensity factors

given in eq. (2.51). Using eq. (2.92), ψ may be found as

ψ =
1

2
ψDT

− 1

2
ψP − ε ln∆a. (2.93)
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The stress intensity factors are determined using eqs. (2.61) and (1.184).

In Section 2.5.1, an expression for calculating the length of the interpenetration zone is

derived. This phenomenon was also considered in Toya (1992), Sun and Qian (1997),

Hemanth et al. (2005) and Agrawal and Karlsson (2006). In Toya (1992) and Sun

and Qian (1997), it was pointed out that ∆a should be larger than the interpenetration

zone. In this study, this suggestion is questioned. In Sections 2.5.2 and 2.5.3, numerical

results are presented for three problems of an interface crack between two dissimilar

transversely isotropic materials. An interface crack in an infinite body is presented in

Section 2.5.2. In Section 2.5.3, a CCT specimen and a DCB specimen are presented. The

mechanical properties that are used for all problems are shown in Table 1.1. Recall that

the upper material is a unidirectional composite with fibers in the x1- direction and the

lower material is the same material as the upper one, rotated about the x2-axis with fibers

in the x3- direction as shown in Fig. 1.7.

2.5.1 Interpenetration zone

Using the method presented in Rice (1988), one may derive an expression for the length

of the interpenetration zone for an interface crack between two transversely isotropic

materials. Taking the real part of eq. (1.76), one may write

∆u2 = C̃
√
rℜ
[

K

1 + 2iε
riε
]

(2.94)

where C̃ is a constant given by

C̃ =

√
D22

D11

2D11√
2π coshπε

(2.95)

and r has been substituted for ∆a− x in eq. (1.76). Since L̂ is an arbitrary length scale,

one may write

K̂ = |K|eiψ̂ (2.96)

where it is possible to define another phase angle

ψ̂ = tan−1

[
ℑ(KL̂iε)
ℜ(KL̂iε)

]
. (2.97)

Solving eq. (1.30) for K and substituting eq. (2.96) into it, leads to

K = |K|L̂−iεeiψ̂. (2.98)

Use of eq. (2.98) in eq. (2.94) yields

ℜ
[

K

1 + 2iε
riε
]
=

|K|√
1 + 4ε2

cos

[
ψ̂ + ε ln

(
r

L̂

)
− tan−1 2ε

]
. (2.99)
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In order to determine rc, the length of the interpenetration zone, one may require ∆u2 = 0;

thus, from eqs. (2.94) and (2.99)

cos

[
ψ̂ + ε ln

(
rc

L̂

)
− tan−1 2ε

]
= 0. (2.100)

For ε < 0, eq. (2.100) implies that[
ψ̂ + ε ln

(
rc

L̂

)
− tan−1 2ε

]
=
π

2
. (2.101)

Therefore

rc = L̂ exp

{
1

ε

[(π
2
− ψ̂

)
+ tan−1 2ε

]}
. (2.102)

Equation (2.102) depends explicitly on L̂ and implicitly on this quantity through ψ̂. How-

ever, it may be shown that rc does not depend on L̂.

2.5.2 An interface crack in an infinite body

In this section, the problem of an infinite body containing a finite crack of length 2a, with

a = 1 mm, along an interface between two dissimilar linear elastic, transversely isotropic

and homogeneous materials is considered, as shown in Fig. 2.14. Three different cases of

applied tractions are examined. In order to approximate an infinite body, the dimensions

of the body are taken to be w/a = 40 and h/w = 1; 2h and 2w are, respectively, the

height and width of the analyzed body. The material that is used in this problem is a

fiber reinforced composite made of graphite/epoxy AS4/3501-6. The effective mechanical

properties were taken from Banks-Sills and Boniface (2000), and are shown in Table 1.1.

For the upper material, the fibers are in the x1- direction, and for the lower material, they

are in the x3- direction as shown in Fig. 2.14. The body is subjected to remote tensile

and shear tractions. The analytical solution for this problem is given in Boniface and

Banks-Sills (2002) as

K =

(√
D22

D11

σ22 + iσ12

)
(1 + 2iε)

√
πa(2a)−iε. (2.103)

The stresses σ
(1)
11 and σ

(2)
11 are imposed parallel to the interface, as shown in Fig. 2.14, to

maintain displacement continuity along the interface. Assuming plane deformation, the

relation between σ
(1)
11 and σ

(2)
11 is given as

σ
(2)
11 =

ET
EA

σ
(1)
11 +

{
EAνT − ETνA[1− (νA − νT )]

EA − ETν2A

}
σ22, (2.104)

where EA and ET are the Young’s moduli in the axial and transverse directions, re-

spectively, and νA and νT are the Poisson’s ratios in the axial and transverse directions,

respectively.
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Figure 2.14: An interface crack between two dissimilar transversely isotropic materials in
an infinite body subjected to remote tensile and shear stresses.

Table 2.9: Parameters used to calculate the stress intensity factors.

D11 (1/GPa) D22 (1/GPa) 1/H1 (1/GPa) ε P C ψP

0.2307 0.3122 0.0572 -0.02780 3.1053+0.4141i 1.0010 0.1326

The values of D11, D22, 1/H1, ε, P , C and ψP from eqs. (2.78), (2.83), (2.77), (1.67),

(1.173), (1.181) and (2.52), respectively, are given in Table 2.9. The parameter ε is given

explicitly as (Boniface and Banks-Sills, 2002)

ε =
W12√
D11D22

, (2.105)

where W12 is taken from the matrix W in eq. (1.71) and explicitly given by (Boniface and

Banks-Sills, 2002)

W12 = −(1 + νT )νA
EA

+ β1β2

(
1− ν2A

ET
EA

)
1

EA
+

1− 2κ

4GT

. (2.106)

Three cases of applied tractions have been examined in this study. The applied tractions

and the analytic solution for the stress intensity factors are presented in Table 2.10.

Three meshes were constructed using Abaqus/CAE 6.14 (2014) with eight noded isopara-

metric elements (CPE8). In each case, the entire body was modeled. The size of the

elements near the crack tip, ℓ, and number of elements and nodes, for each mesh, are

presented in Table 2.11.

The applied tensile stress is σ22 = 1 MPa and σ
(1)
11 = 1 MPa. Using eq. (2.104), the

stress σ
(2)
11 was found to be 0.6006 MPa. A schematic figure of part of mesh A is shown
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in Fig. 2.15. The parts of the mesh that are far from the crack, at the corners of the

body, contain uniform elements whose dimensions are about 2 × 2 mm2. Note that the

crack length 2a is 2 mm. There is a uniform mesh of elements surrounding the crack

tips, where each element is 5 × 5 µm2. Therefore, ℓ = 5 µm. Above, below and on

the sides of the crack, there are transition zones between the two regions with elements

which have a large aspect ratio, the largest being 400. The stress gradients are low in

those regions; so that these elements should not adversely affect the accuracy of the

results. In addition, meshes B and C presented in Table 2.11 with smaller values of ℓ were

constructed. For those two meshes, a focused region around the crack tip was utilized

as shown schematically in Fig. 2.16. For the elements in the vicinity of the crack tip,

ℓ = 0.05 µm and ℓ = 0.5 µm, respectively, for meshes B and C. A uniform mesh with an

element size of ℓ× ℓ, was constructed only in the crack tip region, as shown schematically

in Fig. 2.16b. An enlargement of the region surrounded by a dotted red line in Fig. 2.16a

is illustrated in Fig. 2.16b.

For Mesh B, the size of the uniform mesh in the crack tip region, is 10 × 10 µm2, and

there are 200 × 200 elements with ℓ = 0.05 µm. Note that there are 100 such elements

in front of the crack tip and 100 elements on each crack face behind the crack tip. To

allow for this small element size, the mesh is focused towards the crack tip, as shown in

Fig. 2.16a. In the focused zone there are 70 square rings, each one smaller and thinner

than the outer one. Three inner rings are shown in Fig. 2.16b. In the outer region, a

uniform coarse mesh was constructed, similar to that in Fig. 2.15. The elements in that

region are 1× 1 mm2. The largest aspect ratio of the transition elements is 100.

For mesh C, the size of the uniform mesh in the crack tip region, is 25 × 25 µm2; there

are 50 × 50 elements with ℓ = 0.5 µm, instead of 200 × 200 elements with ℓ = 0.05 µm

in mesh B. Note that there are 25 elements in front of the crack and 25 elements on each

crack face behind the crack tip. In the focused zone, there are 25 square rings instead of

70 square rings as in mesh B. In the outer region, elements are 1×1 mm2, with no change

compared to mesh B. The largest aspect ratio of the transition elements is 25. It may

be noted that for meshes B and C, there are no stress gradients in the transition regions.

One of the aims of this study is to determine accurate stress intensity factors values for

Table 2.10: Applied tractions and the analytic solutions for the cases investigated in this
study.

σ22 σ21 σ
(1)
11 σ

(2)
11 K1 K2

(MPa) (MPa) (MPa) (MPa) (N/mm3/2+iε) (N/mm3/2+iε)

case 1 1 0 1 0.6006 2.0638 -0.0749
case 2 1 1 1 0.6006 2.1282 1.6991
case 3 1 4 1 0.6006 2.3213 7.0212
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Table 2.11: The size ℓ of the elements near the crack tip and the number of elements and
nodes for each mesh.

Mesh ℓ (µm) elements nodes

Mesh A 5.0 1,037,444 3,117,284
Mesh B 0.05 244,328 735,172
Mesh C 0.5 30,528 92,372

meshes which are as coarse as possible. Hence, elements in the transition region have high

aspect ratios.

Using the finite element results, the values of the energy release rates GI and GII are

calculated by means of eqs. (1.107) and (1.108), respectively. The values of the dual

and coupled energy release rates, I(T )
I , I(T )

II and G(T )
I−II are calculated using eqs. (2.87)

to (2.89), respectively. In order to compute the stress intensity factors, GI , GII and G(T )
I−II

are substituted into eq. (2.91) to determine ψDT
. This value is substituted into eq. (2.93)

to obtain ψ. The interface energy release rate, Gi , is found from eq. (2.37)1. Two pairs of

stress intensity factors are determined by substituting Gi and ψ into eq. (2.61), where H1

is given in eq. (2.77) and Table 2.9. Using the condition in eq. (1.184), the valid solution

is found. By means of eq. (2.90), the parameter IT is also computed. This parameter is

used to indicate a best solution.

The first two cases in Table 2.10 were considered using all three meshes described above.

The results for the first and second cases are shown in Tables 2.12 through 2.14 and 2.15

through 2.17, respectively. The third case in Table 2.10 was carried out only with mesh B

presented in Table 2.11. The results for this case are shown in Table 2.18. In Tables 2.12

Figure 2.15: Schematic view of part of mesh A presented in Table 2.11. This mesh contains
1,037,444 eight noded isoparametric elements and 3,117,284 nodal points.
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(a) (b)

Figure 2.16: Schematic view of (a) the crack region and (b) the crack tip region of meshes
B and C presented in Table 2.11.

Table 2.12: Data for case 1 in Table 2.10, solved with mesh A (ℓ = 5 µm) in Table 2.11.

N/2 ∆a(µm) K1 (%) K2 (%) IT (%)

1 5 0.02 -15.5 -42.9
2 10 0.02 -4.01 -16.7
3 15 0.02 1.34 -12.3
4 20 0.02 0.40 -9.7
5 25 0.02 0.40 -8.5
6 30 0.02 0.40 -7.4
7 35 0.02 0.27 -6.2
8 40 0.02 0.27 -5.7
15 75 0.00 0.27 -4.5
16 80 0.00 0.27 -4.2
17 85 0.00 0.27 -4.3
18 90 0.00 0.27 -4.3
19 95 0.00 0.27 -4.0
20 100 -0.01 0.27 -4.5
25 125 -0.02 0.27 -4.3
26 130 -0.03 0.40 -4.4
31 155 -0.05 0.40 -4.6
32 160 -0.06 0.40 -4.7
40 200 -0.10 0.40 -5.7
50 250 -0.17 0.53 -6.2

through 2.18, the first column represents the number of elements used for ∆a, the virtual

crack extension, which is given in the second column. Since ∆a consists of N nodes and

eight noded elements are employed in the analyses, the number of elements is N/2. In the

next two columns, errors in the stress intensity factors K1 and K2 appear. The percentage

IT in eq. (2.90) is shown in column 5. Recall that IT should be zero.

In Table 2.12, the results are shown for case 1 in Table 2.10, using mesh A presented in
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Table 2.13: Data for case 1 in Table 2.10, solved with mesh B (ℓ = 0.05 µm) in Table 2.11.

N/2 ∆a(µm) K1 (%) K2 (%) IT (%)

1 0.05 0.11 -15.8 -27.5
2 0.10 0.07 -1.60 -11.5
3 0.15 0.06 1.34 -8.3
4 0.20 0.06 0.40 -6.3
5 0.25 0.06 0.40 -5.2
6 0.30 0.06 0.27 -4.4
50 2.50 0.06 0.27 -0.64
100 5.00 0.06 0.27 -0.24

Table 2.11. Since there is a difference of two orders of magnitude between the two stress

intensity factors, as shown in Table 2.10, it is difficult to obtain an accurate solution. For

K1, the absolute value of the percent error is less than 0.06% for ∆a = 5 µm to 155 µm.

For ∆a = 35 µm to 125 µm, the percent error for K2 is 0.27%. The lowest value of IT is

obtained for ∆a = 95 µm. For this value of ∆a, K1 has no error to 3 significant figures

and K2 has an error of 0.27%. This is a very good result for K2. Note, that by using one

element for ∆a, the error for K2 is -15.5%.

Mesh A consists of over 1,000,000 elements making this method impractical for extension

to three dimensions. Hence, the focused mesh B was used to reduce the required computer

memory and CPU time in the finite element analyses. By using a focused mesh, a smaller

value of ℓ was also achieved. In Table 2.13, the results are shown for case 1 in Table 2.10

using mesh B in Table 2.11 and shown schematically in Fig. 2.16. For ∆a ≥ 0.3 µm, the

percent error converges to 0.06% for K1 and 0.27% for K2. The value of IT decreases

as ∆a increases. For the greatest value of ∆a used in the calculation, the value of IT
is -0.24%. Note that the largest value of ∆a in Mesh B is the smallest one in mesh A.

As a result of the stress singularity, using only the elements that are in the vicinity of

the crack tip leads to poor results for K2. For example, in Table 2.12, for ∆a = 15 µm

and comprising the first 3 elements, the percent error for K2 is larger than 1.3%. This

behavior was also observed for other methods such as the M-integral and displacement

extrapolation (see, Freed and Banks-Sills, 2005). For the M-integral, use of the first

volume of elements surrounding the crack front produced poor results. For displacement

extrapolation, good results were obtained from elements that are at least two or more

elements distant from the crack tip. On the other hand, as one may see in eq. (1.103),

∆a should be small for VCCT. Therefore, there is a range of values for ∆a which produce

good results. The lowest value of IT is a good indicator for the choice of ∆a and, hence,

the values for K1 and K2.

A further step to reduce the number of elements was made with mesh C. Recall that the

number of elements in the uniform mesh surrounding the crack tip and the number of
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Table 2.14: Data for case 1 in Table 2.10, solved with mesh C (ℓ = 0.5 µm) in Table 2.11.

N/2 ∆a(µm) K1 (%) K2 (%) IT (%)

1 0.5 0.07 -15.1 -36.5
2 1.0 0.06 -4.01 -14.6
3 1.5 0.06 0.93 -10.5
4 2.0 0.06 0.27 -8.0
5 2.5 0.06 0.40 -6.6
6 3.0 0.06 0.27 -5.6
25 12.5 0.06 0.27 -1.9

rings used for mesh C is less than those of mesh B. As presented in Table 2.11, the number

of elements in mesh C is about 30,000, a decrease of about one-eighth as compared to

mesh B. In Table 2.14, the results are shown for case 1 in Table 2.10 using mesh C. For

∆a ≥ 3 µm, the percent error converges to 0.06% for K1 and 0.27% for K2. The value of

IT decreases as ∆a increases. For the greatest value of ∆a used in the calculation, the

value of IT is -1.9%. The values obtained for K1 and K2 using meshes B and C, as a

function of the number of elements are very similar. Note that for both meshes B and

C, by using one element for ∆a the error for K2 is quite large. It may be noted that the

lowest values of IT are obtained with use of mesh B. Although this mesh is quite fine,

mesh C which is much coarser than mesh B is recommended (see Table 2.11). It may be

observed in Table 2.14 that values of IT are not as small as those presented in Table 2.13

for mesh B. But convergence is obtained with small errors in the stress intensity factors.

In Tables 2.15 through 2.17, the results are presented for case 2 from Table 2.10 using

meshes A, B and C. In this case, in addition to tensile traction, a shear traction is applied

at the outer boundary of the body as shown in Fig. 2.14, which is the same magnitude as

the tensile stress, σ22. Since the stress intensity factors are the same order of magnitude

for this problem, it should be easier to obtain accurate results. In Table 2.15, the results

are shown for case 2 in Table 2.10, using mesh A in Table 2.11. The absolute values of the

percent errors are less than 0.06% for both K1 and K2, when ∆a = 15 µm to 165 µm for

the former and ∆a = 15 µm to 90 µm for the latter. The lowest value of IT is obtained

for ∆a = 150 µm. For this value of ∆a, K1 has an error of -0.04% and K2 has an error

of -0.11%. Note that by using one element for ∆a, the errors are less than 1% for both

stress intensity factors.

In Table 2.16, the results are presented for case 2 in Table 2.10, using mesh B in Table 2.11.

For ∆a ≥ 0.25 µm, the percent error converges to 0.07% for K1 and 0.02% for K2. For

the greatest value of ∆a used in the calculation, the value of IT is -0.14%.

In Table 2.17, the results are presented for case 2 in Table 2.10, using mesh C in Table 2.11.

For ∆a ≥ 3.5 µm, the percent error converges to 0.06% for K1 and 0.02% for K2. For

the greatest value of ∆a used in the calculation, the value of IT is -0.72%. Also here, by
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using one element for ∆a the errors are less than 1% for both stress intensity factors. It

is shown that a mesh (mesh C) consisting of fewer elements in the vicinity of the crack

tip and fewer square rings, as compared to mesh B, leads to excellent results.

In case 3 presented in Table 2.10, the applied shear traction is increased to 4 MPa with

the tensile traction remaining at 1 MPa. Using eq. (2.102) for this case, rc = 0.076 µm.

In eq. (2.102), ψ̂ is calculated by means of eq. (2.97) with ε given in eq. (2.105) and

Table 2.9. Recall that rc does not depend on L̂. Hence, the interpenetration zone occurs

for a distance r ≤ 0.076 µm from the crack tip. Only mesh B presented in Table 2.11

was used for this calculation. Since the size of one element is ℓ = 0.05 µm, the first

two elements behind the crack tip are in the interpenetration zone. It is expected that

interpenetration should occur between the third and fourth nodes from the crack tip. In

Fig. 2.17, the deformed configuration of the crack faces in the vicinity of the crack tip are

plotted. As may be observed, the first two elements penetrate each other. Indeed, the

interpenetration ends between the third and fourth nodes from the crack tip. For cases

1 and 2 in Table 2.10, there will be an interpenetration zone; but it will be smaller than

the smallest distance between the nodes in the vicinity of the crack tip in mesh B.

In Table 2.18, the results are shown for case 3 from Table 2.10 obtained using mesh B.

Since interpenetration occurs for ∆a ≤ 0.076 µm, results for the first and the second

elements where ∆a = 0.05 µm and 0.1 µm, produce zero and a negative value for GI ,

Table 2.15: Data for case 2 in Table 2.10, solved with mesh A (ℓ = 5 µm) in Table 2.11.

N/2 ∆a(µm) K1 (%) K2 (%) IT (%)

1 5 -0.43 0.65 -20.9
2 10 -0.08 0.14 -9.4
3 15 0.03 -0.04 -6.6
4 20 0.03 -0.03 -4.8
5 25 0.03 -0.04 -3.9
6 30 0.03 -0.04 -3.2
7 35 0.03 -0.04 -2.8
8 40 0.02 -0.04 -2.4
16 80 0.01 -0.05 -1.3
17 85 0.01 -0.05 -1.3
18 90 0.00 -0.05 -1.2
19 95 0.00 -0.06 -1.2
20 100 0.00 -0.06 -1.2
29 145 -0.03 -0.10 -1.04
30 150 -0.04 -0.11 -0.99
31 155 -0.04 -0.11 -1.04
33 165 -0.05 -0.12 -1.04
34 170 -0.06 -0.12 -1.00
50 250 -0.16 -0.24 -1.05
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Table 2.16: Data for case 2 in Table 2.10, solved with mesh B (ℓ = 0.05 µm) in Table 2.11.

N/2 ∆a(µm) K1 (%) K2 (%) IT (%)

1 0.05 -0.36 0.74 -15.9
2 0.10 0.01 0.11 -7.5
3 0.15 0.09 -0.01 -5.3
4 0.20 0.07 0.01 -3.9
5 0.25 0.07 0.02 -3.1
30 1.50 0.07 0.02 -0.49
50 2.50 0.07 0.02 -0.34
100 5.00 0.07 0.02 -0.14

0.0000E+005.0000E-051.0000E-041.5000E-042.0000E-042.5000E-043.0000E-04

Upper crack face

Crack tipLower crack face

Lower crack face

Original crack faces

Node

Figure 2.17: For case 3 in Table 2.10 using mesh B, a schematic view of the deformed
configuration of the crack faces using data obtained from the finite element analysis.

respectively, they are not presented. For ∆a ≥ 0.85 µm, the percent error converges to

0.09% for K1 and 0.02% for K2. For the greatest value of ∆a used in the calculation,

the value of IT is 0.09%. The percent error of -2.33% for K1 when ∆a = 0.15 µm and

values of more than 25% for IT when 0.15 µm ≤ ∆a ≤ 0.20 µm are higher than the

corresponding values for cases 1 and 2 using mesh B (see Tables 2.13 and 2.16). These

high values appear to be a result of the negative crack face displacements jumps from the

interpenetration zone that are used at the calculation. Using the elements that are in the

interpenetration zone, together with other elements beyond them, for the calculation does

not cause the results to deteriorate. On the contrary, in order to obtain accurate results,

those elements should be used in the calculation. It may be pointed out that contact

Table 2.17: Data for case 2 in Table 2.10, solved with mesh C (ℓ = 0.5 µm) in Table 2.11.

N/2 ∆a(µm) K1 (%) K2 (%) IT (%)

1 0.5 -0.38 0.70 -20.3
2 1.0 -0.05 0.19 -9.2
3 1.5 0.06 0.02 -6.3
4 2.0 0.06 0.02 -4.7
5 2.5 0.07 0.01 -3.7
6 3.0 0.07 0.01 -3.1
7 3.5 0.06 0.02 -2.6
25 12.5 0.06 0.02 -0.72
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Figure 2.18: Geometry for (a) a CCT specimen and (b) a DCB specimen with an interface
crack.

elements may be used to prevent interpenetration. However, using contact elements will

cause small errors in the calculation of GI and GII . Hence, contact elements were not used.

Sections 2.5.1 and 2.5.2 were published in Farkash and Banks-Sills (2017).

2.5.3 Interface cracks in a CCT and a DCB specimens

In this section, two problems are solved by means of an FEA using a commercial finite

element program Abaqus/CAE (2017). The results in this section are new. The first

problem is a CCT specimen with an interface crack, as shown in Fig. 2.18a. A DCB

specimen with an interface crack subjected to mode I loading, as shown in Fig. 2.18b, is

the second problem. Recall that the upper material of the specimens is a unidirectional

composite with fibers in the x1- direction. The material that is used in this problem is a

Table 2.18: Data for case 3 in Table 2.10, solved with mesh B (ℓ = 0.05 µm) in Table 2.11.

N/2 ∆a(µm) K1 (%) K2 (%) IT (%)

3 0.15 -2.33 0.29 53.1
4 0.20 -0.04 0.04 25.3
5 0.25 0.05 0.03 15.6
6 0.30 0.07 0.03 11.0
17 0.85 0.09 0.02 2.0
30 1.50 0.09 0.02 0.88
50 2.50 0.09 0.02 0.41
100 5.00 0.09 0.02 0.09
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Table 2.19: Data for the CCT specimen.

N/2 ∆a(µm) K1 (N/mm3/2+iε) K2 (N/mm3/2+iε) IT (%)

1 0.5 5.5417 0.4290 30.5
2 1.0 5.5429 0.4137 12.6
3 1.5 5.5437 0.4069 9.0
4 2.0 5.5435 0.4070 6.8
5 2.5 5.5434 0.4071 5.5
30 15 5.5434 0.4073 1.2
50 25 5.5434 0.4073 0.9
100 50 5.5434 0.4073 0.9

fiber reinforced composite made of graphite/epoxy AS4/3501-6. The effective mechanical

properties are given in Table 1.1. The lower material is the same material as the upper

one, rotated about the x2-axis with fibers in the x3- direction.

The CCT specimen is subjected to a remote tensile traction, as shown in Fig. 2.18a.

The length of the crack is 2a = 10 mm. The width and height of the body are 2w =

2h = 20 mm. The applied tensile traction is σ∞
22 = 1 MPa and plane strain conditions are

imposed using CPE8 elements of Abaqus/CAE (2017). It is noted that these are eight

noded isoparametric elements. The finite element method is used to determine the crack

face displacement jumps behind the crack tip and the nodal point forces ahead of the

crack tip. The FEA ia carried out with an element length of 0.5 µm in the vicinity of the

crack tip. A focused mesh in the vicinity of the crack tip is used. A schematic view of a

quarter of the mesh and the focused mesh in the vicinity of the crack tip are presented in

Figs. 2.4a and 2.4b, respectively. Recall that in the schematic view, there are only twenty

elements ahead of the crack tip. In the actual mesh, the element size in the vicinity of

the crack tip is 0.5 × 0.5 µm2 with 100 elements of this size ahead, behind, above and

below the crack tip. The number of elements and nodal points for this mesh is 274,144

and 824,716, respectively.

Using the finite element results, the values of the energy release rates Gi , GI , GII , I(T )
I ,

I(T )
II and G(T )

I−II are calculated using eqs. (2.37)1, (1.107), (1.108), (2.87), (2.88) and (2.89),

respectively. The stress intensity factors are calculated using eq. (2.61), where H1 is given

in eq. (2.77) and Table 2.9, as described in Section 2.5.2. Equation (2.90) is used to calcu-

late the parameter IT . The results obtained for the stress intensity factors are presented

in Table 2.19. Recall that N is the number of nodal points in the calculation and ∆a is

the VCE. The value of IT given in eq. (2.90) decreases as ∆a increases. For the greatest

value of ∆a used in the calculation, the value of IT is 0.9%. The values of the stress

intensity factors converged to K1 = 5.5434 N/mm3/2+iε and K2 = 0.4073 N/mm3/2+iε,

respectively.

Next, the DCB specimen shown in Fig. 2.18b is discussed. In the FEAs, the DCB specimen
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Table 2.20: Data for the DCB specimen using the first mesh.

N/2 ∆a(µm) K1 (N/mm3/2+iε) K2 (N/mm3/2+iε) IT (%)

1 0.5 21.084 12.772 21.6902
2 1.0 21.141 12.676 9.6901
3 1.5 21.160 12.647 6.7826
4 2.0 21.158 12.648 5.0106
5 2.5 21.158 12.647 4.0231
30 15.0 21.158 12.648 1.1282
31 15.5 21.158 12.648 1.1234
32 16.0 21.158 12.648 1.1198
33 16.5 21.158 12.648 1.1176
34 17.0 21.158 12.648 1.1163
35 17.5 21.158 12.648 1.1160
36 18.0 21.158 12.648 1.1168
37 18.5 21.158 12.648 1.1182
38 19.0 21.158 12.648 1.1205
50 25.0 21.158 12.648 1.1915
100 50.0 21.158 12.647 1.8125

is subjected to an applied load P = 1 N, as shown in Fig. 2.18b; a = 20 mm; 2h = 4 mm,

and the length of the body is 2w = 40 mm. Plane strain conditions are imposed using

CPE8 elements of Abaqus/CAE (2017). The first FEA is carried out with an element

length in the vicinity of the crack tip of 0.5 µm. The second is carried out with an element

length in the vicinity of the crack tip of 0.05 µm. In both cases, a focused mesh is used,

similar to that in Fig. 2.4b. The number of elements and nodal points for the first mesh

is 61,360 and 185,189, respectively; for the second mesh they are 125,360 and 377,349,

respectively.

The results obtained for the stress intensity factors using the first mesh, are presented

in Table 2.20. The lowest value of IT is obtained for ∆a = 17.5 µm. The values of the

stress intensity factors for this value of ∆a are found to be K1 = 21.158 N/mm3/2+iε and

K2 = 12.648 N/mm3/2+iε, respectively.

The results obtained for the stress intensity factors using the second mesh, are presented in

Table 2.21. The value of IT given in eq. (2.90) decreases as ∆a increases. For the greatest

value of ∆a used in the calculation, the value of IT is 0.9%. The values of the stress

intensity factors converged to K1 = 21.164 N/mm3/2+iε and K2 = 12.651 N/mm3/2+iε,

respectively. The difference between the values of the stress intensity factors obtained

using the first and the second meshes is less than 0.03%. Hence, convergence is fulfilled.
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Table 2.21: Data for the DCB specimen using the second mesh.

N/2 ∆a(µm) K1 (N/mm3/2+iε) K2 (N/mm3/2+iε) IT (%)

1 0.05 21.051 12.784 21.0
2 0.10 21.163 12.687 9.3
3 0.15 21.171 12.655 6.5
4 0.20 21.164 12.650 4.7
5 0.25 21.165 12.650 3.8
10 0.50 21.165 12.652 1.9
50 2.50 21.164 12.651 0.4
100 5.00 21.164 12.651 0.3

2.5.4 Summary

In Section 2.5, an interface crack between two dissimilar linear elastic, transversely isotropic

and homogeneous materials, as shown in Fig. 1.7, was investigated. The upper material

is a unidirectional composite with fibers in the x1- direction. The lower material is the

same material as the upper one, rotated about the x2-axis with fibers in the x3- direction.

The equations for this interface crack using the VCCT were derived. The interpenetration

zone was found in Section 2.5.1. Numerical results for a finite length interface crack in an

infinite body were presented in Section 2.5.2. The errors for the stress intensity factors,

compared to analytical solution, were less than 0.3%. In Section 2.5.3, numerical results

for a CCT and a DCB specimens were presented. For the CCT specimen, a mesh with

an element length in the vicinity of the crack tip of 0.5 µm was used. The value of IT
decreases as ∆a increases. The values of the stress intensity factors were taken for the

largest ∆a that was used. For the DCB specimen, two FEAs were carried out. The value

of IT using an element length in the vicinity of the crack tip of 0.5 µm decreased up to

∆a = 17.5 µm; with a greater VCE the value of IT increased. The values of the stress

intensity factors were taken for ∆a = 17.5 µm. Using an element length in the vicinity

of the crack tip of 0.05 µm, the value of IT decreases as ∆a increases. The values of the

stress intensity factors were taken for the largest ∆a that was used. The values of the

stress intensity factors obtained using the first and second meshes were almost the same

with a difference of less than 0.03% difference. Based on this criterion, it was found in

Sections 2.5.2 and 2.5.3 that a mesh consisting of fewer elements in the vicinity of the

crack tip and fewer square rings, as compared to finer meshes, leads to the same results.

With this information, meshes with fewer elements may be used for three-dimensional

problems to decrease the FEA run-time.
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Chapter 3

VCCT for three-dimensional
problems

In this chapter, the VCCT is considered for three-dimensional problems. In Section 3.1,

equations for calculating the energy release rates using a VCE that consists of many ele-

ments in three-dimensional problems are derived. Numerical results, considering the equa-

tions from Section 3.1, are presented in Section 3.2 for a straight through finite length crack

and a penny-shaped crack in infinite bodies of linear-elastic, homogeneous and isotropic

material. These problems are carried out for interface cracks between two dissimilar lin-

ear elastic, homogeneous and isotropic materials in Section 3.3. In Section 3.4, numerical

results for an interface crack between two dissimilar transversely isotropic materials are

presented.

3.1 Derivations of equations for calculating the en-

ergy release rates in three-dimensional problems

The VCCT was reviewed in Section 1.6.1. Recall that in Shivakumar et al. (1988), the

first full mathematical derivation of the VCCT for eight-noded and twenty-noded brick

elements was presented. Additional methods were reviewed in Section 1.6.1. One element

was used in front of the crack front for the VCE in all cases. The equations for calculating

the energy release rates are presented here using many elements for the VCE, as shown

in Fig. 3.1 for a straight through crack.

The equations for a straight through crack are presented next. In Fig. 3.1, the VCE

consists of two elements which are shaded for two different cases. Each node is denoted

by its column m and row n in parentheses as (m,n). For the nodes ahead of the crack

front and at the crack front, the columns are numbered by proceeding from the crack

front. The node numbers for columns on the crack surface are primed. The primed

numbers refer to the corresponding column on the crack surface. The derivation follows
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Figure 3.1: View from above of the nodes that are used for calculating the energy release
rates in rows 4 and 7, using twenty-noded brick elements.

the approaches, presented in Section 1.6.1, of Shivakumar et al. (1988) for mid-nodes in

eqs. (1.123) to (1.125) and of Whitcomb (1988) for corner nodes along the crack front

in eqs. (1.127) to (1.129) using a VCE which consists of one element. The equation for

the mode I energy release rate at mid-nodes along the crack front (even values of n) in

Fig. 3.1 is given as

G(n)
I =

1

2∆A(n)

[(
1

2

2M∑
m=1

F
(m,n−1)
2 ∆u

(m′,n−1)
2 + F

(m,n+1)
2 ∆u

(m′,n+1)
2

)

+
M∑
m=1

F
(2m−1,n)
2 ∆u

(2m′−1,n)
2

]
,

(3.1)

where ∆A(n) is the area of the virtual crack extension, presented in Fig. 3.1 as the shaded

region for row 4 so that n = 4 ; it is given by

∆A(n) =M · ℓ1 · ℓ3. (3.2)

In eqs. (3.1) and (3.2),M is the number of elements used for the VCE, in this case,M = 2

(see Fig. 3.1). The length and the depth of the elements in the x1 and x3-directions are ℓ1

and ℓ3, respectively. In eq. (3.1), for the nodal point forces F
(m,n)
p and the displacement

jumps ∆u
(m′,n)
p , the subscript p represents the xp-direction and the superscript denotes

the node numbers. It is assumed that the nodal point forces F
(m,n−1)
p and F

(m,n+1)
p are

distributed equally between two adjacent rows of elements. Therefore, they are multiplied

by one-half in eq. (3.1).
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The equation for the mode I energy release rate at corner nodes along the crack front

(odd values of n) is given as

G(n)
I =

1

2∆A(n)

[
2M∑
m=1

F
(m,n)
2 ∆u

(m′,n)
2

+
1

2

(
M∑
m=1

F
(2m−1,n−1)
2 ∆u

(2m′−1,n−1)
2 + F

(2m−1,n+1)
2 ∆u

(2m′−1,n+1)
2

)]
,

(3.3)

where ∆A(n) is given in eq. (3.2) and is the shaded region surrounding n = 7 in Fig. 3.1.

In eq. (3.3), it is assumed that the nodal point forces F
(2m−1,n−1)
p and F

(2m−1,n+1)
p are

distributed equally between the calculations for the current corner-node and the former

or the next corner node, respectively.

In order to calculate the modes II and III energy release rates, the subscript 2 in eqs. (3.1)

and (3.3) is replaced by 1 and 3, respectively. Hence, the equation for the energy release

rates at mid-nodes along the crack front for even values of n in Fig. 3.1 are given as

G(n)
II =

1

2∆A(n)

[(
1

2

2M∑
m=1

F
(m,n−1)
1 ∆u

(m′,n−1)
1 + F

(m,n+1)
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1
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(3.4)
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3

]
.

(3.5)

In order to calculate II and III , the subscript 2 in eqs. (3.1) and (3.3) is replaced by

1 only for the displacement jumps or only for the nodal point forces, respectively. The

equations for the dual energy release rates at mid-nodes along the crack front are given

by

I(n)
I =

1

2∆A(n)

[(
1

2

2M∑
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F
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]
,

(3.6)

I(n)
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.

(3.7)
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The equation for the energy release rates at corner-nodes along the crack front for odd

values of n in Fig. 3.1 are given by

G(n)
II =

1

2∆A(n)

[
2M∑
m=1

F
(m,n)
1 ∆u

(m′,n)
1

+
1

2
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(2m′−1,n−1)
1 + F
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(2m′−1,n+1)
1

)]
.

(3.8)

G(n)
III =

1

2∆A(n)
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3

)]
,

(3.9)

For the dual energy release rates the equations are given by

I(n)
I =

1

2∆A(n)

[
2M∑
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(3.10)
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)]
.

(3.11)

Next, the equations for calculating the energy release rates for a penny-shaped crack are

presented. In Fig. 3.2, the view from above of a quarter of a penny-shaped crack is shown.

The nodal point forces and the displacement jumps perpendicular and tangent to the crack

front are denoted with subscripts r and θ, respectively. The x2-axis is perpendicular to

the crack plane. The equations for the energy release rates are given for even values of n

at the mid-side nodes by

G(n)
I =

1

2∆A(n)

[(
1

2

2M∑
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F
(m,n−1)
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2

)

+
M∑
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F
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2

]
,

(3.12)
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Figure 3.2: View from above of the nodes that are used for calculating the energy release
rates in row 6 for a penny-shaped crack.
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(3.14)

where ∆A(n) is the area of the virtual crack extension, presented in Fig. 3.2 as the shaded

region for n = 8; it is given as

∆A(n) =
[
(a+M · ℓr)2 − a2

] θsector
2

(3.15)

whereM is the number of elements used for the VCE and θsector is the angle of each sector
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in radians. For odd values of n, the the energy release rates are given as
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(3.16)
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(3.18)

The dual energy release rates, II and III , are given for even values of n at the mid-side

nodes by
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(3.20)

and for odd values of n as
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Figure 3.3: A straight through crack in an infinite body.
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(3.22)

3.2 Numerical results for a straight through finite

length crack and a penny-shaped crack in an in-

finite body of isotropic, homogeneous material

In this section, two problems are solved by means of an FEA using a commercial finite

element program Abaqus/CAE (2017). The first problem is a straight through finite

length crack of length 2a in an infinite body of a linear-elastic, homogeneous and isotropic

material; a schematic view of the body is shown in Fig. 3.3. The half crack length

is a = 1 mm. In order to approximate an infinite body, the ratio between the crack

length and the body width in the finite element model is w/a = 40 and h = w. The

crack is situated at the center of the body. Three different thicknesses are chosen for

study, 2b = 4, 8 and 15 mm. The origin of the coordinate system is located on the right

crack front, at the mid-body thickness. The body is subjected to far field tension, where

σ22 = 1 MPa as shown in Fig. 3.3. The mechanical properties of aluminium are used,

where E = 70 MPa and ν = 0.3.

The solution for the stress intensity factor for a crack in an infinite two-dimensional body

is given in Irwin (1957) and presented in eqs. (2.72)1 and (2.73)1. Using eq. (1.19), one
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(a) (b)

Figure 3.4: A schematic view of (a) the x1x2-plane of the mesh that was used for a straight
through crack in an infinite body and (b) a close up of the vicinity of the crack tip for
this mesh.

may calculate the mode I stress intensity factor for two-dimensional problems by assuming

plane stress or plane strain conditions. When solving a three-dimensional problem, if the

body is sufficiently thick, one may assume that plane strain conditions prevail at the

mid-plane of the body. By using eq. (1.19) and assuming plane strain, the stress intensity

factor for mode I is given as

KI =

√
E

1− ν2
GI . (3.23)

Thus, for σ22 = 1 MPa the mode I energy release rate and the normalized stress intensity

factor are GI = 40.8 N/m and K̂I = 1, respectively.

For 2b = 4 mm, two meshes are used to check convergence. The coarser mesh is denoted as

A1 and the finer mesh is denoted as A2. A schematic view of the x1x2-plane of the meshes

that are used here, is presented in Fig. 3.4a. At the corners of the body, the elements are

large and they become smaller as one approaches the crack, as shown in Fig. 3.4a. The

dimensions of the biggest elements at the corners of the body are ∼ 10×10 mm2 for both

meshes. Around each crack tip there is a focused mesh containing 15 rings. In the vicinity

of the crack tips, for mesh A1, there is a uniform mesh of 10× 10 elements, as shown in

Fig. 3.4b. For mesh A2, there is a uniform mesh of 20 × 20 elements. The dimensions

of the elements in the vicinity of the crack tip in the x1x2-plane are 10 × 10 µm2 and

5× 5 µm2 for meshes A1 and A2, respectively. There are transition elements between the

outer mesh and the focused mesh. The greatest aspect ratio of those elements is ∼ 50

and ∼ 100 for meshes A1 and A2, respectively. The meshes were extruded through the

half-thickness of the body and symmetry conditions were used at the center plane of the

body, where x3 = 0. This plane is constrained in the x3-direction for translation and in

the x1 and x2-directions for rotation. The thickness of the elements is 0.1 mm so that

there are 20 elements through the thickness. The number of elements and nodes of the
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Table 3.1: The number of elements and nodes for each three-dimensional mesh for a
straight through finite length crack in Fig. 3.3.

Mesh Thickness (2b) (mm) elements nodes

A1 4 46,800 200,916
A2 4 94,400 400,936
B 8 188,800 787,416
C 15 354,000 1,463,756

meshes is presented in Table 3.1.

The results obtained for GI using eq. (3.3) at the mid-plane of meshes A1 and A2, which is

a corner node, are presented in Table 3.2. In this table, M is the number of elements used

for the VCE. The results for GI for mesh A1 and A2 are nearly constant as a function of

∆a with a difference of up to 0.02% for each mesh. The difference between the results for

meshes A1 and A2 is less than 0.07% indicating convergence of the results. Thus, mesh

A2 is extruded through the thickness for 2b = 8 and 15 mm resulting in meshes B and

C in Table 3.1. The number of elements and nodes of meshes B and C are presented in

Table 3.1. It may be noted from Table 3.2 that for homogeneous material it is possible to

use one element for the VCE with accurate results produced.

In Fig. 3.5 the results for the mode I energy release rate normalized by the mode I energy

release rate for the two-dimensional plane strain problem are presented. The results are

shown for 2b = 4, 8 and 15 mm as function of x3/b, where x3 = 0 is the mid-plane of the

body. Mesh A2 was used for 2b = 4 mm. The results achieved with the VCCT using

eq. (3.1) for mid-side nodes and eq. (3.3) for corner nodes are plotted in blue. The results

Table 3.2: Numerical results for a straight through finite length crack using two-
dimensional meshes from Table 3.1.

M mesh A1 mesh A2

∆a (µm) GI (N/m) ∆a (µm) GI (N/m)

1 10 42.15 5 42.16
2 20 42.15 10 42.17
3 30 42.15 15 42.17
4 40 42.14 20 42.17
5 50 42.14 25 42.17
6 30 42.17
7 35 42.17
8 40 42.17
9 45 42.17
10 50 42.16
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Figure 3.5: Numerical results for a straight through finite length crack in an infinite body.

presented were taken for ∆A with ten elements used for the VCE. The gray lines show

the results of the J-integral. The results presented were taken from the tenth contour.

The black line is the analytical energy release rate for the two-dimensional plane strain

problem.

As one may observe, the results at the mid-plane (x3 = 0) converged to the plane strain

solution as the thickness of the body is increased. For 2b = 15 mm, the results differ by

0.17% from the plane strain solution at the mid-plane. The results differ by less than

0.5% for x3/b < 0.45 for this thickness. The difference between the results obtained by

the VCCT and the J-integral is less than 0.02% for x3/b < 0.95. For x3/b > 0.95, there

are significant differences between results obtained with the two methods.

Next, a penny-shaped crack in an infinite linear elastic, isotropic and homogeneous body

is considered. The mechanical properties of the body are E = 70 GPa and ν = 0.3. The

dimensions of the body are a = 1 mm, R/a = 40 and h/R = 1 where 2a and 2R are the

crack and the body diameters, respectively, and 2h is the height of the body, as shown in

Fig. 3.6. The crack is situated at the center of the body. The analytical solution of the

problem is given by Sneddon (1946) as

KI =
2

π
σ22

√
πa (3.24)

where the value of σ22 is 1 MPa.

First, a convergence study is carried out using two-dimensional axisymmetric meshes. Two

axisymmetric meshes are constructed using Abaqus (2017) with eight noded isoparametric

axisymmetric elements (CAX8). The axis of symmetry is at the center of the cylinder, as

shown in Fig. 3.7a. In the vicinity of the crack tip, there are uniform elements of a size of

ℓ× ℓ, shown as an empty rectangle in Fig. 3.7a; the inner mesh is shown in Fig. 3.7b. The

101



Sunday 8th May, 2022

2a

22

2h

2R

σ

Figure 3.6: A penny-shaped crack in an infinite body.

length ℓ differs from mesh to mesh. The values of ℓ and the number of the elements and

nodes for each mesh are shown in Table 3.3. Mesh B is shown in Fig. 3.7. In Fig. 3.7a,

one may observe that the elements become smaller towards the vicinity of the crack tip.

An area of 1× 1 mm2 around the crack tip contains the uniform mesh.

The energy release rate GI is calculated using eq. (1.107) where ∆a is replaced by ∆A

given as

∆A = π
[
(a+∆a)2 − a2

]
. (3.25)

(a)

(b)

Figure 3.7: A view of (a) the mesh that was used for a penny-shaped crack in an infinite
body and (b) a close up of the vicinity of the crack tip for this mesh.

102



Sunday 8th May, 2022

Table 3.3: The size ℓ of the elements near the crack tip and the total number of elements
and nodes for each mesh for the penny-shaped crack and axisymmetric mesh.

Mesh ℓ (µm) elements nodes

A 50 1,656 5,159
B 10 15,860 48,201

In eq. (3.25), ∆A is the area of an annulus, as shown in Fig. 3.8. For a penny-shaped crack,

the crack front satisfies plane-strain conditions. The stress intensity factor KI is found

from GI using eq. (3.23). From eq. (3.24), the analytical solution is KI = 1.1284 N/mm3/2.

The numerical results for meshes A and B are shown, respectively, in Tables 3.4 and 3.5.

The greatest error for meshes A and B is -0.52% and -0.12%, respectively. The errors

obtained for KI are nearly constant for each mesh with a difference of up to 0.07% and

0.06% for meshes A and B, respectively. The results converged to the analytical solution

for the finest mesh.

Hence, for the three dimensional analysis, mesh B is swept through 90◦ with ten divisions.

The isoparametric and upper views are shown in Figs. 3.9a and 3.9b, respectively. The

plane of the crack is similar to that in Fig. 3.2, with ten divisions in the angular direction

and a much more refined mesh in the radial direction. The eight-noded elements were

swept to twenty-noded elements (C3D20) except for the elements touching the x2-axis.

The inner elements were swept to fifteen-noded wedge elements (C3D15). The mesh

consists of 158,600 brick elements, 1,300 wedge elements and 693,603 nodes. The size

of the elements in the vicinity of the crack front is ℓr × ℓ2 × ℓθ = 10 × 10 × 157µm3.

Symmetry conditions were applied at x1 = 0 and x3 = 0. The x1 = 0 plane is constrained

in the x1-direction for translation and in the x2 and x3-directions for rotation. The x3 = 0

a

a+∆al

∆a

∆A

Figure 3.8: Upper view of the virtual crack extension of a penny-shaped crack for an
axisymmetric problem.
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Table 3.4: Data for mesh A in Table 3.3 (ℓ = 50 µm).

M ∆a(µm) KI (N/mm3/2) KI (% error)

1 50 1.1225 -0.52
2 100 1.1227 -0.51
3 150 1.1228 -0.49
4 200 1.1230 -0.48
5 250 1.1231 -0.47
6 300 1.1232 -0.46
7 350 1.1233 -0.45
8 400 1.1233 -0.45
9 450 1.1232 -0.46
10 500 1.1231 -0.47

plane is constrained in the x3-direction for translation and in the x1 and x2-directions for

rotation. The mode I energy release rate was calculated by using eqs. (3.12) for mid-side

nodes and (3.16) for corner nodes along the crack front. For each ray, both corner nodes

and mid-side nodes, the same results were obtained. The stress intensity factor KI is

found using eq. (3.23).

The results for one ray are shown in Table 3.6. The greatest error for this mesh is -0.11%.

The biggest different between the errors in Tables 3.5 and 3.6 for a specific value of ∆a is

0.02%. These results are logical, since the axisymmetric mesh represents a simplification

of the three-dimensional mesh. Acceptable results are obtained when one element is used

Table 3.5: Data for mesh B in Table 3.3 (ℓ = 10 µm).

M ∆a(µm) KI (N/mm3/2) KI (% error)

1 10 1.1271 -0.12
2 20 1.1272 -0.11
7 70 1.1272 -0.11
8 80 1.1273 -0.10
13 130 1.1273 -0.10
14 140 1.1274 -0.09
23 230 1.1275 -0.08
24 240 1.1276 -0.07
32 320 1.1276 -0.07
33 330 1.1277 -0.06
37 370 1.1277 -0.06
38 380 1.1276 -0.07
39 390 1.1276 -0.07
44 440 1.1276 -0.07
50 500 1.1274 -0.09
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Figure 3.9: (a) Isoparametric and (b) upper views of the mesh used for the penny-shaped
crack.

as the VCE.

Table 3.6: Numerical results for a penny-shaped crack using a three-dimensional mesh
(ℓr × ℓ2 × ℓθ = 10× 10× 157µm3).

M ∆a(µm) KI (N/mm3/2) KI (% error)

1 10 1.1272 -0.11
2 20 1.1272 -0.11
7 70 1.1272 -0.10
8 80 1.1273 -0.10
9 90 1.1273 -0.10
13 130 1.1273 -0.09
14 140 1.1274 -0.09
23 230 1.1275 -0.07
24 240 1.1276 -0.07
32 320 1.1276 -0.07
33 330 1.1276 -0.06
37 370 1.1276 -0.06
38 380 1.1276 -0.07
39 390 1.1276 -0.07
44 440 1.1276 -0.07
50 500 1.1274 -0.09
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3.3 Numerical results for an interface crack between

two dissimilar linear elastic, homogeneous and

isotropic materials

In this section, two problems of an interface crack between two linear elastic, homogeneous

and isotropic materials are solved by means of an FEA using a commercial finite element

program Abaqus/CAE (2017). The first problem is a straight through interface crack

with a finite length of 2a in an infinite body; a schematic view of the body is shown in

Fig. 3.10. In the finite element analyses, the width, height and thickness of the body are

2w, 2h and 2b, respectively, and the length of the crack is 2a, where a/w = 0.025, and

h/w = 1, as shown schematically in Fig. 3.10. The length of the crack is 2a = 2 mm. Two

different thicknesses are chosen for study, 2b = 4 and 15 mm. The mechanical properties

are E1 = 1 GPa, ν1 = 0.3, E2/E1 = 0.1 and ν2/ν1 = 1. The origin of the coordinate

system is located on the right crack front, at the mid-body thickness. Meshes A2 and

C, presented in Table 3.1, are used for 2b = 4 and 15 mm. Recall that in Section 3.2, a

convergence study was made for mesh A2.

The stress intensity factor for a finite length interface crack between two dissimilar linear

elastic, isotropic and homogeneous materials in an infinite two-dimensional body is given

in Rice (1988) and in eq. (2.62). In order to maintain displacement continuity along the

interface, the stresses σ
(1)
11 , σ

(2)
11 , σ

(1)
33 and σ

(2)
33 are applied parallel to the crack, as shown

in Fig. 3.10. Using Hooke’s law for a three-dimensional problem and requiring that the

2a

material (1)

material (2)
h

h

σ
11
(1)

σ
33
(1)

σ
22

σ
33
(2) σ

11
(2)

2b
2w

Figure 3.10: An infinite, bimaterial body subjected to tension σ22 and tractions σ
(1)
11 , σ

(2)
11 ,

σ
(1)
33 and σ

(2)
33 parallel to the interface plane. The width, height and thickness are 2w, 2h

and 2b, respectively.
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strains in the upper and the lower materials will be equal in x1 and x3-directions along

the interface results in

σ
(2)
11 =

E2

E1

[
1− ν1ν2
1− ν22

]
σ
(1)
11 +

E2

E1

[
ν2 − ν1
1− ν22

]
σ
(1)
33 +

[
ν2(1 + ν2)−

E2

E1

ν1(1 + ν2)

]
σ22

1− ν22
(3.26)

and

σ
(2)
33 =

E2

E1

[
1− ν1ν2
1− ν22

]
σ
(1)
33 +

E2

E1

[
ν2 − ν1
1− ν22

]
σ
(1)
11 +

[
ν2(1 + ν2)−

E2

E1

ν1(1 + ν2)

]
σ22

1− ν22
.

(3.27)

The tractions σ
(1)
11 and σ

(1)
33 are chosen arbitrarily, and σ

(2)
11 and σ

(2)
33 are calculated by

using eqs. (3.26) and (3.27). Equations (3.26) and (3.27) are similarly developed to that

between σ
(1)
11 and σ

(2)
11 for a plane strain two-dimensional problem, given in eq. (1.165) and

presented by Rice and Sih, (1965). Using eqs. (3.26) and (3.27), the body is subjected to

σ22 = 1 MPa, σ
(1)
11 = 1 MPa, σ

(1)
33 = 1 MPa, σ

(2)
11 = 0.4857 MPa and σ

(2)
33 = 0.4857 MPa.

By using eq. (2.62), the two-dimensional analytical solution for plane strain conditions is

K1 = 1.7841 N/mm3/2+iε and K2 = −0.1753 N/mm3/2+iε, where

ε = −0.0758. (3.28)

For a two-dimensional solution, there is no value for KIII . Using the two-dimensional

analytical solution, the interface energy release rate, Gi, is obtained using eq. (1.35) as

Gi = 15.2058 N/m. The values of 1/H1 and 1/H2 in eq. (1.35) are

1

H1

= 211.3497 (MPa−1) ,
1

H2

= 139.8601 (MPa−1). (3.29)

Numerical results for the energy release rates G(n)
I , G(n)

II and G(n)
III , were obtained using

eqs. (3.1), (3.4) and (3.5) for mid-side nodes, and eqs. (3.3), (3.8) and (3.9) for corner

nodes. The values for the dual energy release rates I(n)
I and I(n)

II were obtained using

eqs. (3.6) and (3.7) for mid-side nodes, and eqs. (3.10) and (3.11) for corner nodes. It is

noted that n is the row number as shown in Fig. 3.1. The interface energy release rate,

Gi, is obtained for each row using eq. (1.122), where N = n. Numerical results of the

energy release rates obtained for 2b = 15 mm at the mid-plane, where n = 1, x3/b = 0,

and this is a corner node; and for n = 145, x3/b = 0.96, which is also a corner node,

where the maximum value of the interface energy release rate is obtained. These results

are presented in Table 3.7. Recall that the element length in the x3-direction is 0.1 mm,

so that for 2b = 15 mm there are 151 rows of nodes when using symmetry conditions. In

addition,M is the number of elements used as the VCE. The lowest difference between the

dual energy release rates, I(n)
I and I(n)

II , for each row was found for ∆A with ten elements

used for the VCE. Hence, the best results are considered to be taken forM = 10 elements.

The results are compared to the M -integral of Abaqus/CAE (2017) which are taken from

the tenth contour. The results presented below the results obtained for M = 10. The
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Table 3.7: Numerical results of G(n)
i , G(n)

I , G(n)
II , G(n)

III , I
(n)
I , I(n)

II and I(n) for 2b = 15 mm
in rows n = 1 and n = 145 using mesh C in Table 3.1 for an interface crack in Fig. 3.10.

n = 1, x3/b = 0

G(1)
i G(1)

I G(1)
II G(1)

III I(1)
I I(1)

II I(1)

M (N/m) (N/m) (N/m) (N/m) (N/m) (N/m) (%)

1 15.2285 11.9043 3.3242 0.0000 5.7691 6.7484 -17.0
2 15.2322 12.5932 2.6390 0.0000 5.6012 6.0583 -8.2
3 15.2330 12.9545 2.2785 0.0000 5.3475 5.6741 -6.1
4 15.2331 13.1893 2.0439 0.0000 5.1494 5.3965 -4.8
5 15.2327 13.3649 1.8678 0.0000 4.9795 5.1831 -4.1
6 15.2328 13.5035 1.7293 0.0000 4.8330 5.0079 -3.6
7 15.2326 13.6169 1.6157 0.0000 4.7038 4.8591 -3.3
8 15.2323 13.7123 1.5199 0.0000 4.5882 4.7296 -3.1
9 15.2318 13.7942 1.4375 0.0000 4.4835 4.6147 -2.9
10 15.2313 13.8658 1.3655 0.0000 4.3879 4.5114 -2.8

M -integral 15.2339

n = 145, x3/b = 0.96

G(145)
i G(145)

I G(145)
II G(145)

III I(145)
I I(145)

II I(145)

M (N/m) (N/m) (N/m) (N/m) (N/m) (N/m) (%)

1 16.8911 12.8642 3.9621 0.0648 6.5638 7.6408 -17.0
2 16.8956 13.6467 3.1841 0.0648 6.4091 6.9128 -8.2
3 16.8967 14.0598 2.7722 0.0648 6.1467 6.5042 -6.1
4 16.8970 14.3295 2.5027 0.0649 5.9402 6.2075 -4.8
5 16.8968 14.5319 2.2999 0.0649 5.7620 5.9790 -4.1
6 16.8969 14.6920 2.1399 0.0649 5.6078 5.7911 -3.6
7 16.8967 14.8234 2.0083 0.0650 5.4715 5.6311 -3.3
8 16.8964 14.9341 1.8972 0.0650 5.3493 5.4916 -3.1
9 16.8957 15.0293 1.8013 0.0651 5.2385 5.3676 -2.9
10 16.8951 15.1127 1.7173 0.0651 5.1370 5.2561 -2.8

M -integral 16.9147

value obtained for G(1)
i , differs by 0.17% from the plane strain analytical solution. The

difference between the values obtained for G(n)
i , where n = 1 and 145, compared to the

M -integral are -0.02% and -0.12%, respectively.

In Fig. 3.11, the results for the interface energy release rate Gi normalized by the interface

energy release rate for the two-dimensional plane strain problem are presented. The results

are shown for 2b = 4 and 15 mm as function of x3/b, where x3 = 0 is the mid-plane of the

body. As a result of symmetry, the results are shown only for one-half of the body. The

results achieved with the VCCT are plotted in blue. Except for the three closest element

rows at the outer surface of the body, the same results were obtained by means of the
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Figure 3.11: Numerical results of a straight through interface crack, shown in Fig. 3.10,
where the mechanical properties are E1 = 1 GPa, ν1 = 0.3, E2/E1 = 0.1 and ν2/ν1 = 1.

VCCT and theM -integral to three significant figures, as shown in Fig. 3.11. There are 20

rows of elements in the x3-direction for 2b = 4 mm, and 150 rows for 2b = 15 mm. As for

the straight through crack in an infinite body of an isotropic material from Section 3.2, the

results at the mid-plane (x3 = 0) converged to the plane strain solution as the thickness

of the body is increased. The results differ by less than 0.5% for 0 ≤ x3/b ≤ 0.5 for this

thickness.

Numerical results for the stress intensity factors obtained for 2b = 15 mm at the mid-

plane, where n = 1 and x3/b = 0, and at n = 145 and x3/b = 0.96, where the maximum

value of the interface energy release rate is obtained, are presented in Table 3.8. The stress

intensity factors were calculated using eq. (2.61) for K1 and K2 and eq. (1.39) for KIII .

Recall that, the lowest difference between the dual energy release rates, I(n)
I and I(n)

II , for

each row was found for ∆A with ten elements used as the VCE. Hence, the best results are

considered to be obtained for ∆A consisting of ten elements. The results are compared

to those obtained by the M -integral of Abaqus/CAE (2017) and taken from the tenth

contour. These results are presented below the results obtained for M = 10. The values

obtained for K1 and K2 in n = 1, differ by 0.09% and -0.29%, respectively, from the plane

strain solution. The differences between the results obtained for K1, K2 and KIII from the

VCCT compared to the M -integral are -0.02%, -0.03% and 0.00%, respectively, for row

n = 1. For row n = 145, The differences between the results obtained for K1, K2 and KIII

from the VCCT compared to the M -integral are -0.12%, -0.07% and -0.83%, respectively.

For ∆A with one element used as the VCE, where M = 1, the differences between the

results obtained for K1, K2 and KIII from the VCCT compared to the M -integral are

0.00%, -4.81% and 0.00%, respectively, for row n = 1; for row n = 145, The differences

are -0.05%, -5.27% and -1.04%, respectively. As was shown in the two-dimensional cases
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Table 3.8: Numerical results of the stress intensity factors for 2b = 15 mm in rows n = 1
and n = 145 using mesh C in Table 3.1 for an interface crack in Fig. 3.10.

n = 1, x3/b = 0

K1 K2 KIII

M (N/mm3/2+iε) (N/mm3/2+iε) (N/mm)

1 1.7863 -0.1663 -0.0001
2 1.7859 -0.1728 -0.0001
3 1.7858 -0.1746 -0.0001
4 1.7858 -0.1745 -0.0001
5 1.7858 -0.1747 -0.0001
6 1.7858 -0.1747 -0.0001
7 1.7857 -0.1748 -0.0001
8 1.7857 -0.1748 -0.0001
9 1.7857 -0.1748 -0.0001
10 1.7857 -0.1748 -0.0001

M -integral 1.7863 -0.1747 -0.0001

n = 145, x3/b = 0.96

K1 K2 KIII

M (N/mm3/2+iε) (N/mm3/2+iε) (N/mm)

1 1.8808 -0.1367 -0.0952
2 1.8806 -0.1433 -0.0952
3 1.8805 -0.1451 -0.0952
4 1.8806 -0.1449 -0.0952
5 1.8805 -0.1450 -0.0953
6 1.8805 -0.1450 -0.0953
7 1.8805 -0.1450 -0.0953
8 1.8805 -0.1450 -0.0954
9 1.8805 -0.1450 -0.0954
10 1.8804 -0.1450 -0.0954

M -integral 1.9195 -0.1443 -0.0962

in Chapter 2, if K1 and K2 differ by one order of magnitude, many elements should be

used as the VCE in order to obtain accurate results.

In Figs. 3.12a, 3.12b and 3.12c, the results for the stress intensity factors K1, K2 and

KIII using mesh C from Table 3.1, where 2b = 15 mm, are presented, respectively. The

analytical solutions for K1 and K2 are plotted by a dashed black line in Figs. 3.12a and

3.12b, respectively. The results are compared to the stress intensity factors obtained by

means of the M -integral of Abaqus/CAE (2017) and the results presented are taken from

the tenth contour. Similar behavior as presented for the interface energy release rate was

obtained for the stress intensity factors. All rows have been examined including mid-node
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Figure 3.12: Numerical results of a straight through interface crack, shown in Fig. 3.10,
for 2b = 15 mm, for (a) K1, (b) K2 and (c) KIII .

rows. The differences between the values obtained using the VCCT and the M -integral

for K1, except for the three element rows closest to the outer surface is less than 0.05%;

for K2, the difference is less than 0.45%; for KIII , the difference is less than 1.9%. Note

that KIII is anti-symmetric. If symmetry is not used in the FEA, the same results are

obtained for KIII to 4 significant figures for 0 ≤ x3/b ≤ 1 for 2b = 4 mm. Thus, the

results obtained for KIII using the VCCT are shown to be anti-symmetric in 3.12c for

−1 ≤ x3/b ≤ 1. It is interesting that the symmetry conditions provide the correct values

of KIII for 0 ≤ x3/b ≤ 1.

Next, a penny-shaped interface crack problem in an infinite body is considered. The

mechanical properties of the upper and lower materials, respectively, are E1 = 1 GPa,

E1 = 0.1 GPa and ν1 = ν2 = 0.3. The dimensions of the body are a = 1 mm, R/a = 40

and h/R = 1 where 2a and 2R are the crack and the body diameters, respectively, and

2h is the height of the body, as shown in Fig. 3.13. The crack is situated at the center of

the body. The analytical solution of the problem is given by Kassir and Bregman (1972)

as

K =
2Γ(2 + iε)

Γ(0.5 + iε)
σ22

√
a(2a)−iε (3.30)

where the value of σ22 is 1 MPa, and the value of ε is given in eq. (3.28). As in the two-

dimensional problem in Fig. 2.8 and the three-dimensional problem presented in Fig. 3.10,

stresses σ
(1)
rr and σ

(2)
rr are required to maintain displacement continuity along the interface.
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Figure 3.13: A penny-shaped interface crack problem.

They are found as

σ(2)
rr =

Ē2

Ē1

σ(1)
rr +

ν2
1− ν2

[
1− ν1 E2

ν2 E1

1 + ν1
1 + ν2

]
σ22. (3.31)

Recall that Ēk are defined in eq. (1.17). Using eq. (3.31), σ
(1)
rr is chosen to be 1 MPa and

σ
(2)
rr is found to be 0.4857 MPa.

First, a convergence study is carried out using two-dimensional axisymmetric meshes.

Meshes A and B in Table 3.3 are used. The energy release rates GI and GII were calculated

using eqs. (1.107) and (1.108) where ∆a is replaced by ∆A given in eq. (3.25). For a

penny-shaped crack, the crack front satisfies plane-strain conditions. The stress intensity

factors were calculated using eq. (2.61). By using eq. (3.30), the analytical solution is

K1 = 1.1330 N/mm3/2+iε and K2 = −0.1449 N/mm3/2+iε. The percentage errors in

comparison to the analytical solution obtained using meshes A and B in Table 3.3 are

shown, respectively, in Tables 3.9 and 3.10. For mesh A in Table 3.9, the lowest value

of I is obtained for M = 4. For this value of M , K1 and K2 have errors of -0.50% and

-1.04%, respectively, in comparison to the analytical solution. For mesh B in Table 3.10,

the lowest value of I is obtained for M = 8. For this value of M , K1 has an error of

-0.11% and K2 has an error of -0.21%. The results converged to the analytical solution

for the finest mesh.

In order to carry out a fully three-dimensional analysis, the same three-dimensional mesh,

based on mesh B in Table 3.10, that was used in Section 3.2 for a penny-shaped crack
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Table 3.9: Data for an interface penny-shaped crack in Fig. 3.13 using the axisymmetric
mesh A in Table 3.3 (ℓ = 50 µm).

M ∆a(µm) K1 (% error) K2 (% error) I(%)

1 50 -0.49 -5.73 -23.1
2 100 -0.53 -1.73 -7.8
3 150 -0.53 -0.69 -3.3
4 200 -0.50 -1.04 0.2
5 250 -0.48 -1.31 2.8
6 300 -0.45 -1.66 5.0
7 350 -0.43 -2.07 6.9
8 400 -0.41 -2.48 8.5
9 450 -0.41 -2.97 9.9
10 500 -0.41 -3.52 11.2

is used here. For each ray, both corner nodes and mid-side nodes, the same results

were obtained. The results for one ray are shown in Table 3.10. The lowest value of

I is obtained for M = 8. For this value of M , K1 has an error of -0.11% and K2 has

an error of -0.21%. The largest difference between the numerical errors of mesh B for

the axisymmetric analysis and the three-dimensional mesh in Table 3.10 for the results

obtained is 0.05%. As may be observed in Table 3.10, using a VCE which consists of one

element leads to poor results for K2, with an error of about 4.3%.

3.4 Numerical results for an interface crack between

two dissimilar transversely isotropic materials

In this section, a penny-shaped interface crack between two transversely isotropic materi-

als in an infinite body is solved by means of an FEA using a commercial finite element pro-

gram Abaqus/CAE (2017). A schematic view of the body is shown in Fig. 3.13. The ma-

terial that is used in this problem is a fiber reinforced composite made of graphite/epoxy

AS4/3501-6. The effective mechanical properties were taken from Banks-Sills and Boni-

face (2000), and are shown in Table 1.1. For the upper material, the fibers are in the x1-

direction, and for the lower material, they are in the x3- direction. The directions are

shown in Fig. 3.2. The body is subjected to remote tensile traction σ22 = 1 MPa. The

dimensions of the body are a = 1 mm, R/a = 40 and h/R = 1 where 2a and 2R are the

crack and the body diameters, respectively, and 2h is the height of the body, as shown in

Fig. 3.13. The crack is situated at the center of the body. Note that there is no analytical

solution for this problem. Due to symmetry, only one-quarter of the body is modeled.

Axisymmetric meshes A and B in Table 3.3 are used and swept through 90◦ with ten

divisions. Hence, there are 21 rays of nodes. The eight-noded elements were swept to

twenty-noded elements (C3D20) except for the elements touching the x2-axis. The inner

113



Sunday 8th May, 2022

Table 3.10: Numerical results for a penny-shaped interface crack in Fig. 3.13 using the
axisymmetric mesh B in Table 3.3 (ℓ = 10 µm) and using three-dimensional mesh (ℓr ×
ℓ2 × ℓθ = 10× 10× 157µm3).

axisymmetric mesh B three-dimensional mesh B

∆a K1 K2 I K1 K2 I
M (µm) (% error) (% error) (%) (% error) (% error) (%)

1 10 -0.06 -4.28 -18.9 -0.06 -4.24 -18.9
2 20 -0.11 -1.04 -8.3 -0.11 -1.05 -8.3
3 30 -0.12 -0.14 -5.6 -0.12 -0.16 -5.6
4 40 -0.11 -0.21 -3.6 -0.12 -0.23 -3.6
5 50 -0.11 -0.21 -2.4 -0.11 -0.18 -2.4
6 60 -0.11 -0.21 -1.3 -0.11 -0.18 -1.4
7 70 -0.11 -0.21 -0.5 -0.11 -0.19 -0.6
8 80 -0.11 -0.21 0.1 -0.11 -0.21 0.1
9 90 -0.11 -0.28 0.8 -0.11 -0.24 0.8
10 100 -0.11 -0.28 1.3 -0.10 -0.27 1.4
11 110 -0.10 -0.35 1.9 -0.10 -0.30 1.9
15 150 -0.08 -0.48 3.8 -0.08 -0.48 3.8
20 200 -0.06 -0.76 5.8 -0.06 -0.77 5.9
30 300 -0.03 -1.52 9.2 -0.02 -1.51 9.3
35 350 -0.01 -1.93 10.7 -0.01 -1.95 10.7
36 360 -0.01 -2.07 11.0 -0.01 -2.04 11.0
37 370 0.00 -2.14 11.2 0.00 -2.13 11.3
38 380 0.00 -2.21 11.6 0.00 -2.23 11.6
39 390 0.00 -2.35 11.8 0.00 -2.33 11.8
40 400 0.01 -2.42 12.1 0.00 -2.43 12.1
50 500 0.01 -3.52 14.5 0.01 -3.50 14.4

elements were swept to fifteen-noded wedge elements (C3D15). The new meshes are called

A3D and B3D. The values of ℓr, in Fig. 3.2, and the number of the elements and nodes

for each mesh are shown in Table 3.11. The isoparametric and upper views of mesh B3D

are shown in Figs. 3.14a and 3.14b, respectively. At the outer edge of the body at r = R,

the tractions

σ(1)
rr = cos2 θ + 0.6114 sin2 θ , σ

(1)
rθ = (1− 0.6114) sin θ cos θ (3.32)

Table 3.11: The size ℓr of the elements near the crack tip and the total number of elements
and nodes for each mesh for the penny-shaped interface crack and three-dimensional
meshes.

Mesh ℓr (µm) elements nodes

A3D 50 16,560 72,849
B3D 10 159,900 693,603
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Figure 3.14: (a) Isoparametric and (b) upper views of the mesh used for the penny-shaped
crack.

σ(2)
rr = 0.6114 cos2 θ + sin2 θ , σ

(2)
rθ = (0.6114− 1) sin θ cos θ (3.33)

are applied to enforce displacement continuity across the interface. Equations (3.32)

and (3.33) are developed in Appendix A.

Next, the dual energy release rates for n = 1 and 21 are defined. It is noted that n

is the ray number as shown in Fig. 3.14b. For n = 1, the interface crack is between

two transversely isotropic materials where the fibers in the upper material are in the 0◦-

direction and in the 90◦-direction in the lower one. For n = 21, the interface crack is

between two transversely isotropic materials where the fibers in the upper material are in

the 90◦-direction and in the 0◦-direction in the lower one. The dual energy release rates

for an interface crack between two transversely isotropic materials in two-dimensions, I(T )
I

and I(T )
II , are defined in eqs. (2.87) and (2.88). The values for the dual energy release rates

I(T,n)
I and I(T,n)

II for rays n = 1 and 21 are obtained as

I(T,n)
I =

1

2∆A(n)

√
D22

D11

[
2M∑
m=1

F
(m,n)
2 ∆u(m

′,n)
r

+
1

2

(
M∑
m=1

F
(2m−1,n−1)
2 ∆u(2m

′−1,n−1)
r + F

(2m−1,n+1)
2 ∆u(2m

′−1,n+1)
r

)]
,

(3.34)

I(T,n)
II =

1

2∆A(n)

√
D11

D22

[
2M∑
m=1

F (m,n)
r ∆u

(m′,n)
2

+
1

2

(
M∑
m=1

F (2m−1,n−1)
r ∆u

(2m′−1,n−1)
2 + F (2m−1,n+1)

r ∆u
(2m′−1,n+1)
2

)]
.

(3.35)

For numerical applications, the percent difference between I(T,n)
I and I(T,n)

II is defined as

I(n)
T ≡ I(T,n)

II − I(T,n)
I

I(T,n)
I

· 100 . (3.36)
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For the mid-row, n = 11, which is also a corner node, the interface crack is between two

transversely isotropic materials where the fibers in the upper material are in the +45◦-

direction and in the −45◦-direction in the lower one. For this row, a new set of equations

for VCCT may be obtained using the derivations in Freed and Banks-Sills (2005). The

tractions ahead of the crack tip along the interface and the crack face displacement jumps

are given in Freed and Banks-Sills (2005) as(
σ22 + i

√
E33

E22

σ32

)∣∣∣∣∣
θ=0

=
Kxiε1√
2πx1

(3.37)

σ12 =
KII√
2πx1

(3.38)

and

∆u2 + i

√
E22

E33

∆u3 =
4 sgn(E22)|E22|
(1 + 2iε) cosh πε

√
∆a− x1

2π
(∆a− x1)

iεK (3.39)

∆u1 = 4 sgn(E11)|E11|
√

∆a− x1
2π

KII (3.40)

where

K = K1 + iK3. (3.41)

Note that for the previous interface, K was related to K1 and K2. The parameters E11,

E22, E23 and E33 and ε are given explicitly in Freed and Banks-Sills (2005) and Appendix

B.

Following the derivations in Section 2.5, two new auxiliary integrals are presented

AE =
1

2∆a

∫ ∆a

0

[
σ22(x1) + i

√
E33

E22

σ32(x1)

][
∆u2(∆a− x1)− i

√
E22

E33

∆u3(∆a− x1)

]
dx1 ,

(3.42)

DE =
1

2∆a

∫ ∆a

0

[
σ22(x1) + i

√
E33

E22

σ32(x1)

][
∆u2(∆a− x1) + i

√
E22

E33

∆u3(∆a− x1)

]
dx1 ,

(3.43)

where the subscript E denotes the current interface. The coordinate system and the

virtual crack extension, ∆a, are shown in Figs. 1.3 and 1.9, respectively. By considering

the expressions in eqs. (1.104) and (1.106) for GI and GIII , respectively, and manipulating

the integrals AE and DE in eqs. (3.42) and (3.43), respectively, the relations between

them are found as

GI + GIII = lim
∆a→0

ℜ(AE) (3.44)

GI − GIII = lim
∆a→0

ℜ(DE) (3.45)

GI =
1

2
lim

∆a→0
ℜ(AE +DE) (3.46)

GIII =
1

2
lim

∆a→0
ℜ(AE −DE) (3.47)
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G(E)
I−III = I(E)

I + I(E)
III = lim

∆a→0
ℑ(DE) (3.48)

I(E)
I − I(E)

III = lim
∆a→0

ℑ(AE) (3.49)

where ℜ(·) and ℑ(·) represent the real and imaginary parts of the quantity in parentheses.

The dual energy release rates are defined as

I(E)
I =

1

2∆a

√
E33

E22

∫ ∆a

0

σ32(x1)∆u2(∆a− x1)dx1 (3.50)

I(E)
III =

1

2∆a

√
E22

E33

∫ ∆a

0

σ22(x1)∆u3(∆a− x1)dx1. (3.51)

Substituting eqs. (3.37) and (3.39) into eqs. (3.42) and (3.43), it may be shown that

AE =
1

H1

(
K2

1 +K2
3

)
(3.52)

and

DE =
coshπε

πH1

PK2∆a2iε , (3.53)

where H1 is defined as
1

H1

=
sgn(E22)|E22|
2 cosh2 πε

(3.54)

and P is given in eq. (1.173). Noting that AE is real, one may write from eq. (3.49) that

I(E)
I = I(E)

III . (3.55)

Although analytically the equality in eq. (3.55) holds, numerically this does not occur.

Thus, the percent difference between the left and the right hand sides of eq. (3.55) is

defined as

IE ≡ I(E)
III − I(E)

I

I(E)
I

· 100 (3.56)

for numerical applications.

The phase angle of DE may be extracted from eqs. (3.45) and (3.48) as

ψDE
= tan−1

[
ℑ(DE)

ℜ(DE)

]
= tan−1

(
G(E)
I−III

GI − GIII

)
. (3.57)

From eq. (3.53), it may also be written as

ψDE
= 2ψ + ψP + 2ε ln∆a , (3.58)

where ψP is defined in eqs. (2.52) and (1.173) and ψ is the phase angle of the stress

intensity factors given as

ψ = tan−1

(
K3

K1

)
. (3.59)
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Using eq. (3.58), ψ may be found as

ψ =
1

2
ψDE

− 1

2
ψP − ε ln∆a. (3.60)

The stress intensity factors are determined using

K1 = ±
√
H1Gi cosψ K3 = K1 tanψ . (3.61)

The valid pair of stress intensity factors satisfies the inequality

−π
2
< tan−1

(
K3

K1

)
− tan−1 2ε+ ε ln r <

π

2
, (3.62)

where r was chosen as a/100.

Noting eqs. (3.21), (3.22), (3.50) and (3.51), the dual energy release rates, I(E,n)
I and

I(E,n)
III , are given for odd values of n at the corner-nodes by

I(E,n)
I =

1

2∆A(n)

√
E33

E22

[
2M∑
m=1

F
(m,n)
θ ∆u

(m′,n)
2

+
1

2

(
M∑
m=1

F
(2m−1,n−1)
θ ∆u

(2m′−1,n−1)
2 + F

(2m−1,n+1)
θ ∆u

(2m′−1,n+1)
2

)]
,

(3.63)

I(E,n)
III =

1

2∆A(n)

√
E22

E33

[
2M∑
m=1

F
(m,n)
2 ∆u

(m′,n)
θ

+
1

2

(
M∑
m=1

F
(2m−1,n−1)
2 ∆u

(2m′−1,n−1)
θ + F

(2m−1,n+1)
2 ∆u

(2m′−1,n+1)
θ

)]
,

(3.64)

and

I(n)
E ≡ I(E,n)

III − I(E,n)
I

I(E,n)
I

· 100 . (3.65)

Next, numerical results are presented for meshes A3D and B3D in Table 3.11. Recall

that the energy release rates G(n)
I , G(n)

II and G(n)
III , are obtained using eqs. (3.12), (3.13) and

(3.14) for mid-side nodes, and eqs. (3.16), (3.17) and (3.18) for corner nodes. The interface

energy release rate, Gi, is obtained for each row using eq. (1.122), where N = n. Recall

that there are 21 rays of nodes. It is noted that n is the ray number, as shown in Fig. 3.14b.

For n = 1, the interface crack is between two transversely isotropic materials where the

fibers in the upper material are in the 0◦-direction and in the 90◦-direction in the lower

one. For n = 11, the interface crack is between two transversely isotropic materials where

the fibers in the upper material are in the +45◦-direction and in the −45◦-direction in the

lower one. For n = 21, the interface crack is between two transversely isotropic materials

where the fibers in the upper material are in the 90◦-direction and in the 0◦-direction in
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Table 3.12: Parameters used to calculate the stress intensity factors for the +45◦//− 45◦

interface.

E22 (1/GPa) E33 (1/GPa) 1/H1 (1/GPa) ε

0.1541i 0.1316i 0.0768 0.0182

the lower one. For rows n = 1 and 21, the dual energy release rates I(T,n)
I and I(T,n)

II are

obtained using eqs. (3.34) and (3.35). The parameter I(n)
T is found using eq. (3.36). For

row n = 11, the dual energy release rates I(E,11)
I and I(E,11)

III and I(11)
E are obtained using

eqs. (3.63) to (3.65). The parameters E22 and E33 are given in Table 3.12.

The interface energy release rates and the percent differences between the dual energy

release rates for rows n = 1 and 11 are presented in Table 3.13. The results for rows 1

and 21 are identical. Recall that M is the number of elements used for the VCE. For

the lowest absolute value of I(1)
T , the results for G(1)

i are 0.0972 N/m and 0.0978 N/m, for

meshes A3D and B3D, respectively; the lowest absolute values of I(1)
T are obtained for

M = 2 andM = 3, respectively. The difference between the interface energy release rates

obtained for meshes A3D and B3D, for ray n = 1, is -0.5%. The energy release rate values

are rather small. Consider the penny-shaped crack between two isotropic materials with

E2/E1 = 0.1, E1 = 1 GPa and σ11 = 1 MPa. The value of G(iso)
i , where the superscript

(iso) is used here to denote that the interface is between two isotropic materials, was

6.2 N/m. The value of G(iso)
i is related to the stress intensity factors and 1/H

(iso)
1 in

eq. (1.36). Here, the values of G(1)
i and G(11)

i are related to 1/H1 defined in eqs. (2.77)

and (3.54), respectively. Using eq. (1.36), the value of 1/H1 for the two isotropic materials

Table 3.13: Numerical results for a penny-shaped interface crack in Fig. 3.14 using meshes
A3D and B3D in Table 3.11 (ℓr = 50 µm).

mesh A3D mesh B3D

G(1)
i I(1)

T G(11)
i I(11)

E G(1)
i I(1)

T G(11)
i I(11)

E

M (N/m) (%) (N/m) (%) (N/m) (%) (N/m) (%)

1 0.0972 -51.8 0.0979 -523 0.0978 -57.7 0.0987 75
2 0.0972 33.2 0.0979 -208 0.0978 -12.1 0.0986 34
3 0.0973 67.1 0.0978 -135 0.0978 -1.7 0.0986 61
4 0.0974 98.1 0.0978 -115 0.0978 7.3 0.0986 107
5 0.0974 126.8 0.0977 -106 0.0978 14.8 0.0986 213
6 0.0975 153.9 0.0977 -102 0.0978 21.8 0.0986 658
7 0.0975 179.4 0.0977 -99 0.0978 28.4 0.0985 -1338
8 0.0976 203.6 0.0977 -98 0.0978 34.8 0.0985 -411
9 0.0976 226.5 0.0976 -96 0.0978 41.0 0.0985 -269
10 0.0976 248.2 0.0976 -96 0.0978 47.1 0.0985 -211
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Figure 3.15: Numerical results for an interface penny-shaped crack using mesh B3D in
Table 3.11.

is 4.73 1/GPa; for the 0◦//90◦ interface, for G(1)
i , 1/H1 = 0.0572 1/GPa in Table 2.9; for

the +45◦// − 45◦ interface, for G(11)
i , 1/H1 = 0.0768 1/GPa in Table 3.12. There are

two orders of magnitude difference between 1/H1 for the interface considered here and

1/H
(iso)
1 . Hence, the values of G(1)

i and G(11)
i are reasonable.

For the lowest absolute value of I(11)
E , the results for G(11)

i are 0.0976 N/m and 0.0986 N/m,

for meshes A3D and B3D, respectively; the lowest absolute values of I(11)
E are obtained for

M = 9 andM = 2, respectively. The difference between the interface energy release rates

obtained for meshes A3D and B3D, for ray n = 11, is -1.1%. Note that G(1)
i obtained for

mesh B3D is constant and G(11)
i is almost constant up to a difference of 0.0002 N/m which

is 0.2% of G(11)
i . For mesh B3D, the lowest absolute values of I(1)

T and I(11)
E are obtained

for M = 3 and M = 2, respectively.

For each ray (n = 1, ..., 21), the values obtained using mesh B3D for G(n)
i with M = 2

and 3 are the same up to three significant figures. Recall that the energy release rates,

G(n)
I , G(n)

II and G(n)
III , oscillate for each ray as shown in Figs. 1.27a and 1.27b. In Fig. 3.15,

the energy release rates obtained for mesh B3D in Table 3.11 and M = 2, are presented.

In Fig. 3.15a, the results obtained for G(n)
i and G(n)

I are presented. The results obtained

for G(n)
II and G(n)

III are presented in Fig. 3.15b. The angle θ defines the position along

the delamination front as shown in Fig. 3.2. In Fig. 3.15b, the values obtained for G(n)
II

and G(n)
III are very small. The values of G(11)

II and G(1)
III are zero up to the fifth and sixth

decimal point at θ = 45◦ and 0◦, respectively. The maximum values of G(n)
II and G(n)

III are

G(1)
II = 5.0 · 10−4 N/m and G(11)

III = 7.7 · 10−5 N/m, respectively.
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Next, the stress intensity factors for n = 1 and 11 are calculated using mesh B3D in

Table 3.11. For row n = 1 and M = 3, K1 and K2 are determined using eqs. (2.61) and

(1.184) as K1 = 1.3001 N/mm3/2+iε and K2 = −0.1335 N/mm3/2+iε. Noting eq. (1.39)

and that G(1)
III is zero, KIII = 0. For row n = 11 and M = 2, K1 and K3 are determined

using eqs. (3.61) and (3.62) as K1 = 1.1293 N/mm3/2+iε and K3 = 0.0971 N/mm3/2+iε.

Noting the relation for the +45◦//− 45◦ interface from Freed and Banks-Sills (2005)

GII =
1

H2

K2
II (3.66)

and that G(11)
II is zero, KII = 0.

Obtaining stress intensity factors at other positions along the crack front involves use of

the Stroh and Lekhnitskii formalisms at each position. This is beyond the scope of this

investigation.
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Chapter 4

A Clifford formalism

In Section 1.5, the basic concepts of a Clifford algebra were presented. In addition,

the eigenvalue equation for a three-dimensional anisotropic material was developed. In

Section 4.1, the eigenvalue problem for various anisotropic materials will be derived. For

these materials, the eigenvalue problem provides a bi-sextic equation in the eigenvalues

P12 and P13. In fact, the eigenvalue problem is one equation with two unknowns. In

Section 4.2, explicit expressions are obtained for the eigenvectors of various materials. A

three-dimensional Clifford formalism is developed in Section 4.3. In Section 4.4, specific

problems are solved and a general solution for a uniform stress problem is developed.

These are compared to numerical results obtained by means of the finite element method.

4.1 The eigenvalue problem for various anisotropic

materials

Linear elastic, homogeneous, anisotropic materials are considered here. The solution is

developed by means of the eigenvalue problem given in eq. (1.97) for generally anisotropic

material as

(N1 + P12N2 + P13N3)d = 0 . (4.1)

In eq, (4.1), P12 and P13 are the eigenvalues, the 9× 9 matrices N1, N2 and N3 are given

in eqs. (1.98) and d is the 9 × 1 eigenvector in eqs. (1.99) to (1.101). The matrices N1,

N2 and N3 are composed the sub-matrices Cij given by eq. (1.95).

To simplify the problem and make it tractable, it is possible to use contracted notation

with

11 → 1 , 22 → 2 , 33 → 3 , 32 → 4 , 31 → 5 , 21 → 6 . (4.2)
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The stiffness tensor may be written as a 6× 6 matrix as

Cαβ =



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C23 C33 C34 C35 C36

C41 C24 C34 C44 C45 C46

C51 C25 C35 C45 C55 C56

C61 C26 C36 C46 C46 C66


. (4.3)

where α, β = 1, ..., 6. Note that Cαβ is symmetric. So that for a general anisotropic

material, there are 21 independent constants.

The matrix C11 in eq. (1.95) is given by

C11 =


C1111 C1112 C1131

C1211 C1212 C1231

C3111 C3112 C3131

 =


C11 C16 C15

C61 C66 C65

C51 C56 C55

 (4.4)

The matrix C12 is given by

C12 =


C16 C12 C14

C66 C62 C64

C56 C52 C54

 (4.5)

The matrix C13 is given by

C13 =


C15 C14 C13

C65 C64 C63

C55 C54 C53

 (4.6)

The matrices C21, C22 and C23 are given by

C21 =


C61 C66 C65

C21 C26 C25

C41 C46 C45

 C22 =


C66 C62 C64

C26 C22 C24

C46 C42 C44



C23 =


C65 C64 C63

C25 C24 C23

C45 C44 C43


(4.7)
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The matrices C31, C32 and C33 are given by

C31 =


C51 C56 C55

C41 C46 C45

C31 C36 C35

 C32 =


C56 C52 C54

C46 C42 C44

C36 C32 C34



C33 =


C55 C54 C53

C45 C44 C43

C35 C34 C33


(4.8)

Thus, the matrices N1, N2 and N3, given in eq. (1.98), for generally anisotropic media

are found to be

N1 =



C11 C16 C15 0 0 0 0 0 0

C61 C66 C65 0 0 0 0 0 0

C51 C56 C55 0 0 0 0 0 0

C61 C66 C65 -1 0 0 0 0 0

C21 C26 C25 0 -1 0 0 0 0

C41 C46 C45 0 0 -1 0 0 0

C51 C56 C55 0 0 0 -1 0 0

C41 C46 C45 0 0 0 0 -1 0

C31 C36 C35 0 0 0 0 0 -1



, (4.9)

N2 =



C16 C12 C14 1 0 0 0 0 0

C66 C62 C64 0 1 0 0 0 0

C56 C52 C54 0 0 1 0 0 0

C66 C62 C64 0 0 0 0 0 0

C26 C22 C24 0 0 0 0 0 0

C46 C42 C44 0 0 0 0 0 0

C56 C52 C54 0 0 0 0 0 0

C45 C42 C44 0 0 0 0 0 0

C36 C32 C34 0 0 0 0 0 0



, (4.10)
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and

N3 =



C15 C14 C13 0 0 0 1 0 0

C65 C64 C63 0 0 0 0 1 0

C55 C54 C53 0 0 0 0 0 1

C65 C64 C63 0 0 0 0 0 0

C25 C24 C23 0 0 0 0 0 0

C45 C44 C43 0 0 0 0 0 0

C55 C54 C53 0 0 0 0 0 0

C45 C44 C43 0 0 0 0 0 0

C35 C34 C33 0 0 0 0 0 0



. (4.11)

which are 9× 9 matrices.

In Section 4.1.1, the general solution for an orthotropic material is presented leading to

a cubic equation for one of the eigenvalues. The cubic equation is solved for various spe-

cific materials, namely, isotropic, cubic, transversely isotropic, tetragonal and orthotropic.

These results are presented in Section 4.1.2.

4.1.1 Eigenvalue solution for orthotropic materials

To simplify the eigenvalue problem, it is assumed that the material is orthotropic with

nine independent elastic constants. The stiffness tensor may be written as

C =



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (4.12)

Thus, for orthotropic media, the matrices N1, N2 and N3 are given by

N1 =



C11 0 0 0 0 0 0 0 0

0 C66 0 0 0 0 0 0 0

0 0 C55 0 0 0 0 0 0

0 C66 0 -1 0 0 0 0 0

C21 0 0 0 -1 0 0 0 0

0 0 0 0 0 -1 0 0 0

0 0 C55 0 0 0 -1 0 0

0 0 0 0 0 0 0 -1 0

C31 0 0 0 0 0 0 0 -1



, (4.13)
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N2 =



0 C12 0 1 0 0 0 0 0

C66 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

C66 0 0 0 0 0 0 0 0

0 C22 0 0 0 0 0 0 0

0 0 C44 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 C44 0 0 0 0 0 0

0 C32 0 0 0 0 0 0 0



, (4.14)

N3 =



0 0 C13 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

C55 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 C23 0 0 0 0 0 0

0 C44 0 0 0 0 0 0 0

C55 0 0 0 0 0 0 0 0

0 C44 0 0 0 0 0 0 0

0 0 C33 0 0 0 0 0 0



(4.15)

Substituting eqs. (4.13) to (4.15) into eq. (1.102), the eigenvalue problem for orthotropic

material is found as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C11 P12C12 P13C13 P12 0 0 P13 0 0

P12C66 C66 0 0 P12 0 0 P13 0

P13C55 0 C55 0 0 P12 0 0 P13

P12C66 C66 0 -1 0 0 0 0 0

C21 P12C22 P13C23 0 -1 0 0 0 0

0 P13C44 P12C44 0 0 -1 0 0 0

P13C55 0 C55 0 0 0 -1 0 0

0 P13C44 P12C44 0 0 0 0 -1 0

C31 P12C32 P13C33 0 0 0 0 0 -1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 . (4.16)
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Equation (4.16) may be rewritten as(
C22C44C66

)
P12

6+

+

[ (
C22C33C66 + C22C44C55 − C23C32C66 − C23C44C66 − C32C44C66

)
P13

2

+
(
C11C22C44 − C12C21C44 − C12C44C66 − C21C44C66 + C22C55C66

)]
P12

4

+

[ (
C22C33C55 − C23C32C55 − C23C44C55 − C32C44C55 + C33C44C66

)
P13

4

+
(
C11C22C33 − C11C23C32 − C11C23C44 − C11C32C44 − C12C21C33

+ C12C23C31 + C12C23C55 + C12C31C44 − C12C33C66 + C12C44C55

+ C13C21C32 + C13C21C44 − C13C22C31 − C13C22C55 + C13C32C66

+ C13C44C66 + C21C32C55 − C21C33C66 + C21C44C55 − C22C31C55

+ C23C31C66 + C23C55C66 + C31C44C66 + C32C55C66 + 4C44C55C66

)
P13

2

+
(
C11C22C55 + C11C44C66 − C12C21C55 − C12C55C66 − C21C55C66

) ]
P12

2

+
(
C33C44C55

)
P13

6

+
(
C11C33C44 − C13C31C44 − C13C44C55 − C31C44C55 + C33C55C66

)
P13

4

+
(
C11C33C66 + C11C44C55 − C13C31C66 − C13C55C66 − C31C55C66

)
P13

2

+
(
C11C55C66

)
= 0 .

(4.17)

Noting the stiffness tensor symmetry, eq. (4.17) reduces to(
C22C44C66

)
P12

6

+

[ (
C22C33C66 + C22C44C55 − C32

2C66 − 2C32C44C66

)
P13

2

+
(
C11C22C44 − C12

2C44 − 2C12C44C66 + C22C55C66

)]
P12

4

+

[(
C22C33C55 − C32

2C55 − 2C32C44C55 + C33C44C66

)
P13

4

+
(
C11C22C33 − C11C32

2 − 2C11C32C44 − C12
2C33 + 2C12C13C32

+ 2C12C13C44 + 2C12C32C55 − 2C12C33C66 + 2C12C44C55 − C13
2C22

− 2C13C22C55 + 2C13C32C66 + 2C13C44C66 + 2C32C55C66 + 4C44C55C66

)
P13

2

+
(
C11C22C55 + C11C44C66 − C12

2C55 − 2C12C55C66

) ]
P12

2

+
(
C33C44C55

)
P13

6

+
(
C11C33C44 − C13

2C44 − 2C13C44C55 + C33C55C66

)
P13

4

+
(
C11C33C66 + C11C44C55 − C13

2C66 − 2C13C55C66

)
P13

2
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+
(
C11C55C66

)
= 0 . (4.18)

Equation (4.18) may be rewritten as

A30P12
6 + A21P12

4P13
2 + A20P12

4 + A12P12
2P13

4 + A11P12
2P13

2 + A10P12
2

+ A03P13
6 + A02P13

4 + A01P13
2 + A00 = 0

(4.19)

where

A31 = C22C44C66

A21 = C22C33C66 + C22C44C55 − C32
2C66 − 2C32C44C66

A20 = C11C22C44 − C12
2C44 − 2C12C44C66 + C22C55C66

A12 = C22C33C55 − C32
2C55 − 2C32C44C55 + C33C44C66

A11 = C11C22C33 − C11C32
2 − 2C11C32C44 − C12

2C33 + 2C12C13C32

+ 2C12C13C44 + 2C12C32C55 − 2C12C33C66 + 2C12C44C55 − C13
2C22

− 2C13C22C55 + 2C13C32C66 + 2C13C44C66 + 2C32C55C66 + 4C44C55C66

A10 = C11C22C55 + C11C44C66 − C12
2C55 − 2C12C55C66

A03 = C33C44C55

A02 = C11C33C44 − C13
2C44 − 2C13C44C55 + C33C55C66

A01 = C11C33C66 + C11C44C55 − C13
2C66 − 2C13C55C66

A00 = C11C55C66 .

(4.20)

Equation (4.19) is defined as a bi-sextic equation; that is, the two unknowns P12 and P13

are raised to the maximum power 6 with power combinations less than or equal to 6.

Equation (4.19) may be rewritten as

A30Q12
3 + A21Q12

2Q13 + A20Q12
2 + A12Q12Q13

2 + A11Q12Q13 + A10Q12

+ A03Q13
3 + A02Q13

2 + A01Q13 + A00 = 0
(4.21)

where

P12 = ±
√
Q12 P13 = ±

√
Q13 . (4.22)

Equation (4.21) is a bi-cubic equation in Q12 and Q13.

4.1.2 Equations for various material symmetries

As an example, if P12 has three identical roots a or ae where e2 = 1, as may be seen in

eq. (1.80), and a is a positive real quantity, Q12 = a2 and eq. (4.21), reduces to

A03Q13
3 +D02Q13

2 +D01Q13 +D00 = 0 (4.23)
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where

D02 = a2A12+A02 D01 = a4A21+a
2A11+A01 D00 = a6A30+a

4A20+a
2A10+A00 .

(4.24)

If P12 has three identical roots ai and a is a positive real quantity, Q12 = −a2 and

eq. (4.21), reduces to

A03Q13
3 + E02Q13

2 + E01Q13 + E00 = 0 (4.25)

where

E02 = −a2A12+A02 E01 = a4A21−a2A11+A01 E00 = −a6A30+a
4A20−a2A10+A00 .

(4.26)

Next, several specific materials are considered. For a linear elastic, homogeneous, isotropic

material the stiffness matrix is given as

C =



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(4.27)

where µ is the shear modulus given by

µ =
E

2(1 + ν)
(4.28)

and

λ =
νE

(1 + ν)(1− 2ν)
. (4.29)

In eqs. (4.28) and (4.29), E and ν are, respectively, Young’s modulus and Poisson’s ratio.

Equation (4.21) for this material is given as

(Q12 +Q13 + 1)3 = 0 . (4.30)

Noting eqs. (4.30) and (4.22),

P13 = ±i
√
P 2
12 + 1 . (4.31)

That is, P13 has three identical pairs of roots given in eq. (4.31). It is clearly seen that

there are two unknowns and one equation. If P12 = a or ae, then

P13 = ±i
√
a2 + 1 . (4.32)

If P12 = ai or aei,

P13 = ±i
√
1− a2 . (4.33)
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Table 4.1: Effective mechanical properties of SC-Si.

E (GPa) ν (GPa) µ (GPa)

130.23 0.25 79.37

If a > 1

P13 = ∓
√
a2 + 1 . (4.34)

When using the Stroh formalism (Ting, 1996, page 139), it is seen that isotropic material

is mathematically degenerate having three identical eigenvalues. It is anticipated that the

same problem may exist here.

Next, the cubic material Single Crystal Silicon (SC-Si) is considered. The mechanical

properties are given in Wortman and Evans (1965) and are presented in Table 4.1. These

elastic constant are independent of each other. If P12 is taken to be a triple root given by

P12 = 1 or P12 = −1 (4.35)

eq. (4.19) leads to

P 6
13 + 4.1670P 4

13 + 8.4450P 2
13 + 6.1670 = 0 (4.36)

The solution of eq. (4.36) results in three complex conjugate pairs. For this material, the

eigenvalue pairs are given by

P
(1)
13 = α + iβ , P

(2)
13 = −α + iβ , P

(3)
13 = iβ3 (4.37)

and

P
(γ+3)
13 = P̄

(γ)
13 (4.38)

where γ = 1, 2, 3. For the material constants in Table 4.1,

P
(1)
13 = 0.6084 + 1.3407i , P

(2)
13 = −0.6084 + 1.3407i , P

(3)
13 = 1.1457i (4.39)

so that

P
(4)
13 = 0.6084− 1.3407i , P

(5)
13 = −0.6084− 1.3407i , P

(6)
13 = −1.1457i . (4.40)

This same eigenvalue solution in eqs. (4.39) and (4.40) is also obtained if

P12 = e or P12 = −e . (4.41)

If

P12 = ±i or P12 = ±ei (4.42)
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is a triple root, eq. (4.19) leads to

P 6
13 − 0.1110P 2

13 = 0 (4.43)

Solution of eq. (4.43) results in six eigenvalues. Since not all of the roots are complex, it

is not clear how to group them. However, they will be arranged as

P
(1)
13 = 0 , P

(2)
13 = 0.5771 , P

(3)
13 = 0.5771i (4.44)

P
(4)
13 = 0 , P

(5)
13 = −0.5771 , P

(6)
13 = −0.5771i . (4.45)

If P13 is taken to be a triple root given by

P13 = 1 or P13 = −1 or P13 = e or P13 = −e (4.46)

eq. (4.19) leads to

P 6
12 + 4.1670P 4

12 + 8.4450P 2
12 + 6.1670 = 0 (4.47)

The solution of eq. (4.47) results in three complex conjugate pairs for P12. For this

material, the eigenvalue pairs are given by

P
(1)
12 = α + iβ , P

(2)
12 = −α + iβ , P

(3)
12 = iβ3 (4.48)

and

P
(γ+3)
12 = P̄

(γ)
12 (4.49)

where γ = 1, 2, 3. For the material constants in Table 4.1,

P
(1)
12 = 0.6084 + 1.3407i , P

(2)
12 = −0.6084 + 1.3407i , P

(3)
12 = 1.1457i (4.50)

so that

P
(4)
12 = 0.6084− 1.3407i , P

(5)
12 = −0.6084− 1.3407i , P

(6)
12 = −1.1457i . (4.51)

Next, the eigenvalues are calculated for the effective mechanical properties of graphite/epo-

xy AS4/3501-6, shown in Table 1.1. Recall that, EA and ET are the Young’s moduli in

the axial and transverse directions, respectively, νA and νT are the Poisson’s ratios in

the axial and transverse directions, respectively, and GA is the axial shear modulus. The

compliance matrix is given as

S =



1

EA
− νA
EA

− νA
EA

0 0 0

1

ET
− νT
ET

0 0 0

1

ET
0 0 0

sym
2(1 + νT )

ET
0 0

1

GA

0

1

GA


. (4.52)
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Table 4.2: Effective mechanical properties of a graphite/epoxy plain weave with yarn in
the 0◦ and 90◦ directions.

E11 = E33 (GPa) E22 (GPa) ν13 ν21 = ν23 G13 (GPa) G21 = G23 (GPa)

52.8 6.2 0.036 0.049 3.2 2.2

The stiffness matrix is given by

Cαβ = S−1
αβ . (4.53)

In order to obtain the eigenvalues P12 and P13 in eq. (4.17), an assumption is made such

that

P12 = 1 or P12 = −1 or P12 = e or P12 = −e . (4.54)

Substituting each of these values into eq. (4.19) leads to

P 6
13 + 0.2781P 4

13 + 0.0096P 2
13 + 0.8782 = 0 . (4.55)

For this material, the eigenvalues P
(γ)
13 are pure imaginary and given by

P
(1)
13 = 1.1787i , P

(2)
13 = 1.6246i , P

(3)
13 = 4.9973i (4.56)

so that

P
(4)
13 = −1.1787i , P

(5)
13 = −1.6246i , P

(6)
13 = −4.9973i . (4.57)

If

P12 = ±i or P12 = ±ie (4.58)

eq. (4.19) leads to

P 6
13 + 3.7231P 4

13 + 85.6402P 2
13 − 33.4022 = 0 . (4.59)

Solution of eq. (4.59) results in three pairs

P
(1)
13 = 0.7815 , P

(2)
13 = 0.7996i , P

(3)
13 = 4.7930i ; (4.60)

so that

P
(4)
13 = −0.7815 , P

(5)
13 = −0.7996i , P

(6)
13 = −4.7930i . (4.61)

Next, the eigenvalues are calculated for a plain weave with yarn oriented in the 0◦/90◦-

directions. The mechanical properties are taken from Mega and Banks-Sills (2019), Table

S8, and are given in Table 4.2. The young’s moduli E11, E22 and E33 are in the x1, x2 and

x3-directions, respectively, ν13, ν23 and ν21 are the Poisson’s ratios, and there are shear

moduli G13, G21 and G23. Additional Poisson ratio’s may be found using

νij
Eii

=
νji
Ejj

(4.62)
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where there is no summation of indices. The compliance matrix is given as

S =



1

E11

− ν12
E11

− ν13
E11

0 0 0

1

E22

− ν23
E22

0 0 0

1

E11

0 0 0

sym
1

G23

0 0

1

G13

0

1

G23


. (4.63)

The stiffness matrix is given in eq. (4.53).

In order to obtain the eigenvalues P12 and P13 in eq. (4.17), an assumption is made such

that

P12 = 1 or P12 = −1 or P12 = e or P12 = −e (4.64)

are triple roots. Substituting these values into eq. (4.19) leads to

P 6
13 + 21.190P 4

13 + 64.167P 2
13 + 6.570 = 0 (4.65)

For this material, the eigenvalues P
(γ)
13 are pure imaginary and given by

P
(1)
13 = 0.3257i , P

(2)
13 = 1.8781i , P

(3)
13 = 4.1900i (4.66)

so that

P
(4)
13 = −0.3257i , P

(5)
13 = −1.8781i , P

(6)
13 = −4.1900i . (4.67)

If

P12 = ±i or ± ei (4.68)

eq. (4.17) leads to

P 6
13 + 14.2683P 4

13 − 24.65577P 2
13 − 0.5168 = 0 (4.69)

Solution of eq. (4.69) results in three complex conjugate pairs

P
(1)
13 = 0.1439i , P

(2)
13 = 1.2557 , P

(3)
13 = 3.9780i (4.70)

so that

P
(4)
13 = −0.1439i , P

(5)
13 = −1.2557 , P

(6)
13 = −3.9780i . (4.71)

Next, the eigenvalues are calculated for a Single-Crystal Forsterite. The elastic constants

are taken from Isaak et al. (1989), Table 3, for 300 K degrees, and are given in Table 4.3.

The stiffness matrix is given by

133



Sunday 8th May, 2022

Table 4.3: Elastic constants of Single-Crystal Forsterite. The units are GPa.

C11 C22 C33 C44 C55 C66 C23 C13 C12

329.97 199.98 235.96 67.18 81.50 81.18 72.12 67.96 66.19

C =



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

sym C44 0 0

C55 0

C66


. (4.72)

In order to obtain the eigenvalues P12 and P13 in eq. (4.17), an assumption is made such

that

P12 = 1 or P12 = −1 or P12 = e or P12 = −e (4.73)

are triple roots. Substituting these values into eq. (4.19) leads to

P 6
13 + 7.4743P 4

13 + 16.6755P 2
13 + 10.8042 = 0 (4.74)

For the solution of eq. (4.74), the eigenvalues P
(γ)
13 are pure imaginary and given by

P
(1)
13 = 1.0712i , P

(2)
13 = 1.5472i , P

(3)
13 = 1.9831i, (4.75)

P
(4)
13 = −1.0712i , P

(5)
13 = −1.5472i , P

(6)
13 = −1.9831i . (4.76)

If

P12 = ±i or ± ei (4.77)

eq. (4.17) leads to

P 6
13 + 1.4075P 4

13 − 0.3126P 2
13 − 0.0869 = 0 (4.78)

Solution of eq. (4.78) results in three complex conjugate pairs

P
(1)
13 = 0.4088i , P

(2)
13 = 0.5752 , P

(3)
13 = 1.2535i, (4.79)

P
(4)
13 = −0.4088i , P

(5)
13 = −0.5752 , P

(6)
13 = −1.2535i . (4.80)
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4.2 The eigenvector for various anisotropic materials

In this section, explicit expressions for calculation of the eigenvector for various anisotropic

materials are presented. The eigenvector is defined in eq. (1.94) as

(C11 +C12P12 +C13P13

+C21P12 +C22P
2
12 +C23P12P13

+C31P13 +C32P13P12 +C33P
2
13) a3×1 = 03×1 ,

(4.81)

where P11 = 1, Cij are 3× 3 matrices given in eq. (1.95) and

a = (a1 a2 a3)
T (4.82)

For an orthotropic material, using the matrices from eqs. (4.4) to (4.8), this equation is

given as

C11 0 0

0 C66 0

0 0 C55

 +


0 C12 0

C66 0 0

0 0 0

P12 +


0 0 C13

0 0 0

C55 0 0

P13


0 C66 0

C12 0 0

0 0 0

P12 +


C66 0 0

0 C22 0

0 0 C44

P 2
12 +


0 0 0

0 0 C23

0 C44 0

P12P13


0 0 C55

0 0 0

C13 0 0

P13 +


0 0 0

0 0 C44

0 C23 0

P13P12 +


C55 0 0

0 C44 0

0 0 C33

P 2
13




a1

a2

a3

 =


C11 + C66P

2
12 + C55P

2
13 (C12 + C66)P12 (C13 + C55)P13

(C12 + C66)P12 C66 + C22P
2
12 + C44P

2
13 (C23 + C44)P12P13

(C13 + C55)P13 (C23 + C44)P12P13 C55 + C44P
2
12 + C33P

2
13




a1

a2

a3

 = 0

(4.83)

For given values of P12 and P13, the eigenvector a may be found using eq. (4.83).

For a linear elastic, homogeneous, isotropic material, substituting eq. (4.27) into eq. (4.83)

results in
2µ+ λ+

(
P12

2 + P13
2
)
µ P12 (λ+ µ) P13 (λ+ µ)

P12 (λ+ µ) µ+ P12
2 (2µ+ λ) + P13

2µ P12P13 (λ+ µ)

P13 (λ+ µ) P12P13 (λ+ µ) µ+ P12
2µ+ P13

2 (2µ+ λ)




a1

a2

a3

 = 0

(4.84)
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By substituting the first value of P13 from eq. (4.31), namely i
√
P 2
12 + 1, into eq. (4.84),

one obtains 
1 P12 i

√
P 2
12 + 1

P12 P12
2 iP12

√
P 2
12 + 1

i
√
P 2
12 + 1 iP12

√
P 2
12 + 1 −(P 2

12 + 1)




a1

a2

a3

 = 0 . (4.85)

Each row in the 3 × 3 matrix in eq. (4.85) is linearly dependent. Solution of eq. (4.85)

leads to the eigenvector

a =


P12 + i

√
P 2
12 + 1

-1

-1

 . (4.86)

Since there are three identical eigenvalues, there are three identical eigenvectors making

this system mathematically degenerate. Following Ting (1996, p.487-488), it is possible

to treat this case. This will not be pursued here. It may be pointed out that there is

a second triple eigenvalue which is the complex conjugate of the first (triple) eigenvalue.

This case will be treated in the sequel.

Next, the eigenvectors are calculated for the cubic material, SC-Si, presented in Sec-

tion 4.1.2. Substituting P12 = 1 and eq. (4.39) into eq. (4.83) results in three complex

eigenvectors which may be arranged so that the 3× 3 matrix A is given by

A =
[
a(1) a(2) a(3)

]
(4.87)

and

a(i) =
(
a
(i)
1 a

(i)
2 a

(i)
3

)T
. (4.88)

In eq. (4.88), i = 1, 2, 3 corresponds to the three eigenvalues with positive imaginary part.

Thus,

A =


-0.5311-0.4234i 0.5311-0.4234i 1

-0.5311-0.4234i 0.5311-0.4234i -1

1 1 0

 . (4.89)

For P12 = 1 and the complex conjugate eigenvalues given in eq. (4.40), eq. (4.83) results

in

Ã = Ā (4.90)

where,

Ã =
[
a(4) a(5) a(6)

]
(4.91)

and

Ā =
[
ā(1) ā(2) ā(3)

]
(4.92)
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and the bar over a quantity represents the complex conjugate. Next, P12 = −1 and

eq. (4.39) is substituted into eq. (4.83) to obtain

A =


-0.5311-0.4234i 0.5311-0.4234i 1

0.5311+0.4234i -0.5311+0.4234i 1

1 1 0

 . (4.93)

Note that essentially the second row of A in eq. (4.89) is multiplied by −1 to obtain

eq. (4.93). Substituting P12 = −1 and (4.40) into eq. (4.83) leads to eq. (4.90). Substitut-

ing P12 = e and eq. (4.39) into eq. (4.83) results in

A =


-0.5311-0.4234i 0.5311-0.4234i 1

-(0.5311+0.4234i)e (0.5311-0.4234i)e -e

1 1 0

 (4.94)

Substituting P12 = e and eq. (4.40) into eq. (4.83) leads to eq. (4.90). Substituting

P12 = −e and eq. (4.39) into eq. (4.83) results in

A =


-0.5311-0.4234i 0.5311-0.4234i 1

(0.5311+0.4234i)e (-0.5311+0.4234i)e e

1 1 0

 (4.95)

Note that the second row of A in eq. (4.89) is multiplied by e and −e to obtain eqs. (4.94)

and (4.95), respectively. Substituting P12 = −e and eq. (4.40) into eq. (4.83) leads to

eq. (4.90).

Substituting P12 = i and eqs. (4.44) and (4.45) into eq. (4.83) results in

A =


0 -0.5092 -0.1768i

0 0.1768i -0.5092

1 1 1

 (4.96)

and

Ã =


0 0.5092 0.1768i

0 -0.1768i 0.5092

1 1 1

 (4.97)

respectively. In this case, Ã ̸= Ā. Substituting P12 = −i, and eqs. (4.44) and (4.45) into

eq. (4.83) results in

A =


0 -0.5092 -0.1768i

0 -0.1768i 0.5092

1 1 1

 (4.98)
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and

Ã =


0 0.5092 0.1768i

0 0.1768i -0.5092

1 1 1

 (4.99)

respectively. Substituting P12 = ie and eqs. (4.44) and (4.45) into eqs. (4.83) results in

A =


0 -0.5092 -0.1768i

0 0.1768ie -0.5092e

1 1 1

 (4.100)

and

Ã =


0 0.5092 0.1768i

0 -0.1768ie 0.5092e

1 1 1

 (4.101)

respectively. Substituting P12 = −ie and eqs. (4.44) and (4.45) into eqs. (4.83) results in

A =


0 -0.5092 -0.1768i

0 -0.1768ie 0.5092e

1 1 1

 (4.102)

and

Ã =


0 0.5092 0.1768i

0 0.1768ie -0.5092e

1 1 1

 (4.103)

respectively.

Substituting P13 = 1 and eq. (4.50) into eq. (4.83) results in three eigenvectors

A =


1 1 -1

-1.1512+0.9178i 1.1512+0.9178i 0

1 1 1

 . (4.104)

For P13 = 1 and the complex conjugate eigenvalues given in eq. (4.51), eq. (4.90) holds.

Next, the eigenvectors are calculated for the transversely isotropic material presented in

Section 4.1.2. Substituting P12 = 1 and eq. (4.56) into eq. (4.83) results in three complex

eigenvectors given by

A =


-0.0298i 0 -5.7041i

-0.8484i -1.6246i -0.2001

1 1 1

 . (4.105)
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For P12 = 1 and eqs. (4.57) and (4.83), eq. (4.90) holds. Next, P12 = −1 and eq. (4.56)

are substituted into eq. (4.83) resulting in three complex eigenvectors given by

A =


-0.0298i 0 -5.7041i

0.8484i 1.6246i 0.2001i

1 1 1

 . (4.106)

For P12 = −1 and eqs. (4.57) and (4.83), eq. (4.90) holds. Substituting P12 = e and

eq. (4.56) into eq. (4.83) results in

A =


-0.0298i 0 -5.7041i

-0.8484ie -1.6246ie -0.2001e

1 1 1

 . (4.107)

For P12 = e and eqs. (4.57) and (4.83), eq. (4.90) holds. Substituting P12 = −e and

eq. (4.56) into eq. (4.83) results in

A =


-0.0298i 0 -5.7041i

0.8484ie 1.6246ie 0.2001e

1 1 1

 . (4.108)

For P12 = −e and eqs. (4.57) and (4.83), eq. (4.90) holds.

Substituting P12 = i and eqs. (4.60) and (4.61) into eq. (4.83) results in

A =


0.0449 0 -5.9472i

1.2796i -0.7996 0.2086

1 1 1

 (4.109)

and

Ã =


-0.0449 0 5.9472i

-1.2796i 0.7996 -0.2086

1 1 1

 (4.110)

respectively. Substituting P12 = −i, and eqs. (4.60) and (4.61) into eq. (4.83) results in

A =


0.0449 0 -5.9472i

-1.2796i 0.7996 -0.2086

1 1 1

 (4.111)

and

Ã =


-0.0449 0 5.9472i

1.2796i -0.7996 0.2086

1 1 1

 (4.112)
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respectively. Substituting P12 = ie and eqs. (4.60) and (4.61) into eqs. (4.83) results in

A =


0.0449 0 -5.9472i

1.2796ie -0.7996e 0.2086e

1 1 1

 (4.113)

and

Ã =


-0.0449 0 5.9472i

-1.2796ie 0.7996e -0.2086e

1 1 1

 (4.114)

respectively. Substituting P12 = −ie and eqs. (4.60) and (4.61) into eqs. (4.83) results in

A =


0.0449 0 -5.9472i

-1.2796ie 0.7996e -0.2086e

1 1 1

 (4.115)

and

Ã =


-0.0449 0 5.9472i

1.2796ie -0.7996e 0.2086e

1 1 1

 (4.116)

respectively.

Next, the eigenvectors are calculated for the plain weave presented in Table 4.2. Substi-

tuting P12 = 1 and eq. (4.66) into eq. (4.83) results in three complex eigenvectors given

by

A =


-0.0206i 2.2451i -31.9929i

-0.1808i -22.5638i -4.6441i

1 1 1

 . (4.117)

For P12 = 1 and eqs. (4.67) and (4.83), eq. (4.90) holds. Substituting P12 = −1 and

eq. (4.66) into eq. (4.83) results in three complex eigenvectors given by

A =


-0.0206i 2.2451i -31.9929i

0.1808i 22.5638i 4.6441i

1 1 1

 . (4.118)

For P12 = −1 and eqs. (4.67) and (4.83), eq. (4.90) holds. Substituting P12 = e and

eq. (4.66) into eq. (4.83) results in

A =


-0.0206i 2.2451i -31.9929i

-0.1808ie -22.5638ie -4.6441ie

1 1 1

 . (4.119)

140



Sunday 8th May, 2022

For P12 = e and eqs. (4.67) and (4.83), eq. (4.90) holds. Substituting P12 = −e and

eq. (4.66) into eq. (4.83) results in

A =


-0.0206i 2.2451i -31.9929i

0.1808ie 22.5638ie 4.6441ie

1 1 1

 (4.120)

For P12 = −e and eqs. (4.67) and (4.83), eq. (4.90) holds.

Substituting P12 = i and eqs. (4.70) and (4.71) into eq. (4.83) results in

A =


1.2008 -0.0016i -37.4083i

15.2499i -0.1648 4.2786

1 1 1

 (4.121)

and

Ã =


-1.2008 0.0016i 37.4083i

-15.2499i 0.1648 -4.2786

1 1 1

 (4.122)

respectively. Substituting P12 = −i, and eqs. (4.70) and (4.71) into eq. (4.83) results in

A =


1.2008 -0.0016i -37.4083i

-15.2499i 0.1648 -4.2786

1 1 1

 (4.123)

and

Ã =


-1.2008 0.0016i 37.4083i

15.2499i -0.1648 4.2786

1 1 1

 (4.124)

respectively. Substituting P12 = ie and eqs. (4.70) and (4.71) into eqs. (4.83) results in

A =


1.2008 -0.0016i -37.4083i

15.2499ie -0.1648e 4.2786e

1 1 1

 (4.125)

and

Ã =


-1.2008 0.0016i 37.4083i

-15.2499ie 0.1648e -4.2786e

1 1 1

 . (4.126)

respectively. Substituting P12 = −ie and eqs. (4.70) and (4.71) into eqs. (4.83) results in

A =


1.2008 -0.0016i -37.4083i

-15.2499ie 0.1648e -4.2786e

1 1 1

 (4.127)
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and

Ã =


-1.2008 0.0016i 37.4083i

15.2499ie -0.1648e 4.2786e

1 1 1

 (4.128)

respectively.

Next, the eigenvectors are calculated for the Single-Crystal Forsterite presented in Sec-

tion 4.1.2. The stiffness components are presented in Table 4.3. Substituting P12 = 1 and

eq. (4.75) into eq. (4.83) results in three complex eigenvectors given by

A =


-0.2478i 0.9209i -1.7682i

-0.5522i -2.9193i -0.9238i

1 1 1

 . (4.129)

For P12 = 1 and eqs. (4.76) and (4.83), eq. (4.90) holds. Substituting P12 = −1 and

eq. (4.75) into eq. (4.83) results in

A =


-0.2478i 0.9209i -1.7682i

0.5522i 2.9193i 0.9238i

1 1 1

 (4.130)

For P12 = −1 and eqs. (4.76) and (4.83), eq. (4.90) holds. Substituting P12 = e and

eq. (4.75) into eq. (4.83) results in

A =


-0.2478i 0.9209i -1.7682i

-0.5522ie -2.9193ie -0.9238ie

1 1 1

 . (4.131)

For P12 = e and eqs. (4.76) and (4.83), eq. (4.90) holds. Substituting P12 = −e and

eq. (4.75) into eq. (4.83) results in three complex eigenvectors given by

A =


-0.2478i 0.9209i -1.7682i

0.5522ie 2.9193ie 0.9238ie

1 1 1

 . (4.132)

For P12 = −e and eqs. (4.76) and (4.83), eq. (4.90) holds.

Substituting P12 = i and eqs. (4.79) and (4.80) into eq. (4.83) results in

A =


0.7137 0.0505i -3.0355i

1.9188i -0.4952 1.2156

1 1 1

 (4.133)

142



Sunday 8th May, 2022

and

Ã =


-0.7137 -0.0505i 3.0355i

-1.9188i 0.4952 -1.2156

1 1 1

 (4.134)

respectively. Substituting P12 = −i, and eqs. (4.79) and (4.80) into eq. (4.83) results in

A =


0.7137 0.0505i -3.0355i

-1.9188i 0.4952 -1.2156

1 1 1

 (4.135)

and

Ã =


-0.7137 -0.0505i 3.0355i

1.9188i -0.4952 1.2156

1 1 1

 (4.136)

respectively. Substituting P12 = ie and eqs. (4.79) and (4.80) into eqs. (4.83) results in

A =


0.7137 0.0505i -3.0355i

1.9188ie -0.4952e 1.2156e

1 1 1

 (4.137)

and

Ã =


-0.7137 -0.0505i 3.0355i

-1.9188ie 0.4952e -1.2156e

1 1 1

 . (4.138)

respectively. Substituting P12 = −ie and eqs. (4.79) and (4.80) into eqs. (4.83) results in

A =


0.7137 0.0505i -3.0355i

-1.9188ie 0.4952e -1.2156e

1 1 1

 (4.139)

and

Ã =


-0.7137 -0.0505i 3.0355i

1.9188ie -0.4952e 1.2156e

1 1 1

 . (4.140)

respectively.

4.3 A three-dimensional Clifford formalism

In this section, a three-dimensional Clifford formalism is derived based on the two-dimensi-

onal Stroh formalism and Liu and Hong (2015) where a Clifford formalism was also ex-

plored. The stress-strain law for an anisotropic material is given in eq. (1.83) as

σij = Cijklϵkl , (4.141)
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where i, j, k, l = 1, 2, 3 and repeated indices obey the summation convention. Recall

that the stiffness tensor C satisfies the symmetry conditions in eq. (1.86). The strain-

displacement relations are given in eq. (1.84) as

ϵij =
1

2
(ui,j + uj,i) (4.142)

where a comma indicates differentiation. Using the equilibrium equations in eq. (1.87),

the governing equations for the displacement components are given by

Cijkluk,jl = 0 . (4.143)

For a specific eigenvalue and eigenvector pair, the displacement vector is defined as a

function of the coordinates x1, x2 and x3 as

u = af(y) (4.144)

where f(y) is an arbitrary function and

y = x1 + P12x2 + P13x3 . (4.145)

Using three eigenvalue and eigenvector pairs as found in Section 4.2, a general expression

for the displacement vector may be written for a general solution as

u =
3∑

γ=1

[
a(γ)fγ(yγ) + a(γ+3)fγ+3(yγ+3)

]
(4.146)

and in matrix form as

u = A[f(y)] + Ã[̃f(y)] . (4.147)

In eq. (4.147), A is defined in eq. (4.87) and Ã is defined in eq. (4.91). The vectors [f(y)]

and [̃f(y)] are defined as

[f(y)] =


f1(y1)

f2(y2)

f3(y3)

 (4.148)

and

[̃f(y)] =


f4(y4)

f5(y5)

f6(y6)

 (4.149)

respectively. In eqs. (4.148) and (4.149),

yγ = x1 + P12x2 + P
(γ)
13 x3 (4.150)

where γ = 1, ..., 6 accounting for the six eigenvalues P
(γ)
13 and fγ(yγ), are arbitrary func-

tions. Recall that P11 = 1 and P12 has a chosen value.
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For the special case where Ã = Ā and following Section 5.3 in Ting (1996), assume that

the arbitrary functions fγ(yγ) have the form

fγ(yγ) = f(yγ)qγ fγ+3(yγ+3) = f(ȳγ)q̄γ (4.151)

for γ = 1, 2, 3 without summation, and qγ are arbitrary complex constants, the displace-

ment vector may then be written as

u = 2 ℜ [A ⟨f(y∗)⟩q] . (4.152)

In eq. (4.152), ⟨f(y∗)⟩ is a diagonal matrix given as

⟨f(y∗)⟩ = diag[f(y1), f(y2), f(y3)] (4.153)

and q is a vector composed of constant complex numbers.

Next, stress functions are found for the Clifford formalism using a specific eigenvalue and

eigenvector. Substituting eqs. (4.142) and (4.144) into eq. (4.141) results in

σij = CijklP1lakf
′(y) , (4.154)

summation is used on repeated indices, and the prime denotes differentiation with respect

to the argument y. It is noted that eq. (4.154) is for one eigenvalue and one eigenvector.

Using eq. (4.154), the stress components σi1 are found as

σi1 = Ci1klP1lakf
′(y) (4.155)

or
σ11

σ21

σ31

 =


C11 C16 C15

C61 C66 C65

C51 C56 C55




a1

a2

a3

 f ′(y) +


C16 C12 C14

C66 C62 C64

C56 C52 C54




a1

a2

a3

P12f
′(y)+

+


C15 C14 C13

C65 C64 C63

C55 C54 C53




a1

a2

a3

P13f
′(y)

(4.156)

where contracted notation is used. Next, stress vector components related to the stress

components are defined as

(t1)i = σi1 , (t2)i = σi2 , (t3)i = σi3 . (4.157)

Use of eq. (4.154) leads to

t1 = (C11 + P12C12 + P13C13) af
′(y) (4.158)

t2 = (C21 + P12C22 + P13C23) af
′(y) (4.159)
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t3 = (C31 + P12C32 + P13C33) af
′(y). (4.160)

For an orthotropic material, eqs. (4.158) to (4.160) become

t1 =


C11 C12P12 C13P13

C66P12 C66 0

C55P13 0 C55

 af ′(y) (4.161)

t2 =


C66P12 C66 0

C21 C22P12 C23P13

0 C44P13 C44P12

 af ′(y) (4.162)

and

t3 =


C55P13 0 C55

0 C44P13 C44P12

C31 C32P12 C33P13

 af ′(y) . (4.163)

It should be noted that Cij in eqs. (4.161) to (4.163) are compliance components and not

matrices. Noting eqs. (4.161) to (4.163), it is possible to write

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12P12 C13P13

C21 C22P12 C23P13

C31 C32P12 C33P13

0 C44P13 C44P12

C55P13 0 C55

C66P12 C66 0


af ′(y) . (4.164)

Using eqs. (4.161) to (4.164), the stress vectors, when using the three eigenvalue and

eigenvector pairs, are given as

t1 =


C11 C12P12 C13P13

C66P12 C66 0

C55P13 0 C55

(A[f ′(y)] + Ã[̃f ′(y)]
)

(4.165)

t2 =


C66P12 C66 0

C21 C22P12 C23P13

0 C44P13 C44P12

(A[f ′(y)] + Ã[̃f ′(y)]
)

(4.166)

t3 =


C55P13 0 C55

0 C44P13 C44P12

C31 C32P12 C33P13

(A[f ′(y)] + Ã[̃f ′(y)]
)

(4.167)
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and 

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12P12 C13P13

C21 C22P12 C23P13

C31 C32P12 C33P13

0 C44P13 C44P12

C55P13 0 C55

C66P12 C66 0


(
A[f ′(y)] + Ã[̃f ′(y)]

)
. (4.168)

In eqs. (4.165) to (4.168), the general solution is again considered, so that

[f ′(y)] =


f ′
1(y1)

f ′
2(y2)

f ′
3(y3)

 (4.169)

[̃f ′(y)] =


f ′
4(y4)

f ′
5(y5)

f ′
6(y6)

 (4.170)

where the derivative is with respect to the argument.

Next, two stress function vectors are derived as

ϕb = bf(y) , ϕg = gf(y) (4.171)

where

b = (C21 + P12C22 + P13C23) a (4.172)

g = (C31 + P12C32 + P13C33) a . (4.173)

It may be noted that

∂f(y)

∂x1
= P11f

′(y) ,
∂f(y)

∂x2
= P12f

′(y) ,
∂f(y)

∂xx
= P13f

′(y) (4.174)

and P11 = 1. Then, the required derivatives of ϕb and ϕg are given by

ϕb
,1 = (C21 + P12C22 + P13C23) af

′(y)

ϕg
,1 = (C31 + P12C32 + P13C33) af

′(y)

ϕb
,2 = (P12C21 + P 2

12C22 + P12P13C23) af
′(y)

ϕg
,3 = (P13C31 + P12P13C32 + P 2

13C33) af
′(y) .

(4.175)

Substituting eqs. (4.175)1 and (4.175)2 into eqs. (4.159) and (4.160), respectively, results

in

t2 = ϕb
,1 , t3 = ϕg

,1 . (4.176)
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Rearranging eq. (4.81), and multiplying by f ′(y), one may obtain the relation

(C11 + P12C12 + P13C13) af
′(y) =

− (P12C21 + P 2
12C22 + P12P13C23) af

′(y)− (P13C31 + P13P12C32 + P 2
13C33) af

′(y) .

(4.177)

Noting eqs. (4.158), (4.175)3, (4.175)4 and (4.177),

t1 = −(ϕb
,2 + ϕg

,3) . (4.178)

General solutions with three eigenvalue and eigenvector pairs for the stress function vectors

may be written as

ϕb =
3∑

γ=1

[
b(γ)fγ(yγ) + b(γ+3)fγ+3(yγ+3)

]
(4.179)

ϕg =
3∑

γ=1

[
g(γ)fγ(yγ) + g(γ+3)fγ+3(yγ+3)

]
(4.180)

where

b(γ) =
(
C21 + P12C22 + P

(γ)
13 C23

)
a(γ) (4.181)

g(γ) =
(
C31 + P12C32 + P

(γ)
13 C33

)
a(γ) . (4.182)

It was assumed here that P12 has six identical eigenvalues. The general solutions in matrix

form may be written as

ϕb = B[f(y)] + B̃[̃f(y)] (4.183)

ϕg = G[f(y)] + G̃[̃f(y)] (4.184)

where

B = [b(1),b(2),b(3)], B̃ = [b(4),b(5),b(6)], G = [g(1),g(2),g(3)] G̃ = [g(4),g(5),g(6)]

(4.185)

[f(y)] and [̃f(y)] are given in eqs. (4.148) and (4.149). Following Section 5.3 in Ting (1996),

for the special case where

B̃ = B̄ , (4.186)

G̃ = Ḡ , (4.187)

and eqs. (4.90) and (4.151) hold

ϕb = 2 ℜ [B ⟨f(y∗)⟩q] (4.188)

ϕg = 2 ℜ [G ⟨f(y∗)⟩q] (4.189)

where ⟨f(y∗)⟩ is a diagonal matrix given in eq. (4.153). Using eqs. (4.147), (4.183)

and (4.184) with three eigenvalue and eigenvector pairs as found in Section 4.2, a general

148



Sunday 8th May, 2022

expression for the displacement and stress function vectors may be written in matrix form

as 
u

ϕb

ϕg

 =


A Ã

B B̃

G G̃


(

[f(y)]

[̃f(y)]

)
. (4.190)

It may be noted that eq. (4.190) is more general than eqs. (4.188) and (4.189).

Next, the orthogonality and closure relations, presented in Ting (1996, pp. 144-146), are

developed. To develop these relations, one may present an eigenrelation for P13. Using

eq. (1.97) as

−N−1
3 (N1 + P12N2)d = P13d (4.191)

where N1, N2 and N3 are given in eqs. (1.98). However, the matrix N3 is singular so that

is not possible to determine its inverse. On the other hand, to develop an eigenrelation

for P12, one may write eq. (1.97) as

−N−1
2 (N1 + P13N3)d = P12d (4.192)

The matrix N2 is also singular and cannot be inverted. Hence, the eigenrelation for P12

may not be developed. Thus, to develop the eigenrelations for P12 and P13, another step

is required.

Since eqs. (4.191) and (4.192) could not be used to determine the orthogonality and closure

relations, a different approach is taken. These relations are developed separately for both

the matrices A and G and then for A and B. To this end, equation (1.98) is used to

expand eq. (1.97) to obtain three equations. These equations are given as

(C11 + P12C12)a+ P12b+ P13C13a+ P13g = 0

C21a− b+ P12C22a+ P13C23a = 0

C31a− g+ P12C32a+ P13C33a = 0 .

(4.193)

For the case where P12 has six identical constant values, eq. (4.193)2 is substituted into

eq. (4.193)1 results as

[C11 + P12(C12 +C21) + P 2
12C22]a+ P13(C13 + P12C23)a+ P13g = 0

(C31 + P12C32)a− g+ P13C33a = 0
. (4.194)

Equations (4.194) may be rewritten as

(N∗
1 + P13N

∗
3)d

∗ = 0 , (4.195)

where,

N∗
1 =

 C11 + P12(C12 +C21) + P 2
12C22 0

C31 + P12C32 −I

 ,N∗
3 =

 C13 + P12C23 I

C33 0

 .

(4.196)
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In eq. (4.195), the vector d∗
6×1 is defined as

d∗ =

 a

g

 , (4.197)

where a is the eigenvector related to P13 and g is given in eq. (4.173). Noting that N∗−1
3

is given as

N∗−1
3 =

 0 C−1
33

I −(C13 + P12C23)C
−1
33

 , (4.198)

eq. (4.195) may be rewritten as a standard eigenrelation

Nξ = P13ξ (4.199)

where

N = −N∗−1
3 N∗

1 , ξ =

 a

g

 . (4.200)

Following equations (5.5-6) to (5.5-16) in Ting (1996, pp. 144-146), the orthogonality and

closure relations are developed. Noting that N is not symmetric, ξ is a right eigenvector.

The left eigenvector η, is given as

NTη = P13η . (4.201)

Presenting a new 6× 6 matrix as

Î =

 0 I

I 0

 , Î = Î
T
= Î

−1
, (4.202)

it may be shown that

ÎN = NT Î. (4.203)

Multiplying eq. (4.199) by Î results in

ÎNξ = P13Îξ (4.204)

and using eq. (4.203)

NT (Îξ) = P13(Îξ). (4.205)

Noting eqs. (4.201) and (4.205)

η = Îξ =

 g

a

 . (4.206)

Thus, eq. (4.206) results in the left eigenvector as shown in eq. (4.201). The right and left

eigenvectors for different eigenvalues P
(γ)
13 , for γ = 1, .., 6, are orthogonal. The distinct
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eigenvalues ξ and η are unique up to an arbitrary multiplier. For distinct eigenvalues, the

eigenvectors are normalized by

ηTα · ξβ = δαβ , for α, β = 1, .., 6 (4.207)

where δαβ is the Kronecker delta. Using eqs. (4.200)2, (4.206) and (4.207)

gTαaβ + aTαgβ = δαβ . (4.208)

For the case where eqs. (4.90) and (4.187) hold and noting eqs. (4.87) and (4.185)3,

eq. (4.208) may be rewritten as GT AT

Ḡ
T

Ā
T

 A Ā

G Ḡ

 =

 I 0

0 I

 . (4.209)

or
GTA+ATG = I = Ḡ

T
Ā+ Ā

T
Ḡ

GT Ā+AT Ḡ = 0 = Ḡ
T
A+ Ā

T
G

. (4.210)

These are the orthogonality relations. It may be noted that the complex conjugate of

eq. (4.208) was used. The matrix on the left side of eq. (4.209) is the inverse of the matrix

on the right side, and hence their product commutes resulting in the closure relations A Ā

G Ḡ

 GT AT

Ḡ
T

Ā
T

 =

 I 0

0 I

 . (4.211)

or
AGT + ĀḠ

T
= I = GAT + ḠĀ

T

AAT + ĀĀ
T
= 0 = GGT + ḠḠ

T
.
. (4.212)

Noting eqs. (4.212)1 and (4.212)2, the real part of AGT is 1
2
I and AAT and GGT are

purely imaginary, respectively. Hence, following Ting (1996), three real matrices may be

defined as

S1 = i(2AGT − I) , H1 = 2iAAT , L1 = −2iGGT . (4.213)

In Ting (1996), similar matrices were found to be very useful for final solutions of two-

dimensional anisotropic elasticity problems. These matrices may be used to develop real

solutions for three-dimensional anisotropic elasticity problems. This will not be pursued

here.

Next, an explicit expression for [f(y)] from eq. (4.148) is found for the case where eqs. (4.90)

and (4.187) hold. Equation (4.190) may be used as(
u

ϕg

)
=

[
A Ā

G Ḡ

](
[f(y)]

[̄f(ȳ)]

)
(4.214)
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where

[̄f(ȳ)] =


f̄1(ȳ1)

f̄2(ȳ2)

f̄3(ȳ3)

 . (4.215)

Using eq. (4.209),  GT AT

Ḡ
T

Ā
T

( u

ϕg

)
=

(
[f(y)]

[̄f(ȳ)]

)
(4.216)

and

[f(y)] = GTu+ATϕg. (4.217)

Next, the orthogonality and closure relations, presented in Ting (1996, pp. 144-146),

are developed for the case where P13 has six identical constant values and P12 has six

independent values. Substituting eq. (4.193)3 into eq. (4.193)1 leads to

[C11 + P13(C13 +C31) + P 2
13C33]a+ P12(C12 + P13C32)a+ P12b = 0

(C21 + P13C23)a− b+ P12C22a = 0
(4.218)

Equations (4.218) may be rewritten as

(N∗∗
1 + P12N

∗
2)d

∗∗ = 0 , (4.219)

where,

N∗∗
1 =

 C11 + P13(C13 +C31) + P 2
13C33 0

C21 + P13C23 −I

 ,N∗
2 =

 C12 + P13C32 I

C22 0

 .

(4.220)

In eq. (4.219), the vector d∗∗
6×1 is defined as

d∗∗ =

 a

b

 , (4.221)

where a is the eigenvector related to P12 and b is given in eq. (4.172). Noting that N∗−1
2

is given as

N∗−1
2 =

 0 C−1
22

I −(C12 + P13C32)C
−1
22

 , (4.222)

eq. (4.219) may be rewritten as a standard eigenrelation

Nξ = P12ξ (4.223)

where

N = −N∗−1
2 N∗∗

1 , ξ =

 a

b

 . (4.224)

152



Sunday 8th May, 2022

Following equations (4.201) to (4.208), for the case where eqs. (4.90) and (4.186) hold and

noting eqs. (4.87) and (4.185)1, BT AT

B̄
T

Ā
T

 A Ā

B B̄

 =

 I 0

0 I

 . (4.225)

or
BTA+ATB = I = B̄

T
Ā+ Ā

T
B̄

BT Ā+AT B̄ = 0 = B̄
T
A+ Ā

T
B

. (4.226)

These are the orthogonality relations. The matrix on the left side of eq. (4.225) is the

inverse of the matrix on the right side, and hence their product commutes resulting in

the closure relations  A Ā

B B̄

 BT AT

B̄
T

Ā
T

 =

 I 0

0 I

 . (4.227)

or
ABT + ĀB̄

T
= I = BAT + B̄Ā

T

AAT + ĀĀ
T
= 0 = BBT + B̄B̄

T
.
. (4.228)

Noting eqs. (4.228)1 and (4.228)2, the real part of ABT is 1
2
I and AAT and BBT are

purely imaginary, respectively. Hence, following Ting (1996), three real matrices may be

defined as

S2 = i(2ABT − I) , H2 = 2iAAT , L2 = −2iBBT . (4.229)

An explicit expression for [f(y)] from eq. (4.148) is found for the case where eqs. (4.90)

and (4.186) hold. Equation (4.190) may be used as(
u

ϕb

)
=

[
A Ā

B B̄

](
[f(y)]

[̄f(ȳ)]

)
. (4.230)

Using eq. (4.225),  BT AT

B̄
T

Ā
T

( u

ϕb

)
=

(
[f(y)]

[̄f(ȳ)]

)
(4.231)

and

[f(y)] = BTu+ATϕb. (4.232)

4.4 Analytical and numerical results of the

three-dimensional Clifford formalisms

In this section, solutions for four different problems are presented. A solution for a pure

shear problem using a 0◦/90◦ weave, is presented in Section 4.4.1. Recall that this material
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is tetragonal and described by six independent mechanical properties. In Section 4.4.2,

a general solution for a uniform stress field is developed for all materials where P12 is a

real constant. In Section 4.4.3, solutions for mixed problems of tension and shear stresses

and tension-compression stresses are presented using the general solution. In this section,

a cubic material is used which is described by three independent mechanical properties.

A solution for a uniform tension problem is presented in Section 4.4.4, using the same

material as in Section 4.4.1.

4.4.1 A solution for a pure shear problem

In this section, a 0◦/90◦ weave is used. The mechanical properties are taken from Table

S8 of Mega and Banks-Sills (2019), and are given in Table 4.2. For the assumption that

P12 = 1, the eigenvalues are presented in eq. (4.66); the eigenvectors are presented in

eqs. (4.117) and eq. (4.90) holds. In order to obtain the displacement and stress functions

in eq. (4.190), the arbitrary functions fγ(yγ) require definition. From eq. (4.145)

yγ = x1 + x2 + P
(γ)
13 x3. (4.233)

Assuming that

fγ(yγ) = 0.0001yγ (4.234)

then

fγ(y) = 0.0001
(
x1 + x2 + P

(γ)
13 x3

)
(4.235)

and

fγ+3(y) = 0.0001
(
x1 + x2 + P̄

(γ)
13 x3

)
. (4.236)

Note that fγ(y) and fγ+3(y) have units of length, namely mm; and value 0.0001 was

chosen to make the final units realistic. Thus,

fγ+3(y) = fγ(ȳ). (4.237)

Substituting eqs. (4.235), (4.236) and the eigenvectors from eqs. (4.117) and (4.90) into

eq. (4.190) leads to

u =


2.5968 · 10−2 x3

1.2380 · 10−2 x3

0.0600 · 10−2(x1 + x2)

 (4.238)

where u and xi are measured in mm. The stress functions are

ϕb =


84.3648x3

141.05574x3

28.5545(x1 + x2)

 (4.239)
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and

ϕg =


85.0186(x1 + x2)

28.5545(x1 + x2)

−113.5731x3

 . (4.240)

It may be noted that ϕb and ϕg have units of MPa·mm. The stiffness components were

measured in MPa. Using eqs. (4.176) and (4.178),

t1 =


0

0

85.0186

 , t2 =


0

0

28.5545

 , t3 =


85.0186

28.5545

0

 (4.241)

Using eq. (4.157), the stress vector is found as

σ =



0

0

0

28.5545

85.0186

0


MPa (4.242)

Equation. (4.168) leads to the same stress vector. Note that as expected u and σ are real

and a pure shear problem is obtained.

Clearly, eq. (4.242) satisfies the equilibrium equations. The strain components may be

calculated from

εα = Sαβσβ (4.243)

where α, β = 1, ..., 6 and Sαβ is given in eq. (4.63) with Table 4.2. Use of eq. (4.243) leads

to the values of 

ε1

ε2

ε3

ε4

ε5

ε6


=



0

0

0

1.2979 · 10−2

2.6568 · 10−2

0


. (4.244)

Note that ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = 2ε23, ε5 = 2ε13 and ε6 = 2ε12. Using

eq. (4.238) in the strain-displacement equations in eq. (4.142), eq. (4.244) is confirmed. A

finite element model was also used to validate the solution. The displacement components

in eq. (4.238) were applied to the outer boundaries of a cube of 100 × 100 × 100 mm3.
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The cube was meshed with 1000 brick elements 10× 10× 10 mm3. The displacement and

stress fields obtained at each point within the body are given by eqs. (4.238) and (4.242),

respectively.

In Liu and Hong (2015), it was suggested to use P12 = const · e where const is a real

constant that is chosen by the boundary conditions of the problem. For the assumption

that P12 = e, the eigenvalues are the same as for P12 = 1; the eigenvectors are presented

in eqs. (4.119) and (4.90). By repeating the same process as for P12 = 1, where

fγ(y) = 0.0001
(
x1 + ex2 + P

(γ)
13 x3

)
(4.245)

and

fγ+3(y) = 0.0001
(
x1 + ex2 + P̄

(γ)
13 x3

)
(4.246)

the displacement and stress vectors are given as

u =


2.5968 · 10−2 x3

1.2380 · 10−2 x3

0.0600 · 10−2(x1 + x2e)

 (4.247)

σ =



0

0

0

(27.2344 + 0.1320e)

85.0186

0


MPa (4.248)

The displacement and stress vectors are not real. Thus, the assumption that P12 = e is

not valid.

For the assumption that P12 = i, the eigenvalues are given in eqs. (4.70) and (4.71); the

eigenvectors are presented in eqs. (4.121) and (4.122). By repeating the same process as

for P12 = e, the displacement and stress vectors are given as

u =


3.0063 · 10−2 x3

0.7229 · 10−2 x3

0.0600 · 10−4(x1 + x2i)

 (4.249)
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σ =



0

0

0

17.2240i

98.1233

0


MPa (4.250)

The displacement and stress vectors are not real. Thus, the assumption that P12 = i is

also not valid.

4.4.2 A general solution for a uniform stress field

In Section 4.4.1, a judicious choice of f(y) in eq. (4.234) allowed determination of a

particular uniform stress field. In this section, a general solution for a uniform stress field

is developed. The displacement field and stress functions may be written as

u = x1ε1 + x2ε2 + x3ε3

ϕb = x1t2 + x2t
b
1 + x3t

∗

ϕg = x1t3 + x2t
∗∗ + x3t

g
1

(4.251)

where

ε1 =


ε11

2ε12

2ε13

 , ε2 =


0

ε22

ε
(1)
23

 , ε3 =


0

ε
(2)
23

ε33

 , (4.252)

2ε23 = ε
(1)
23 + ε

(2)
23 (4.253)

and

t1 = −(tb1 + tg1) . (4.254)

The vectors t1, t2 and t3 are defined in eqs. (4.157), and given explicitly as

t1 =


σ11

σ21

σ31

 , t2 =


σ12

σ22

σ32

 , t1 =


σ13

σ23

σ33

 (4.255)

and t∗ and t∗∗ are arbitrary vectors which exist, are not necessary for the solution and

are not found. Equations (4.251)1, (4.252) and (4.253) satisfy the strain-displacement

equations given in eq. (4.142). Equations (4.251)2, (4.251)3 and (4.254), satisfy eqs. (4.176)

and (4.178), the relations between the stress vectors and the stress functions. For the
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cases where eqs. (4.90), (4.186), (4.187) and (4.151) hold, the arbitrary functions fγ(yγ)

is assumed to have the form

fγ(yγ) = yγqγ fγ+3(ȳγ) = ȳγ q̄γ (4.256)

for γ = 1, 2, 3 without summation, and qγ are arbitrary complex constants. Recalling

from eq. (4.174) that
∂f(yγ)

∂x1
= f ′(yγ) (4.257)

for P11 = 1 and noting eqs. (4.251)1, (4.251)3 and (4.256), the derivative of eq. (4.217)

with respect to x1 is given by

q = GTε1 +AT t3 (4.258)

where

q =


q1

q2

q3

 . (4.259)

For the case where P13 has six constant values and P12 has six independent values and

noting eqs. (4.251)1, (4.251)3 and (4.256), the derivative of eq. (4.232) with respect to x1

is given by

q = BTε1 +AT t2 . (4.260)

These solutions may be used to solve the problem of an elliptic hole or rigid inclusion

subjected to a uniform loading at infinity for a three-dimensional body as presented in

Ting (1996, pp. 380-386), for the two-dimensional plane deformation case. This will not

be pursued here. In Sections 4.4.3 and 4.4.4, the solution presented in this section will be

used for solving different uniform stress problems.

4.4.3 Combined tensile stress problem for P12 = 1

In this section, a combined tensile stress problem is solved for a cubic material and P12 = 1.

The mechanical properties are given in Table 4.1. For the assumption that P12 = 1, the

eigenvalues are presented in eqs. (4.39) and (4.40); the eigenvectors are presented in

eqs. (4.89) and (4.90). In order to use the uniform stress solution from Section 4.4.2, the

matrices A and G should be normalized to satisfy eq. (4.210)1. Recall that the columns

of A are eigenvectors which are calculated using eq. (4.83); the columns of G are related

to A through eq. (4.182) and are given as

G =


(9.8780− 7.6960i) · 104 (9.8780 + 7.6960i) · 104 −9.0934i · 104

(9.8780− 7.6960i) · 104 (9.8780 + 7.6960i) · 104 9.0934i · 104

(3.9748 + 16.5398i) · 104 (−3.9748 + 16.5398i) · 104 0

 .

(4.261)
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The matrices A and G may be redefined as

A =
[
k1a

(1) k2a
(2) k3a

(3)
]
, G =

[
k1g

(1) k2g
(2) k3g

(3)
]

(4.262)

where ki for i = 1, 2, 3 are normalized factors determined using eq. (4.210)1. The normal-

ization factors are found as

k1 = (6.7103− 13.9319i) · 10−4

k2 = (13.9319− 6.7103i) · 10−4

k3 = 11.7244(1− i) · 10−4 .

(4.263)

Using eqs. (4.89), and (4.261) to (4.263) to satisfy eq. (4.210)1, normalized matrices A

and G are found as

A =


(−9.4630 + 4.5578i) · 10−4 (4.5578− 9.4630i) · 10−4 −11.7244(1− i) · 10−4

(−9.4630 + 4.5578i) · 10−4 (4.5578− 9.4630i) · 10−4 11.7244(1− i) · 10−4

(6.7103− 13.9319i) · 10−4 (13.9319− 6.7103i) · 10−4 0


(4.264)

G =


−40.9359− 189.2613i 189.2613 + 40.9359i −106.6153(1 + i)

−40.9359− 189.2613i 189.2613 + 40.9359i 106.6153(1 + i)

257.1041 + 55.6099i 257.1041 + 55.6099i 0

 . (4.265)

Next, the general uniform solution is used for the case where

t3 =


0

0

100

 , ε1 =


0

0

0

 . (4.266)

Substituting eq. (4.266) into eq. (4.258) leads to

q =


0.0671-0.1393i

0.1393-0.0671i

0

 . (4.267)

Substituting eq. (4.267) into eq. (4.256) and using eq. (4.190) leads to

u =


0

0

0.0640 · 10−2x3

 (4.268)

ϕb =


0

33.3333(x1 + x2)

−33.3333x3

 (4.269)
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and

ϕg =


−33.3333x3

−33.3333x3

100.0000(x1 + x2)

 . (4.270)

where u and x3 are measured in mm and ϕb and ϕg have units of MPa·mm. Using

eqs. (4.176) and (4.178),

t1 =


33.3333

0

0

 , t2 =


0

33.3333

0

 , t3 =


0

0

100

 . (4.271)

Using eq. (4.255), the stress vector is found as

σ =



33.3333

33.3333

100.0000

0

0

0


MPa (4.272)

Use of eq. (4.243) leads to the values of

ε1

ε2

ε3

ε4

ε5

ε6


=



0

0

0.0640 · 10−2

0

0

0


. (4.273)

Note that eq. (4.266) is satisfied. The strain-displacement relations in eq. (4.142) are

satisfied by differentiation of eq. (4.268) appropriately; and eq. (4.273) is achieved. A

finite element model was also used to validate the solution. The displacement components

in eq. (4.268) were applied to the outer boundaries of a cube of 100 × 100 × 100 mm3.

The cube was meshed as explained in Section 4.4.1. The displacement and stress fields

obtained at each point within the body are given by eqs. (4.268) and (4.272), respectively.

4.4.4 Combined tensile stress problem for P13 = 1

In this section, a combined tensile stress problem is solved for a cubic material and P13 = 1.

The mechanical properties are given in Table 4.1. For the assumption that P13 = 1, the
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eigenvalues are presented in eqs. (4.50) and (4.51); the eigenvectors are presented in

eqs. (4.104) and (4.90). In order to use the uniform stress solution from Section 4.4.2, the

matrices A and B should be normalized to satisfy eq. (4.226)1. Recall that the columns

of A are eigenvectors which are calculated using eq. (4.83). To obtain the columns of B,

eq. (4.181) is rewritten as

b(γ) =
(
C21 + P

(γ)
12 C22 + P13C23

)
a(γ) (4.274)

and B is found as

B =


(−4.3078 + 17.9253i) · 104 (4.3078 + 17.9253i) · 104 −9.0934i · 104

(−19.7559− 15.3920i) · 104 (−19.7559 + 15.3920i) · 104 0

(−4.3078 + 17.9253i) · 104 (4.3078 + 17.9253i) · 104 9.0934i · 104

 .

(4.275)

The matrices A and B may be redefined as

A =
[
k1a

(1) k2a
(2) k3a

(3)
]
, B =

[
k1b

(1) k2b
(2) k3b

(3)
]

(4.276)

where ki for i = 1, 2, 3 are normalized factors determined using eq. (4.226)1. The normal-

ization factors are found as

k1 = (9.4630− 4.5578i) · 10−4

k2 = (4.5578− 9.4630i) · 10−4

k3 = 11.7244(1− i) · 10−4 .

(4.277)

Using eqs. (4.104), and (4.275) to (4.277) to satisfy eq. (4.226)1, normalized matrices A

and B are found as

A =


(9.4630− 4.5578i) · 10−4 (4.5578− 9.4630i) · 10−4 −11.7244(1− i) · 10−4

(−6.7103 + 13.9319i) · 10−4 (13.9319− 6.7103i) · 10−4 0

(9.4630− 4.5578i) · 10−4 (4.5578− 9.4630i) · 10−4 11.7244(1− i) · 10−4


(4.278)

B =


40.9359 + 189.2613i 189.2613 + 40.9359i −106.6153(1 + i)

−257.1041− 55.6099i 257.1041 + 55.6099i 0

40.9359 + 189.2613i 189.2613 + 40.9359i 106.6153(1 + i)

 . (4.279)

Next, the general uniform solution is used for the case where

t2 =


0

100

0

 , ε1 =


0

0

0

 ; (4.280)
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t2 and ε1 are defined in eqs. (4.255)2 and (4.252)1, respectively. Substituting eq. (4.280)

into eq. (4.260) leads to

q =


-0.0671+0.1393i

0.1393-0.0671i

0

 . (4.281)

Substituting eq. (4.281) into eq. (4.256) and using eq. (4.190) leads to

u =


0

0.0640 · 10−2x2

0

 (4.282)

ϕb =


−33.3333x2

100(x1 + x3)

−33.3333x2

 (4.283)

and

ϕg =


0

−33.3333x2

33.3333(x1 + x3)

 (4.284)

where u and xi for i = 1, 2, 3 are measured in mm and ϕb and ϕg have units of MPa·mm.

Using eqs. (4.176) and (4.178),

t1 =


33.3333

0

0

 , t2 =


0

100.000

0

 , t3 =


0

0

33.3333

 . (4.285)

Using eq. (4.255), the stress vector is found as

σ =



33.3333

100.0000

33.3333

0

0

0


MPa (4.286)
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Use of eq. (4.243) leads to the strain values as

ε1

ε2

ε3

ε4

ε5

ε6


=



0

0.0640 · 10−2

0

0

0

0


. (4.287)

Note that eq. (4.280) is satisfied. The strain-displacement relations in eq. (4.142) are

satisfied by differentiation of eq. (4.282) appropriately; and eq. (4.287) is achieved. A

finite element model was also used to validate the solution. The displacement components

in eq. (4.282) were applied to the outer boundaries of a cube of 100 × 100 × 100 mm3.

The cube was meshed as explained in Section 4.4.1. The displacement and stress fields

obtained at each point within the body are given by eqs. (4.282) and (4.286), respectively.
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Chapter 5

Summary and conclusions

This investigation focused on the Virtual Crack Closure Technique (VCCT) and Clifford

algebra. The two-dimensional VCCT method was extended for an interface crack between

two transversely isotropic materials. It was found in two dimensions that quarter-point

(QP) elements are inappropriate for the VCCT. In addition, the VCCT was extended to

three-dimensional problems. A three-dimensional Clifford formalism was presented and a

general solution for a uniform three-dimensional stress field was found.

In Chapter 1, a literature overview on the VCCT and the Clifford algebra was presented.

The basic equations related to a crack in a linear elastic, homogeneous and isotropic

material and an interface crack between two different linear elastic, homogeneous and

isotropic materials are discussed in Sections 1.1 and 1.2, respectively. In Section 1.3,

an overview of the J and M -integrals is presented. The Stroh (1958) and Lekhnitskii

(1950, 1963) formalisms are presented in Section 1.4. In Section 1.5, a Clifford algebra is

presented. The VCCT, based on the Irwin (1958) crack closure integral, is presented in

Section 1.6. In Section 1.7, the research goals are discussed.

In Chapter 2, the VCCT for two-dimensional problems is considered. In Section 2.1, the

appropriate element type for obtaining accurate values of the energy release rates and

stress intensity factors with VCCT was considered. For this method, the work done in

closing the virtual crack extension (VCE) requires corresponding nodes to be opposite

each other in the calculation, as shown for QP-elements in Fig. 1.16. It was shown

that each pair of nodes m, for the nodal point forces, and m′, for the nodal point crack

face displacement jumps, should be located at the same relative distance from the origin

of the coordinate systems x1, x2 and x′1, x
′
2 in Fig. 2.2c, respectively. For QP-elements,

the quarter-point nodes are not located at the proper distances, as shown in Figs. 1.16

and 2.2a. To use a QP-element ahead of the crack tip, a new element, called an inverse

quarter-point (IQP) element, was suggested. For this element, as shown in Fig. 2.2c, the

node along the element edge on the crack face is moved to the three-quarter distance

from the crack tip instead of the quarter-point distance as in a QP-element. In this way,

the proper position is obtained, as shown in Fig. 2.2c, although the singular behavior is
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incorrect. For regular eight-noded elements, each pair of nodes is located in the proper

position for calculating the work done in closing the VCE or the energy release rates.

Five different approaches were presented for solution of a crack in a two-dimensional

isotropic and homogeneous material. The first approach used regular eight-noded ele-

ments. Approaches 2a, 2b and 3 used a pair of QP-elements. Approach 2a used QP-

elements with global nodal point forces taken from elements (1), (2) and (3) in Fig. 1.14

for the calculation; approach 2b used nodal point forces only from elements (1) and (2).

The third approach, presented in Nairn (2011), used nodal edge forces. Approach 4 used

one IQP-element before the crack tip and one QP-element ahead of the crack tip as shown

in Fig. 2.2c. Three problems were solved in Section 2.2 using the different approaches.

The problems included a center cracked tension (CCT), a double cantilever beam (DCB)

and a pure mode II beam specimen. The most consistent and accurate results were found

by means of the first approach using only eight-noded regular elements. The other ap-

proaches do not converge to and sometimes diverge from the comparison solution. Indeed

in Nairn (2011), it was also seen that eight-noded elements produce the most accurate re-

sults. In order to improve the results with VCCT, mesh refinement should be carried out.

For errors of about 1%, coarse meshes may be used. Only eight-noded regular elements

should be used. Part of Sections 2.1 and 2.2 was published in Farkash and Banks-Sills

(2020).

In Section 2.3, the problem of an interface crack between two dissimilar isotropic, homo-

geneous materials was considered. In the analysis, the phase angle of the stress intensity

factors ψ in eq. (1.40) is required. To this end, the phase angle ψD, defined in eq. (2.50)1,

is calculated. A new equation for ψD, was presented. In Banks-Sills and Farkash (2016),

ψD was found using the inverse trigonometric function cos−1(·). The value of ψD was

between 0 and π, the range of cos−1(·). Hence, there was no difficulty in the calcula-

tion. Here, new equations were derived such that ψD may be found by using the inverse

trigonometric functions sin−1(·) and tan−1(·). These are found in eqs. (2.57) and (2.58).

The functions cos−1(·) and sin−1(·) produce the correct angle ψD only for 0 ≤ ψD ≤ π

and −π/2 ≤ ψD ≤ π/2, respectively. But, the inverse trigonometric function tan−1(·)
produces the correct value of ψD for all its values and is recommended.

The use of more than one element for the VCE was first suggested in Bueth (1996). In

Banks-Sills and Farksh (2016), a criterion for the optimal number of elements for the

VCE was presented for an interface crack between two dissimilar isotropic, homogeneous

materials. Dual energy release rates, II and III , given in eqs. (1.176) and (1.177), were

found to be analytically equal. When carrying of finite element analyses (FEAs), they

are not equal. It was suggested to choose the number of elements for the VCE for which

the lowest difference between II and III is obtained. The difference between II and

III was considered in Section 2.4. To understand this subject, a specific problem with

an analytical solution was presented. The nodal point forces ahead of the crack tip were
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determined analytically; the analytical crack face displacement jumps were taken from the

first term of the asymptotic expansion for the in-plane displacement field in eqs. (1.4) and

(1.10); and, the analytical values of the dual energy release rate were found. As a result

of the stress singularity, large errors in the nodal point forces and the displacement jumps

were found in the elements adjacent to the crack tip when calculated by the finite element

method. These errors caused the difference between the dual energy release rates, where

the numerical value of II underestimates and that of III overestimates their analytical

values as seen in Table 2.7. For a VCE consisting of many eight-noded elements, the

errors in II and III resulting from the stress singularity were minimized and their values

converged to the analytical values. Thus, it is recommended to use a VCE length which

produces the lowest difference between II and III .

In Section 2.5, the VCCT has been extended to an interface crack between two dissimilar

transversely isotropic materials. Equations for calculating the stress intensity factors

K1 and K2 have been developed for this interface crack. Two pairs of solutions were

produced. An analytic condition based on IT in eq. (2.90) to determine the valid solution

is presented. A low value of IT , indicates an optimal number of elements to be used for

∆a. In all of the load cases considered with fine meshes, IT converged towards zero as the

number of elements in the virtual crack extension increased. For the coarse mesh, values

of IT decreased as the number of elements used in the virtual crack extension increased;

but then increased. In this study, it was suggested to choose the number of elements

for ∆a for which the lowest value of IT was obtained. According to this suggestion, the

errors for the stress intensity factors ranged in absolute value from 0.02% to 0.27%. It

may be noted that for an interface crack between two dissimilar isotropic materials the

errors ranged in absolute value from 0.02% to 0.22%. It was shown that the same results

are achieved when using coarser meshes. A focused mesh that contains fewer elements

may be used if IT converged towards zero. In this way, the VCCT may be extended for

three-dimensional problems with meshes with a reasonable number of elements.

Continuing with the same interface in Section 2.5, an expression for the size of the inter-

penetration zone was presented. In previous papers (Toya, 1992; Sun and Qian, 1997),

use of elements larger than the interpenetration zone was recommended. For cases where

the VCE contains the number of elements for which the lowest value of IT is obtained,

excellent results are achieved even if the elements are smaller than the interpenetration

zone. Lastly, new numerical results were presented for a CCT and a DCB specimens with

an interface crack between two transversely isotropic materials, as shown in Figs. 2.18a

and 2.18b, respectively. It was found that even when the stress intensity factors are the

same order of magnitude, a virtual crack extension containing many elements should be

used. Most of Section 2.5 was published in Farkash and Banks-Sills (2017).

In Chapter 3, the VCCT was extended to three-dimensional problems. In Section 3.1,

equations for calculation of the energy release rates for a straight through crack and a
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penny-shaped crack were presented. Note that those equations are applicable for a crack in

an isotropic, homogeneous material and an interface crack. Numerical results for a straight

through finite length crack and a penny-shaped crack in an infinite body of isotropic,

homogeneous material were presented in Section 3.2. For the straight through finite

length crack, the results were compared to the J-integral. For a thickness 2b = 15 mm

in Fig. 3.3, the difference between the results obtained by the VCCT and the J-integral

is less than 0.02% for 0 ≤ x3/b < 0.96 where the x3-axis is shown in Fig. 3.3. For this

relatively thick body, the mid-plane results converged to the two-dimensional plane strain

analytical solution. For the penny-shaped crack, results were compared to an analytical

solution. The analytical stress intensity factors are constant along the crack front. A

convergence study was made with two-dimensional axisymmetric meshes. For the finest

mesh, the greatest percentage error of KI was -0.12%. Due to symmetry, the finest mesh

was swept through one-quarter of the body. For the three-dimensional mesh, the greatest

percentage error of KI was -0.11%.

In Section 3.3, numerical results for a straight through finite length interface crack and a

penny-shaped interface crack in an infinite body were presented. The interface crack in

this section is between two dissimilar linear elastic, homogeneous and isotropic materials.

For the straight through finite length interface crack, numerical results were compared

to those obtained by means of the M -integral. The number of elements for ∆a was

taken for which the lowest value of IT was obtained. For a thickness 2b = 15 mm, the

largest difference between the values obtained for the interface energy release rate Gi
with VCCT and the M -integral is less than 0.06% for 0 ≤ x3/b < 0.96. The mid-plane

results converged to the two-dimensional plane strain solution. As was shown in the two-

dimensional cases, if one element is used as the VCE, the percentage error between the

M -integral and VCCT is more than 5%. Many elements should be used as the VCE in

order to obtain accurate results. For the penny-shaped interface crack, the same three-

dimensional mesh from Section 3.1 was used. Numerical results were compared to an

analytical solution. For the lowest value of IT , the errors for K1 and K2 were -0.11% and

-0.21%, respectively. If only one element is used as the VCE, the error for K2 is more

than 4%.

A new problem consisting of a penny-shaped interface crack between two dissimilar trans-

versely isotropic materials is presented in Section 3.4. The material that was used in

this problem is a fiber reinforced composite made of graphite/epoxy AS4/3501-6. For the

upper material, the fibers are in the x1- direction, and for the lower material, they are in

the x3- direction. For θ = 0◦, where θ is shown in Fig. 3.2, the interface crack is between

0◦//90◦-directions. The double slash denotes interface. For θ = 45◦ and θ = 90◦, the

interface crack is between +45◦//−45◦-directions and 90◦//0◦-directions, respectively. In

order to use the VCCT for θ = 45◦, new equations were derived. The number of elements

that should be used as the VCE is determined by the lowest value of IE which is defined

in eq. (3.56). For θ = 0◦ and θ = 90◦, the lowest value of IT was found for M = 2,
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Table 5.1: A comparison between the two-dimensional Stroh and Lekhnitskii formalism
and the three-dimensional Clifford formalism.

2D-Stroh 3D-Clifford

Coordinate transformation z = p11x1 + p12x2 y = P11x1 + P12x2 + P13x3
Eigenvalue problem (N1 + p12N2)d = 0 (N1 + P12N2 + P13N3)d = 0
Eigenvector d6×1 d9×1

Eigenvalues p11 = 1, p12 P11 = 1, P12, P13

Stress functions ϕb = bf(z) ϕb = bf(y) , ϕg = gf(y)
Stress vectors t1 = −ϕb

,2 , t2 = ϕb
,1 t1 = −(ϕb

,2 + ϕg
,3), t2 = ϕb

,1, t3 = ϕg
,1

where M is the number of elements used for the VCE. The values obtained for θ = 0◦

and θ = 90◦ are the same. For θ = 45◦, the lowest value of IE was found for M = 3.

The values obtained for Gi with M = 2 and 3 are the same up to three significant figures.

Hence, the energy release rates obtained along the interface crack front were presented for

M = 2. The stress intensity factors were calculated for θ = 0◦ with M = 2 and θ = 45◦

with M = 3.

In Chapter 4, a Clifford algebra is considered. In Section 4.1, the eigenvalue problem

is solved for various anisotropic materials. For isotropic materials, a general solution is

found. For anisotropic materials, solutions for specific materials are presented. The eigen-

vectors for the materials considered in Section 4.1 are found in Section 4.2. Again, only

for isotropic material, a general solution is found. A three-dimensional Clifford formalism

is derived in Section 4.3. In Table 5.1, a comparison is made between the two-dimensional

Stroh and Lekhnitskii (SL) formalisms and the three-dimensional Clifford formalism. For

the SL formalisms, the coordinate transformation is two-dimensional and two 6 × 6 ma-

trices N1 and N2 are used for the eigenvalue problem. The parameter p11 is taken to be

unity so that there is only one unknown eigenvalue p12. For the Clifford formalism, the

coordinate transformation is three-dimensional and three 9× 9 matrices N1, N2 and N3

are used for the eigenvalue problem. The parameter P11 is taken to be unity so that there

are two unknowns eigenvalues P12 and P13. For the SL formalisms, one stress function

ϕb is used to determine the two stress vectors t1 and t2. For the Clifford formalism, two

stress functions ϕb and ϕg are used to determine the three stress vectors t1, t2 and t3. In

Section 4.4, analytical and numerical results of the three-dimensional Clifford formalism

are presented. A general solution for a uniform stress field is presented. Problems of

applied tensile and shear tractions were solved. Numerical results were identical to the

analytical solutions.

The VCCT method has been extended for two-dimensional interface crack problems;

namely, for interface cracks between the 0◦//90◦-directions (Farksh and Banks-Sills, 2017)

and the +45◦//−45◦-directions. The VCCT is much simpler to derive for a new interface

than the M -integral. In order to use the M -integral for a new interface, the stress and
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displacement fields in the vicinity of the crack tip must be obtained. These developments

require great effort. For the VCCT, only the stresses on the interface ahead of the crack

tip and the crack face displacement jumps are required. These derivations are much sim-

pler. After the stresses ahead of the crack tip and the crack face displacement jumps are

found, two integrals similar to A and D in eqs. (1.169) and (1.170) are required. One may

follow the steps and the integral solutions presented here for developing the equations

for obtaining the stress intensity factors easily. For example, all the equations and the

derivations needed for the interface crack between the +45◦// − 45◦-directions appear

here in two and a half pages.

The QP-elements are used extensively with the VCCT in recent papers (Jimenez and

Miravete, 2004; Chen et al., 2005; Chiu et al., 2008; Chen et al., 2008; Chiu and Lin,

2009; Wahab, 2015; Peixoto and de Castro, 2016; Khaldi et al., 2016; Burlayenko et al.,

2016; Salem et al., 2018 and Di Stasio and Ayadi, 2019). It was found that QP-elements

produces inaccurate results. Only eight-noded regular elements should be used (Farksh

and Banks-Sills, 2020).

In Banks-Sills and Farksh (2016), an equation was presented to obtain the phase angle

ψ using the inverse cosine of the phase angle ψD. Note that in Banks-Sills and Farksh

(2016), ψD was denote as χ. This equation was found to produce inaccurate results if

ψD < 0 or π < ψD. Here, a new equation for ψ was derived using the inverse tangent of

ψD. With this equation, the correct value of the phase angle ψ is always obtained. The

relation between ψ and ψD is now well established and is illustrated in Fig. 2.10.

The dual energy release rates, II and III , were found to be analytically equal. But,

numerically, they differ. Note that for each interface, the definition of the dual energy

release rates vary slightly. For a crack in an isotropic homogeneous material and for an

interface crack between two dissimilar isotropic materials, the dual energy release rates,

II and III , are defined in eqs. (1.176) and (1.177), respectively. For an interface crack

between the 0◦//90◦-directions, the dual energy release rates are I(T )
I and I(T )

II and defined

in eqs. (2.87) and (2.88), respectively. For an interface crack between the +45◦// − 45◦-

directions, the dual energy release rates are I(E)
I and I(E)

III and defined in eqs. (3.50) and

(3.51), respectively. The numerical difference between II and III was considered. It was

found that the stress singularity at the crack tip is the reason for the numerical difference.

A VCE length that produces the lowest difference between them is recommended for use

in calculating the energy release rates. This criterion was found to produce excellent

results for the problems considered throughout this investigation.

For an interface crack between the 0◦//90◦-directions, two different methods for meshing

were presented. In the first mesh, transition elements were used in order to achieve small

elements in the vicinity of the crack tip, as shown in Fig. 2.15. For the second and third

meshes, a focused zone was used with a square of very small elements in the vicinity of

the crack tip, as shown in Fig. 2.16. The main difference between the latter two meshes is
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the size and number of elements in the square in the vicinity of the crack tip. It was found

that using a focused zone with a small number of elements produces excellent results. In

this way, the number of degrees of freedom is relatively small and two-dimensional meshes

may be extruded for carrying out three-dimensional FEAs.

The VCCT has been extended for three-dimensional problems of a straight through crack

and a penny-shaped crack. Numerical results for cracks in an isotropic homogeneous

material and for interface cracks were presented. Excellent results were found compared

to two and three-dimensional analytical solutions, as well as with comparison to results

obtained with conservative integrals. Many elements should be used as the VCE, for two-

dimensional, as well as three-dimensional problems, in order to obtain accurate results.

For a penny-shaped interface crack between two dissimilar transversely isotropic materials,

the stress intensity factors were found only for θ = 0◦ and 45◦. However, the modes I, II

and III energy release rates and the total interface energy release rate were found along

the entire delamination front. It may be noted that the modes I, II and III energy release

rates oscillate depending on the length of the VCE, ∆a, and were presented here for a

specific value of ∆a.

It may be pointed out that here results with errors of less than 0.5% were sought. For

fatigue crack propagation calculations in metals, Paris’ relationship is used where

da

dN
= C(∆K)n (5.1)

a is crack length, N is the cycle number, K is the stress intensity factor and C and n

are constants determined from tests. Typically, 3 ≤ n ≤ 5. Using eq. (5.1) magnifies

the errors. Hence, for practical problems in the aerospace industry that use fracture

mechanics calculations, small errors are sought. In Fawaz and Andersson (2004), for

some cases, results with errors of less than 0.5% were considered. For other cases, results

with errors of less than 1% were found. For these cases, it was suggested to improve the

errors to be less than 1%. It may be noted that Fawaz and Andersson are working in

industry. Consultation with people who work with Boeing (Wawrzynek, 2006) suggest

achieving errors of less than 0.5%.

Progress has been made with the Clifford formalism for solving problems involving anisotr-

opic material. An early aim of this investigation was to use the Clifford formalism to

solve problems involving cracks in anisotropic material. The definition of the variable y

in eq. (1.90) appears to preclude such a solution. Nonetheless, the eigenvalue problem

was solved for specific anisotropic materials. The stress vectors and stress functions for

three-dimensional problems were found. In addition, a general solution for a uniform

stress field was presented. It seems that the x1, x2 and x3-directions are coupled so that

it does not allow solutions of three-dimensional crack problems. Other three-dimensional

problems may be solved using this formalism.
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Future work on the VCCT may include an extension of this method for elliptical crack

problems. New derivations of the Stroh and Lekhnitskii formalisms and the VCCT are

required in order to determine the stress intensity factors for more positions along the crack

front of the penny-shaped interface crack problem between a cross-ply solved in Chapter

3. For example, for θ = 30◦, equations for an interface crack between the +30◦// − 60◦-

directions are required. These are presented in Rogel and Banks-Sills (2010). In addition,

the VCCT may be extended for other interfaces. The steps for these further extensions

are presented in this study.

In this investigation, the element thickness, ℓ3, was assumed to be constant, as shown in

Fig. 3.1. For this case, the nodal point forces were distributed equally between the rows.

Sometimes, a need arises to change the thickness of the elements throughout the thickness

of the body. For these cases, the correct way to apportion the nodal point forces should

be considered.

The initial hope was to use the Clifford algebra for solving crack problems. This does not

appear to be possible. The Clifford formalism presented here may be extended to solve

other problems of anisotropic materials. In Ting (1996), the relations found for the two-

dimensional uniform stress solution from the Stroh and Lekhnitskii formalisms were used

for solution of an elliptical hole in an infinite body subjected to a uniform loading. Hence,

it may be possible to extend the three-dimensional uniform stress solution obtained here

with the Clifford algebra to solve the problem of an ellipsoidal cavity subjected to the

uniform loading.
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Appendix A

Maintaining displacement continuity
across the interface of a
penny-shaped interface crack

In this appendix, the equations for the remote tractions applied to a body with a penny-

shaped interface crack between two transversely isotropic materials are developed. These

tractions are required to maintain displacement continuity across the interface far from

the crack. For the upper material, the fibers are in the x1- direction, and for the lower

material, they are in the x3- direction. The directions are shown in Fig. 3.9. The effective

mechanical properties of graphite/epoxy AS4/3501-6 are used. The compliance matrices

of the upper and lower materials are given as

S(1) =



1

EA
− νA
EA

− νA
EA

0 0 0

1

ET
− νT
ET

0 0 0

1

ET
0 0 0

sym
2(1 + νT )

ET
0 0

1

GA

0

1

GA


. (A.1)
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and

S(2) =



1
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0 0 0
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0 0 0

sym
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
, (A.2)

respectively. For the upper and lower materials, remote tensile tractions σ22 are applied,

as shown in Fig. 3.13. Using Hooke’s law far from the origin, the strains are found as

ε
(1)
11 =

1

EA

[
σ
(1)
11 − νA(σ22 + σ

(1)
33 )
]

(A.3)

ε
(1)
22 = − νA
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σ
(1)
11 +

1

ET

(
σ22 − νTσ

(1)
33

)
(A.4)

ε
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33 = − νA
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11 − 1
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33

)
(A.5)
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(2)
33 (A.6)
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33 (A.7)

ε
(2)
33 =

1

EA

[
σ
(2)
33 − νA(σ

(2)
11 + σ22)

]
(A.8)

In order to maintain displacement continuity along the interface,

ε
(1)
11 = ε

(2)
11 , ε

(1)
33 = ε

(2)
33 . (A.9)

Since the upper and lower materials are, in fact, the same material rotated by 90◦ degrees,

the strains along the fibers are the same for the upper and lower materials. Hence,

ε
(1)
11 = ε

(2)
33 . (A.10)

In addition, the strains perpendicular to the fibers are the same for the upper and lower

materials, such that

ε
(1)
33 = ε

(2)
11 . (A.11)

Substituting eqs. (A.9) to (A.11) into eqs. (A.3) to (A.8), results in

σ
(2)
11 = σ

(1)
33 =

EAνT − ETνA
EA + ETνA

σ22 +
ET (1 + νA)

EA + ETνA
σ
(2)
33 . (A.12)
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The effective mechanical properties of graphite/epoxy AS4/3501-6 are shown in Table 1.1.

Choosing σ22 = σ
(1)
11 = σ

(2)
33 = 1 MPa, results as σ

(2)
11 = σ

(1)
33 = 0.6114 MPa. Using

transformation equations, at r = R the body is subjected in the FEA to

σ(1)
rr = σ

(1)
11 cos2 θ + σ

(1)
33 sin2 θ , σ

(1)
rθ = (σ

(1)
11 − σ

(1)
33 ) sin θ cos θ (A.13)

σ(2)
rr = σ

(2)
11 cos2 θ + σ

(2)
33 sin2 θ , σ

(2)
rθ = (σ

(2)
11 − σ

(2)
33 ) sin θ cos θ (A.14)

Note that far from the crack

σ
(k)
12 = σ

(k)
13 = σ

(k)
23 = 0 (A.15)

where k = 1, 2.
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Appendix B

Equations of parameters for a
+45◦//− 45◦ interface

in Section 3.4, a penny-shaped interface crack between two unidirectional composites is

considered. The fibers in the upper material are in the 0◦-direction and in the 90◦-direction

in the lower one, as shown in Fig.B.1a. In this appendix, the interface for θ = 45◦ is

considered, as shown in Fig.B.1b. For this case, the upper material in the delamination

front coordinate system is a unidirectional composite with fibers in the +45◦- direction

in the x2 = 0 plane, with respect to the x1- direction, as shown in Fig.B.1b. The lower

material is the same material as the upper one, rotated about the x2-axis by 90◦. The

double slash denotes interface. The materials are tetragonal in the delamination front

coordinate system.

Explicit expressions for the parameters E11, E22, E33, E23, E32 and ε used in Section 3.4

fibers

crack

surfacex1

x2

θmaterial (1) 0º

material (2) 90º

(a) (b)

x1
x3

+45º

Figure B.1: (a) An interface crack between two unidirectional composites and (b) an
upper view of the crack.
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are given. The parameters E11, E22, E33, E23, E32 are given as

E11 = E
(1)
11 = E

(2)
11 =
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∆

{
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∆
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E23 = E
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′(1)
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β3Q(β3)
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(B.4)

E32 = E
(1)
32 = −E(2)

32 = −E(1)
23 . (B.5)

In eqs. (B.1) to (B.4), βi for i = 1, 2, 3 are the eigenvalues of the compatibility equations.

They are the same for the upper and lower materials. The reduced compliance coefficients,

s′αβ, are given as

s′αβ = sαβ −
sα3s3β
s33

(B.6)

for α, β = 1, .., 6. Note that s
′(1)
αβ = s

′(2)
αβ except for

s
′(1)
15 = −s

′(2)
15 , s

′(1)
25 = −s

′(2)
25 , s

′(1)
46 = −s

′(2)
46 . (B.7)

In eqs. (B.1) to (B.4), Q(βi) for i = 1, 2, 3 are given as

Q(βi) =
β2
i − (s′25 + s′46)/s

′
15

s′55β
2
i − s′44

, (B.8)

and ∆ is given as

∆ = 1 +
1

β3(β1 − β2)Q(β3)
{β1β2 [Q(β1)−Q(β2)]− β3 [β1Q(β1)− β2Q(β2)]} . (B.9)

The parameter β is given explicitly as

β =
E23√

−E22E33

(B.10)

where the sign of β is taken as the sign of E23. The oscillatory parameter, ε, is found by

substituting β into equation (1.67).
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